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Abstract

Whereas low-valent late transition metal catalysis has become indispensible for chemical 

synthesis, homogeneous high-valent transition metal catalysis is underdeveloped, mainly due to 

the reactivity of high-valent transition metal complexes and the challenges associated with 

synthesizing them. In this manuscript, we report a mild carbon-carbon bond cleavage reaction by a 

Au(I) complex that generates a stable Au(III) cationic complex. Complementary to the well-

established soft and carbophilic Au(I) catalyst, this Au(III) complex exhibits hard, oxophilic 

Lewis acidity. This is exemplified by catalytic activation of α,β-unsaturated aldehydes towards 

selective conjugate additions as well as activation of an unsaturated aldehyde-allene for a [2 + 2] 

cycloaddition reaction. The origin of the regioselectivity and catalytic activity was elucidated by 

X-ray crystallographic analysis of an isolated Au(III)-activated cinnamaldehyde intermediate. The 

concepts revealed in this study provide a strategy for accessing high-valent transition metal 

catalysis from readily available precursors.

Transition metal catalysis has been developed into an efficient and selective strategy for 

organic transformations in modern chemistry. Low-valent late transition metal complexes 

enjoy particularly heavy use due to their stability and usefulness in forming important 

chemical bonds (C-C, C-O, C-N). However, low oxidation state, late metals struggle with 

other critical reactions including electrophilic C-H functionalization1, 2. Recent efforts have 

begun to unlock the potential of high-valent late transition metals, especially Pd(IV), to 

complement these shortcomings3–6. The major challenges thus far include the typical need 

for strong oxidants to access the high oxidation state, which limits the functional group 

tolerance, and the instability of the oxidized metal complexes, which often exist only as 
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high-energy intermediates on the catalytic cycle (Fig. 1a). Put broadly, in order to fully 

explore the undoubtedly rich chemistry of high valent late metals, it will be essential to 

develop easily prepared, stable, tunable catalysts.

In this regard, we have searched for a route to stable, catalytically active Au(III) complexes 

with the goal of complementing the ever-increasing library of Au(I)-catalyzed reactions. 

Whereas homogeneous Au(I) catalysis has seen great progress over the last decade7–11, 

Au(III) catalysis is still mainly limited to the use of inorganic Au(III) salts12. The synthetic 

challenge in forming stable, yet catalytically active, organometallic Au(III) complexes 

derives from the intrinsic high redox potential, leading to facile reduction of Au(III) 

complexes to Au(I) or metallic Au(0) species in the presence of electron-rich reagents13–18. 

In cases where the ligands are capable of stabilizing the highly oxidizing metal, the resulting 

complex is often rendered catalytically inert. For example, the oxidative addition product, L-

AuX3, formed from L-AuX (X = halogen) is a poor catalyst by itself, and the abstraction of 

a halide to increase reactivity enables a facile reduction to the lower oxidation states15, 16. 

Moreover, while complexes of the type Au(III)(C^L)(X)(Y) are available through multi-step 

synthetic sequences19–21, their instability in the cationic form and the difficulties in readily 

tuning the coordination environment has severely limited their applications in catalysis.

To address this challenge, we hypothesized that a multidentate ligand scaffold with strong 

Au-C bonding energy might be able to stabilize cationic Au(III) organometallic complexes 

while maintaining catalytic activity. In designing the desired complex, we also hoped to 

avoid using strong oxidants to maximize the functional group compatibility of the protocol.

Based on the reported examples22, we reasoned that the transmetalation of Sn(biphenyl)

(nBu)2 to L-AuX3 might afford a stable Au(III) complex with a bidentate ligand containing 

two strong Au-C bonds (Fig. 1b). The known stabilization of both neutral and cationic Au(I) 

complexes by NHCs (N-heterocyclic carbenes) inspired us to examine them as supporting 

ligands23. In an effort to access such compounds, attempts to perform the transmetalation of 

Sn(biphenyl)(nBu)2 to IPr-AuCl3 (2) (IPr = [1,3-bis(2,6-diisopropylphenyl)imidazol-2-

ylidene]) gave us no desired product (Fig. 2). Although the replacement of IPrAuCl3 with 

(THT)AuCl3 (THT = tetrahydrothiophene) enabled access to complex 3 in good yield, the 

two step procedure was cumbersome, and did not meet the goals of being mild and 

straightforward.

