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Abstract

In this article, Perturbation Method (PM) is employed to obtain a handy approximate solution to the steady state
nonlinear reaction diffusion equation containing a nonlinear term related to Michaelis-Menten of the enzymatic
reaction. Comparing graphics between the approximate and exact solutions, it will be shown that the PM method is
quite efficient.
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Introduction
Michaelis-Menten equation is used to describe the kinet-
ics of enzyme-catalyzed reactions for the case in which the
concentration of substrate is grater than the concentration
of enzyme. These reactions are important in biochem-
istry because the most of cell processes require enzymes
to obtain a significant rate (Michaelis and Menten 1913;
Murray 2002). Enzymes are large protein molecules,
which act as remarkably catalyst to speed up chemical
reactions in living beings. With this end, they do work
on specific molecules, called substrates; without the pres-
ence of enzymes, the majority of chemical reactions that
keep living things alive would be too slow to maintain life
(Michaelis and Menten 1913).
As it was already mentioned, the aim of this study

is to find a handing approximate solution which
best describes a reaction diffusion process related to
Michaelis-Menten kinetics. Several oxidoreductase reac-
tions such as quinones and ferrocenes consist of electrode
reactions which allow conjugating between redox enzyme
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reactions and electrode reactions. The redox compound-
mediated and enzyme catalysed electrode process is called
mediated bioelectrocatalysis (Thiagarajan et al. 2011).
Among its applications in engineering it is utilized for
biosensors, bioreactors, and biofuel cells. Therefore, it
is important the search for accurate solutions for this
equation. Unfortunately, solving nonlinear differential
equations is not a trivial process.
The Perturbation Method (PM) is a well established

method; it is among the pioneer techniques to approach
various types of nonlinear problems. This procedure was
originated by S. D. Poisson and extended by J. H. Poincare.
Although the method appeared in the early 19th cen-
tury, the application of a perturbation procedure to solve
nonlinear differential equations was performed later on
that century. The most significant efforts were focused on
celestial mechanics, fluid mechanics, and aerodynamics
(Chow 1995; Filobello-Nino et al. 2013; Holmes 1995).
In general, it is assumed that the differential equation

to be solved can be expressed as the sum of two parts,
one linear and the other nonlinear. The nonlinear part is
considered as a small perturbation represented by a small
parameter (the perturbation parameter). The assumption
that the nonlinear part is small compared to the linear
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is considered as a disadvantage of the method. There
are other modern alternatives to find approximate solu-
tions to differential equations describing some nonlinear
problems such as those based on: variational approaches
(Assas 2007; He 2007; Kazemnia et al. 2008; Noorzad
et al. 2008), Tanh method (Evans and Raslan 2005), exp-
function (Mahmoudi et al. 2008; Xu 2007), Adomian’s
decomposition method (Adomain 1988; Babolian and
Biazar 2002; Chowdhury 2011; Jiao et al. 2001; Kooch
and Abadyan 2011,2012; Vanani et al. 2011), parameter
expansion (Zhang and Xu 2007), homotopy perturbation
method (Beléndez et al. 2009; Biazar and Aminikhan 2009;
Biazar and Ghazvini 2009; El-Shaed 2005; Fathizadeh
et al. 2011; Faraz and Khan 2011; Feng et al. 2007;
Fereidoon et al. 2010; Filobello-Nino et al. 2012a, 2012b;
Ganji et al. 2008, 2009; He 1999, 2000a, 2006a, 2006b,
2008; Hossein 2011; Khan et al. 2011, 2013; Madani
et al. 2011; Mirmoradia et al. 2009; Noor and Mohyud-
Din 2009; Sharma andMethi 2011; Thiagarajan et al. 2011;
Vazquez-Leal et al. 2012a, 2012b), and homotopy analy-
sis method (Hassana and El-Tawil 2011; Patel et al. 2012),
among many others.
Although the PM method provides, in general, better

results for small perturbation parameters ε << 1; we
will see that our approximation, besides of being handy,
has good accuracy even for relatively large values of the
perturbation parameter.
The paper is organized as follows. First, we introduce

the basic idea of the PM method. Second, we provide an
application of the PMmethod solving the bioelectrocatal-
ysis process already mentioned. Next, we discuss signif-
icant results obtained by applying the method. Finally, a
brief conclusion is given.