As an alternative, we imagined that insertion of an Au(I) complex into the strained C-C 

bond of biphenylene could achieve the desired oxidation and introduction of a stabilizing 

biphenyl ligand in a single step24–26 (Fig. 1b). The concept was appealing for its simplicity, 

even though oxidative addition to Au(I) complexes with mild oxidants is exceedingly rare, 

and in general requires either bimetallic complexes generating Au(II)-Au(II) 

intermediates18, 27–28 or complexes with specially designed ligands29–30. Moreover, no 

well-defined carbon-carbon bond cleavage reactions with Au(I) complexes have been 

reported. To investigate the feasibility of this strategy, the coordinatively unsaturated 

IPrAu(I)(SbF6) was generated in situ by reacting IPrAuCl with AgSbF6 resulting in the 

precipitation of AgCl in CD2Cl2 at room temperature. Reaction of the resulting electrophilic 

IPrAu(I)(SbF6) species with biphenylene resulted in the immediate and quantitative 
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formation of the coordination complex, (IPrAu-biphenylene)(SbF6) 4 (Fig. 2), along with a 

small amount of the Au(III) aqua complex, [IPrAu(III)(biphenyl)(H2O)]SbF6 5, both of 

which were observed by 1H nuclear magnetic resonance (NMR) spectroscopy31. Nearly full 

conversion of the Au(I) cationic species to the desired Au(III) complex 5 was observed after 

1.5 hours (see Supplementary Information, Figure S1 and Table S1). In contrast, most 

reported examples of this type of C-C bond cleavage requires more redox-active metals (e.g. 

Rh, Ir, Ni, Ru, Fe) and have been carried out under harsh reaction conditions24, 25, 

suggesting that the sterically unencumbered cationic IPrAu(I) complex might enjoy a 

comparatively fast rate of coordination and subsequent oxidative addition.

The oxidative addition of IPrAu(I)SbF6 with the more electron-rich 2,3,6,7-

tetramethylbiphenylene (Me4-biphenylene) was also examined. Full conversion to 

[IPrAu(III)(Me4-biphenyl)(H2O)][SbF6] 7 was observed in 5 min at room temperature. 

When replacing AgSbF6 with AgOTf, the oxidative addition was complete after 6 hours to 

give [IPrAu(III)(Me4-biphenyl)OTf] 12. The longer reaction time required in the presence of 

the more coordinating anion is consistent with the hypothesis that coordination of 

biphenylene to a cationic coordinatively unsaturated Au(I) complex is the first step in the 

formation of 5. The thermodynamic driving force for this reaction comes from the cleavage 

of the strained biphenylene C-C bond (BDE = 65.4 kcal/mol) via oxidative addition to Au(I) 

yielding two Au-C(Ar) bonds24, 25. This unprecedented C-C bond cleavage by the linear 

IPrAu(I) cationic complex represents a facile approach for generating strong Au-C(Ar) 

bonds en route to stable Au(III) complexes. Treatment of 5 with nBu4NCl in 

dichloromethane resulted in the coordination of chloride and yielded IPrAu(III)(biphenyl)Cl 

3 as a pale yellow powder in 80% isolated yield after column chromatography (Fig. 2).

An X-ray crystal structure of 3 reveals a Cs-symmetric distorted square-planar complex with 

one IPr carbene ligand, one chloride and two cyclometalation bonds from the biphenyl 

ligand defining the d8 Au(III) geometry shown in Fig. 2. The Au−C bond distances of the 

gold-biphenyl, Au(1)−C(1) and Au(1)−C(12), are 2.028(12) and 2.046(11) Å, respectively, 

are shorter than the gold-carbene bond length of 2.117(11) Å (see Supplementary 

Information). The relatively short bond distances exhibit the strong bonding energy between 

high oxidation Au(III) and its ligands. Consistent with our hypothesis, introduction of the 

cyclometallated biaryl ligand and one NHC ligand stabilized this high oxidation state 

Au(III) complex. The air- and moisture-stable complex 3 could be isolated and stored on the 

benchtop without any decomposition. Reaction of 3 with 1 equiv. of AgSbF6 caused 

immediate precipitation of AgCl in CD2Cl2 and the formation of 5 as observed by 1H NMR. 

This feature allows 3 to be used as a stable precatalyst of cationic Au(III).

To gain more insight on the coordination chemistry of cationic Au(III) complex with 

oxygen-based ligands, treatment of complex 5 with 1.1 equiv. of N,N-dimethylformamide 

(DMF) led to a substantial boost in stability, and allowed the isolation of [IPrAu(III)

(biphenyl)(Me2NC(O)H)][SbF6] 6 via coordination of a lone pair of electrons on the 

carbonyl oxygen. As shown by the crystal structure of complex 6 (Fig. 2), the IPr, biphenyl 

and DMF ligands enforce a distorted square planar geometry around the Au(III) center, with 

the oxygen coordination from DMF in a distance of 2.140(3) Å. This finding suggests that 

the IPrAu(III)(biphenyl) cation exhibits a relatively hard, oxophilic Lewis-acidity, which is 

Wu et al. Page 3

Nature. Author manuscript; available in PMC 2015 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



complementary to the soft Lewis acidity of cationic LAu(I) complexes. This was further 

exemplified by measuring the Lewis acidities of 1 and 3 by the Gutmann-Beckett method 

(see Supplementary Information, Figure S3). The DMF in 6 is located in the pocket created 

by the IPr and biphenyl ligands. This environment is substantially more crowded that 

observed in the linear IPrAuCl complex and effectively shields the DMF carbonyl group. 

The structural and electronic observations gained from this structure suggested a possible 

catalytic application of the IPrAu(III)(biphenyl) cation in selective 1,4-additions to α,β-

unsaturated aldehydes.

Lewis acid-catalyzed 1,4-additions to α,β-unsaturated aldehydes remain challenging as 1,2-

additions generally predominate32–34. Yamamoto and colleagues have reported a unique 

strategy for Lewis acid promoted 1,4-addition to a α,β-unsaturated aldehyde using aluminum 

reagents with sterically demanding ligands35. Although excellent 1,4-selectivity is obtained, 

stoichiometric amounts of Lewis acid appear to be necessary.

To obtain preliminary information regarding the reactivity of complex 5 prepared from 3 in 

Lewis acid catalysis, we initiated our experimental efforts by studying the Mukaiyama–

Michael reaction with cinnamaldehyde and ketene silyl acetal 8 under ambient reaction 

condition. As an initial result, 1,4-adduct was obtained as the major product (1,4-/1,2-adduct 

= 75/25) in 98% NMR yield when catalyzed by IPrAu(III)(biphenyl)(SbF6) (see 

Supplementary Information, Table S2). Replacing AgSbF6 with AgOTf gave 1,4-selectivity 

exclusively and the product was isolated in 76% yield (1,4-/1,2-adduct = >98/2; Fig. 3a). 

With the optimized conditions in hand, silyl nitronate 9 was attempted as nucleophile 

instead of 8. The corresponding γ-nitro aldehyde was isolated in 78% yield with excellent 

selectivity (Fig. 3b). Employing trans-2-hexenal 18a as an aliphatic substrate also yielded 

the corresponding 1,4-adducts with good yield and excellent regioselectivity (Fig. 3a,b). 