Basic idea of perturbationmethod
Let the differential equation of one dimensional nonlinear
system be in the form

L(x) + εN(x) = 0, (1)

where we assume that x is a function of one variable x =
x(t), L(x) is a linear operator which, in general, contains
derivatives in terms of t, N(x) is a nonlinear operator, and
ε is a small parameter.
Considering the nonlinear term in (1) to be a small per-

turbation and assuming that its solution can be written as
a power series for the small parameter ε

x(t) = x0(t) + εx1(t) + ε2x2(t) + . . . . (2)

Substituting (2) into (1) and equating terms having iden-
tical powers of ε, we obtain a number of differential
equations that can be integrated, recursively, to determine
the unknown functions: x0(t), x1(t), x2(t) . . .

Approximate solution for the nonlinear
reaction/diffusion equation under study
The equation to solve is

y′′ − ky
1 + αy = 0, 0 ≤ x ≤ 1, y(0) = 1, y(1) = 0, (3)

where k and α denote positive reaction diffusion and sat-
uration parameters, respectively, for the mentioned pro-
cess; y is the mediator concentration and x the distance
(Thiagarajan et al. 2011).
It is possible to find a handy solution for (3) by applying

the PM method, and identifying terms

L(y) = y′′(x), (4)
N(y) = −ky(1 + αy)−1. (5)

We use Newton’s binomial to transform (3) into the
following approximate form

y ′′ − ky
(
1 − αy + α2y2

) = 0, 0 ≤ x ≤ 1, y(0)
= 1, y(1) = 0,

(6)

identifying α as the PM parameter (see (2)), we assume a
solution for (6) in the form

y(x) = y0(x)+αy1(x)+α2y2(x)+α3y3(x)+α4y4(x)+. . . .
(7)

Equating terms with identical powers of α, it can be
solved for y0(x), y1(x), y2(x), . . . , and so on. Later on will
be seen that a very good handy result is obtained by
keeping just the first order approximation.

α0) y′′
0 − ky0 = 0, y0(0) = 1, y0(1) = 0, (8)

α1) y′′
1 − ky1 + ky20 = 0, y1(0) = 0, y1(1) = 0, (9)

...

The solution for (8) that satisfies the boundary condi-
tions is given by

y0(x) = Ae
√
kx + Be−

√
kx, (10)

where A and B are constants given by

A = −1
e2

√
k − 1

, (11)

B = e2
√
k

e2
√
k − 1

. (12)

Substituting (10) into (9), we obtain

y′′
1 − ky1 = −k

(
A2e2

√
kx + 2AB + B2e−2

√
kx

)
,

y1(0) = 0, y1(1) = 0. (13)
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To solve (13), we employ the variation of parameters
method (Chow 1995) which requires evaluating the fol-
lowing integrals

u1 = −
∫ f (x)e−

√
kxdx

W , u2 =
∫ f (x)e

√
kxdx

W , (14)

where y1h = e
√
kx and y2h = e−

√
kx are the solutions to the

homogeneous differential equation

y′′
1h − ky1h = 0, (15)

W is the Wronskian of these two functions, given by

W (y1h, y2h) = −2
√
k, (16)

and f (x) is the right hand side of (13).
Substituting f (x) and (16) into (14), leads to

u1 = −A2e
√
kx

2
+ ABe−

√
kx + B2e−3

√
kx

6
, (17)

u2 = A2e3
√
kx

6
+ ABe

√
kx − B2e−

√
kx

2
, (18)

...

Therefore, the solution for (13) is written, according to
method of variation of parameters, as

y1(x) = Ce
√
kx+De−

√
kx−A2

3
e2

√
kx+2AB−B2

3
e−2

√
kx,

(19)

applying boundary conditions y1(0) = 0 and y1(1) = 0 to
(19) results

C = A2

3

[
e−

√
k − e2

√
k

e−
√
k − e

√
k

]
− 2AB

[
e−

√
k − 1

e−
√
k − e

√
k

]

+ B2

3

[
e−

√
k − e−2

√
k

e−
√
k − e

√
k

]
,

D = A2

3

[
e2

√
k − e

√
k

e−
√
k − e

√
k

]
+ 2AB

[
e
√
k − 1

e−
√
k − e

√
k

]

+ B2

3

[
−e

√
k − e−2

√
k

e−
√
k − e

√
k

]
.