Additionally, the catalyst loading could be decreased to 5 mol% without any loss of yield or 

selectivity: 10a was isolated in 77% yield with 1,4-/1,2-adduct >98/2 (see Supplementary 

Information, Table S2). The cationic IPrAu(III)(biphenyl) complex was essential for 1,4-

selectivity in these reactions; in control experiments, the corresponding 1,2-adduct was 

mainly obtained using IPrAu(I)(OTf) and no product was obtained with Ag(OTf) alone. To 

maximize the convenience and accessibility of our new catalyst, we examined the possibility 

of in situ generation of the IPrAu(III) cation via oxidative addition with biphenylene, 

followed by its utilization as a catalyst in one-pot reactions (Fig. 3c). Indeed, combining 

IPrAu(I)Cl, AgOTf, and Me4-biphenylene (30 mol%) led to the formation of active catalyst 

IPrAu(III)(Me4-biphenyl)(OTf) 12 within 1 hour. Subsequent addition of cinnamaldehyde 

and silyl ketene acetal 8 led to the desired Mukaiyama−Michael adduct in 72% yield (1,4-/

1,2-adduct = >98/2). Notably, the reactions do not suffer from using in situ generated 

catalyst as opposed to preformed Au(III) complex. This flexibility illustrates the power of 

using biphenylene to generate the Au(III) catalyst: other oxidizing agents are completely 

incompatible with the sensitive silyl ketene acetal and aldehyde functionalities. As an 

illustration, replacement of biphenylene with Br2 or PhICl2 for the oxidation of 

IPrAu(I)SbF6 yielded no 1,2-/1,4-adducts in the Mukaiyama−Michael reaction, and only 8% 

conversion to the 1,2-adduct was obtained with XeF2 (Fig. 3c).
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The ability to generate the Au(III) catalyst in situ under mild conditions further suggested to 

us the alluring possibility of performing successive Au(I)- and Au(III)-catalyzed reactions in 

a single pot. Thus, we explored a one-pot tandem reaction starting from propargyl alcohol 

13 (Fig. 3d). First, the IPrAu(I)(SbF6) catalyzed Meyer–Schuster rearrangement of 

propargyl alcohol 13 gave an unsaturated aldehyde. Subsequent oxidative addition of 

biphenylene afforded the IPrAu(III) cation 5, which catalyzed the Mukaiyama–Michael 

addition of silyl ketene acetal 8 to provide the final product in 57% overall yield (1,4-/1,2-

adduct = >98/2). The ability to carry out two distinct reactions with different oxidation state 

catalysts originating from a single precursor is a remarkable feature of the newly developed 

methods.

Futhermore, a successive Au(III)-catalyzed ring-opening and Mukaiyama-Michael reaction 

was conducted. In the first step, 5 activated the ring-opening of the cyclopropene 14, which 

reacted with furan, to form a functionalized conjugated trienal (Fig. 3d)36. After removal of 

the excess furan, 5 catalyzed the Mukaiyama–Michael addition of 8 to obtain the final 

product in 53% isolated yield (>98% 1,4-selectivity).

To demonstrate the generality of this Au(III) catalyst for obtaining remote selectivity, we 

next performed 1,6-selective thiol addition and reduction reactions of α,β,γ,δ-diunsaturated 

aldehydes. We hypothesized that the bulky catalyst ‘aldehyde pocket’ should partially shield 

the proximal double bond, thus promoting nucleophilic addition at the γ,δ-double bond. 1,6-

additions to α,β,γ,δ-diunsaturated aldehydes are challenging and especially thiol additions 

and Hantzsch ester mediated reductions are known to proceed with low selectivity to 

provide a mixture of products.37, 38

For the thiol addition (Fig. 4a), 1,6-addition of naphthalene thiol to 16b and subsequent 

oxidation was carried out. With the use of 10 mol% 3 and AgSbF6, the oxidized 1,6-addition 

product 17 was obtained with 64% yield and exclusive 1,6-selectivity in the presence of 

TBHP as an oxidant. For the reduction reaction with Hantzsch ester (Fig 4a), catalyst 5 also 

demonstrated excellent selectivity for the remote reduction of α,β-γ,δ-diunsaturated 

aldehydes 16 to give the α,β-unsaturated aldehydes 18, further showcasing the unique 

regioselectivity obtained with the Au(III) catalyst compared to traditional bulky Lewis and 

Brønsted acid catalysts (See Supplementary Information, Table S5 and e.g. ref. 32–34).