By substituting (10) and (19) into (7) we obtain a first
order approximation to the solution of (3), as it is shown

y(x) = (A + αC)e
√
kx + (B + αD)e−

√
kx − A2α

3
e2

√
kx

+ 2αAB − B2α

3
e−2

√
kx.

(20)

We consider, as a case study, the following values for
parameters: α = 0.1, α = 1, and α = 1.5 for k =
0.1, 1, 5, 10, 20, 50, and 100.

Figure 1 Fourth order Runge Kutta numerical solution for (3) (symbols) and proposed solution (20) (solid line) for α = 0.1.



Filobello-Nino et al. SpringerPlus 2014, 3:162 Page 4 of 6
http://www.springerplus.com/content/3/1/162

Figure 2 Fourth order Runge Kutta numerical solution for (3) (symbols) and proposed solution (20) (solid line) for α = 1.0.

Figure 3 Fourth order Runge Kutta numerical solution for (3) (symbols) and proposed solution (20) (solid line) for α = 1.5.
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Discussion
Nonlinear phenomena appear in such broad scientific
fields like applied mathematics, physics, and engineering.
Scientists in those disciplines face, constantly, with the
task of finding solutions for nonlinear ordinary differen-
tial equations. As a matter of fact, the possibility of finding
analytical solutions for those cases is very difficult and
cumbersome.
The fact that PM depends on a parameter, which is

assumed to be small, suggests that the method is limited.
In this work, the PMmethod has been applied to the prob-
lem of finding an approximate solution for the nonlinear
differential equation which describes the time indepen-
dent nonlinear reaction diffusion equation, corresponding
to a nonlinear Michaelis-Menten kinetics scheme. This
equation is relevant because its solution describes impor-
tant applications such as biosensors, bioreactors, and
biofuel cells, among others. Figures 1, 2, 3 show the com-
parison between approximation (20) for: α = 0.1, α = 1,
and α = 1.5 ( k = 0.1, 1, 5, 10, 20, 50, and 100) to the
fourth order Runge Kutta numerical solution. It can be
noticed that figures are very similar for all cases, showing
the accuracy of (20).
The PM method provides in general, better results for

small perturbation parameters ε << 1 (see (1)) and when
are included the most number of terms from (2). To be
precise, ε is a parameter of smallness; measures howmuch
larger is the contribution of linear term L(x) than N(x) in
(1). Although Figure 1 for α = 0.1 satisfies that condi-
tion, Figure 2 and Figure 3 show that (20) provides a good
approximation as solution to (3); despite of the fact that
perturbation parameters α = 1 and α = 1.5, cannot be
considered small. Since that the transport and kinetics are
quantified in terms of k and α, it is important that our
solutions have good accuracy for a wide range of values
for both parameters.
In (Thiagarajan et al. 2011), HPMmethodwas employed

to provide an approximate solution to (3). Although the
solution reported has good accuracy, it is too long for
practical applications. Unlike the above, (20) provides
good accuracy, it is simple, and computationally more
efficient.
Finally, our approximate solution (20) does not depend

on any adjustment parameter, for which, it is in principle,
a general expression for the exposed problem.

Conclusion
An important task is to find an analytical expression
that provides a good description of the solution for the
nonlinear differential equations like (3). For instance,
the time independent nonlinear reaction diffusion pro-
cess, corresponding to a nonlinear Michaelis-Menten
kinetic scheme is adequately described by (20). This work
showed that some nonlinear problems can be adequately

approximated employing the PM method, even for large
values of the perturbation parameter; as it was done for
the problem described by (3). The success of the method
for this case has to be considered as an alternative to
approach other nonlinear problems; this may lead to save
time and resources employed using sophisticated and dif-
ficult methods. Figures 1 thru 3 show the accuracy of the
proposed solutions.
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