Moreover, we also performed the Diels–Alder reaction of 2,4-hexadienal 16 with 

cyclopentadiene39. Only the γ,δ-functionalized product 19a was obtained in 85% yield 

(endo:exo = 88:12) employing IPrAu(III)(biphenyl)(NTf2) as catalyst (Fig. 4b). γ,δ-selective 

Diels–Alder reactions are unprecedented since α,β-selectivity normally predominates in 

such Lewis acid catalyzed reactions40. Notably, neither IPrAu(I)(NTf2), Ag(NTf2) nor 

organocatalysts provided any product with 16a and cyclopentadiene (see Supplementary 

Information, Table S3) further illustrating the novel reactivity of this gold(III)-based 

catalytic system. Furthermore, in situ generation of Au(III) catalyst from Au(I) (Fig 3c and 

4b) was also used for the Diels–Alder reaction. Several substrates were shown to provide 

products in good yield and excellent regioselectivity. The products was isolated in up to 

92% yield exclusively as the γ,δ-adducts with a endo:exo of up to 86/14 employing 

[IPrAu(III)(biphenyl)(H2O)]SbF6 generated in situ from IPrAu(I)(SbF6) and biphenylene. 
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To increase the practicality of the developed procedure we also showed that the amount of 

biphenylene oxidant can be lowered to 15 mol% (1.5 equivalents as compared to Au(I)). 

Using these conditions, the in situ formed Au(III) catalyst produced product 19b without 

significant decline in yield and selectivity.

Whereas [2 + 2] cycloadditions of α,β-unsaturated carbonyl compounds and allenes have 

been carried out with photochemical conditions41 there are no examples of Lewis acid 

catalysis performing such reactions. Therefore, we next attempted to carry out the 

intramolecular [2 + 2] cycloaddition of cis-unsaturated aldehyde-allene 20 (Fig. 5). When 3 
with AgSbF6 was employed, only [2 + 2] cycloadduct was obtained in 70% yield (cis : trans 

= 89 : 11). Investigations showed that neither IPrAu(I)(SbF6), Ag(SbF6), MeAlCl2, hυ, nor 

organocatalysts catalyzed the [2 + 2] cycloaddition (see Supplementary Information, Table 

S4); as such, this [2 + 2] cycloaddition is an unprecedented reaction unique to the developed 

Au(III) catalytic system.

The solid state structure of the key intermediate [IPrAu(III)(biphenyl)(η1-cinnamaldehyde)]

[SbF6] 22 was determined by X-ray crystallography as illustrated in Fig. 6. This Au(III)-

cinnamaldehyde complex displays a distorted square planar geometry with a η1−-

coordination cinnamaldehyde. The s-trans-cinnamaldehyde is buried in the pocket created 

by the IPr and biphenyl ligands. One of the 2,6-diisopropyl phenyl units is tilted away from 

the cinnamaldehyde plane due to steric hindrance. As a result, the carbonyl moiety is 

effectively shielded from nucleophilic attack and by this means, the IPrAu(III)(biphenyl) 

cation exhibits excellent remote selectivity as a catalyst in additions to unsaturated 

aldehydes.

Exploration of the unique catalytic abilities of high valent late transition metals has been 

hampered by difficulties in accessing stable complexes with well-controlled reactivity. 

Nowhere is this more evident than in the case of Au(III), which lags in its infancy compared 

to the ever-expanding field of Au(I) catalysis. In sharp contrast to previous methods for 

accessing Au(III), which rely on strong halogen-based oxidants, we have discovered that 

stable and catalytically active Au(III) complexes can be obtained by the mild oxidative 

addition of biphenylene to cationic IPrAu(I). While oxidative additions with gold(I) have 

been previously viewed as kinetically challenging,42–43 this striking carbon-carbon bond 

cleavage proceeds under surprisingly mild reaction conditions, even when compared to 

previously reported oxidative additions of biphenylene. The resulting IPrAu(III)(biphenyl) 

catalyst shows good reactivity as a hard Lewis acid catalyst, which is complementary to the 

soft Lewis acidity exhibited by Au(I)-catalysts. The catalytic reactivity is exemplified by six 

reactions of α,β-unsaturated or α,β-γ,δ-diunsaturated aldehydes: Mukaiyama−Michael 

additions, nitronate Michael additions, a thiol addition, Hantzsch ester reductions, Diels-

Alder reactions and a [2 + 2] cycloaddition all proceed good yield and excellent selectivity. 

Whereas commonly employed Au(III) catalysts like AuCl3 exhibit harsh, nonselective 

acidity44, these new catalysts possess intermediate reactivity and a sterically defined binding 

pocket. The ligand environment of the new catalysts, characterized by X-ray 

crystallography, imparts exquisite 1,4- over 1,2-selectivity in the case of the Michael 

additions, δ-selectivity in the thiol addition and reduction reactions as well as γ,δ-selectivity 

in the Diels-Alder reactions of dienals. None of these reactions are feasible with gold(I)-
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based catalysts nor traditional bulky Lewis and Brønsted acid catalysts (see Supplementary 

Information, Table S5 and e.g. ref. 32–34). Furthermore, the catalysts can be generated in 

situ from commercially available reagents, thereby eliminating the need for specialized 

organometallic techniques. The mild nature of the oxidation from Au(I) to Au(III) even 

permits successive Au(I)- and Au(III)-catalyzed reactions in a single reaction vessel. In 

other words, one can take a single precursor and switch between two different reaction 

manifolds by simple in situ catalyst modification. In view of all these features, the methods 

presented herein should aid in unlocking the potential of high oxidation state gold catalysis.

Full Methods and any associated references are available in the online version of the paper 

at www.nature.com/nature.
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Figure 1. Routes to high-valent metal complexes
a, Standard route to high-valent metal complexes using halogen-based oxidants. b, 

Hypothetically synthetic pathway for accessing Au(III)-C bond-stabilized Au(III) 

complexes.
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Figure 2. Accessing gold(III) via oxidative addition of a carbon-carbon bond
Attempted access to complex 3 via transmetalation of Sn(biphenyl)(nBu)2 with IPrAuCl3 2. 

Proposed pathway for the oxidative addition of IPrAu(I) complex with biphenylene/2,3,6,7-

tetramethylbiphenylene. Coordination chemistry of IPrAu(III)(biphenyl) complex 3 and 6. 

X-ray structure of IPrAu(III)(biphenyl)Cl, complex 3 and [IPrAu(III)(biphenyl)

(Me2NC(O)H)][SbF6] complex 6, SbF6
− anion is omitted for clarity.
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Figure 3. Examples of selective Au(III)-catalyzed 1,4-additions
a, Mukaiyama-Michael addition. b, Nitronate Michael-addition. c, In situ generation of 

IPrAu(III)(Me4-biphenyl) catalyst for Mukaiyama−Michael addition. d, One-pot tandem 

Au(I)/Au(III) and Au(III)/Au(III)-catalyzed reactions. [a] NMR yield.
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Figure 4. Remote selectivity in gold(III) catalyzed addtions to dienals
a, δ-selective thiol addition and reduction reactions. b, γ, δ-selective Diels−Alder reaction 

and in situ generation of IPrAu(III)(biphenyl) catalyst for Diels−Alder reactions.
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Figure 5. Gold(III) catalyzed [2 + 2] cycloaddition of a allene-aldehyde
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Figure 6. A model for the obtained selectivity
X-ray structure of [IPrAu(III)(biphenyl)(η1-cinnamaldehyde)][SbF6] complex 22. SbF6

− 

anion is omitted for clarity.
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