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Since both O-GlcNAcylation and autophagy sense intracellular nutrient level, the alteration of those two pathways plays substantial
roles in the progression of heart failure. Hence, determining the relationship between O-GlcNAcylation and autophagy is
imperative to understand, prevent, and treat heart failure. However, the mechanism on how O-GlcNAcylation regulates
autophagy in the heart is poorly investigated. In this study, we demonstrated that O-GlcNAcylation is required for autophagy in
cardiomyocytes by utilizing an O-linked f-N-acetylglucosamine transferase (OGT) cardiomyocyte-specific knockout mouse
model for the first time. We also identified that OGT might regulate the initiation of autophagy in cardiomyocytes through
promoting the activity of ULKI by O-GlcNAcylation. In conclusion, our findings provide new insights into the molecular
mechanisms underlying heart dysfunction and benefit the development of treatments for heart failure.

1. Introduction

O-GlcNAcylation is an important posttranslation modifica-
tion of proteins by the addition of O-linked 3-N-acetylgluco-
samine (O-GlcNAc) moieties at serine or threonine residues.
Similar to protein phosphorylation, which also occurs on
serine or threonine residues, O-GlcNAcylation is dynamic.
In contrast to phosphorylation, which is catalyzed and
removed by hundreds of kinases and phosphatases with
relative substrate specificities, O-GlcNAcylation is catalyzed
and removed by a single pair of enzymes, O-GIcNAc trans-
ferase (OGT) and O-GlcNAcase (OGA), respectively [1, 2].
Increased O-GlcNAcylation in a hypertrophic or failing
heart has been reported from human patients and animal
models [3, 4]. Additionally, previous studies using both
in vitro and in vivo models have suggested that increased
O-GlcNAcylation plays a cardioprotective role in acute
cardiac dysfunctions, yet it may have deleterious effects on
cardiac function in chronic conditions [3]. Genetic knockout
of OGT at embryonic stage in mice led to congenital heart
diseases, resulting in partial postnatal lethality [5] and
cardiac hypertrophy among surviving mice [6]. The acute

loss of OGT in cardiomyocytes also exacerbated heart failure
induced by myocardium ischemia [7].

Autophagy is a conserved mechanism for the degradation
of intracellular elements and plays an essential role in protein
homeostasis and the quality control of subcellular organelles
[8-12]. Although sometimes autophagy can induce cell death
with unique morphological changes, in most cases, autoph-
agy plays protective or adaptive roles and prevents cell death
[12, 13]. Autophagy is essential in maintaining cardiac
structure and function at both baseline by degrading
misfolded proteins and damaged organelles and during stress
by limiting the cardiac damage in different pathological
conditions such as ischemia, starvation, and hemodynamic
overload [14, 15]. A decreased level of autophagy was proven
to contribute to the progression of heart failure and aging
[16, 17]. Hence, autophagy plays an important role in medi-
ating cardiac homeostasis and adaption to aging, stress, and
myocardial injury.

Recently, the relationship between O-GlcNAcylation and
autophagy is gaining more interests, and studies have shown
that O-GlcNAcylation indeed regulates autophagy [18, 19].
Some reports have shown that O-GlcNAcylation negatively
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regulates autophagy in the heart. Noteworthy, those studies
have used Streptozotocin (STZ) to increase O-GlcNAcylation
in vivo [20, 21] by damaging pancreatic 3 cells [22]. However,
damaged f3 cells and STZ’s well-known side effects on other
organs [22] may compromise the relationship between
O-GlcNAcylation and autophagy specifically in the heart or
cardiomyocytes.

Here, we used the Cre-Loxp system to specifically knock
out OGT and abolish O-GlcNAcylation in cardiomyocytes.
We found that the loss of O-GlcNAcylation in cardiomyocytes
attenuated autophagy, especially under fasting condition.
Also, data from isolated neonatal cardiomyocytes showed that
the loss of OGT affected the early stage of autophagy.
Moreover, we identified that Unc-51-Like Autophagy Acti-
vating Kinase 1 (ULK1), an essential kinase for initiating
autophagy flux, was O-GlcNAcylated in cardiomyocytes,
and the level of O-GlcNAcylation of ULK1 was diminished
in OGT knockout cardiomyocytes. Taken together, our data
demonstrated that O-GlcNAcylation is essential for the
initiation of autophagy in cardiomyocytes. Our findings
provide novel insights on the regulation of autophagy in
heart diseases.

2. Materials and Methods

2.1. Animal Models. Ogt"™"*"") mouse was purchased
from Jackson Lab (Stock No: 004860 | OGTF). Floxed female
mice were crossed with a-Mhc-MerCreMer transgenic mice
[23] to create Ogtf/ Ys a-Mhc-MerCreMer-inducible KO
(icKO) mice. All mice were of a mixed 129/Sv] and
C57BL/6] background. Genotypes of the mice were con-
firmed by polymerase chain reaction (PCR) analysis using
tail genomic DNA and Ogt primers (forward: 5 -CATCTC
TCCAGCCCCACAAACTG-3', reverse: 5'-GACGAAGCA
GGAGGGGAGAGCAC-3') and Cre primers (forward: 5'
-GTTCGCAAGAACCTGATGGACA-3'; reverse: 5'-CTAG
AGCCTGTTTTGCACGTTC-3"). All animal procedures
were performed in accordance with the National Institutes
of Health Guide for the Care and Use of Laboratory Animals
and approved by the Institutional Animal Care and Use
Committee of the University of California, San Diego, with
an approved protocol# S01049.

2.2. Tamoxifen Induction. 4-Hydroxytamoxifen was dis-
solved in sesame oil at a concentration of 10 mg/mL. Adult
(2-month-old) Ogt” and Ogt™; a-Mhc-MerCreMer mice
were treated with 4-hydroxytamoxifen by intraperitoneal
injection once daily for 5 days with a dosage of 30 mg/kg
body weight. Ten days after the last dose of tamoxifen, mice
were either given unlimited food or fasted for 12 hours,
followed by heart collection for western blot analysis.

2.3. Adenoviral Vectors, Reagents, and Antibodies. Adenovi-
ruses expressing Cre and lacZ (Ad-Cre and Ad-lacZ) were
obtained from the UCSD Viral Vector Core. Adenovirus
expressing mRFP-GFP-LC3 (Ad-tf-LC3) was provided as a
gift from Dr. Junichi Sadoshima. 4-Hydroxytamoxifen
(H7904), Thiamet-G (TMG, SML0244), and Bafilomycin
Al (SML1661) were purchased from Sigma-Aldrich. Anti-
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bodies used in this study included RL2 (MA1-072, Thermo
Fisher Scientific), OGT (61355, Active Motif), ULK1 (4773,
Cell Signaling), pATG16L1 (ab195242, Abcam), LC3B
(2775, Cell Signaling), SQSTM1 (GP61-C, Progen), ubiquitin
(sc8017, Santa Cruz), and GAPDH (sc365062, Santa Cruz).

2.4. Protein Isolation and Western Blot Analysis. Total pro-
tein extracts were prepared by suspending ground heart
tissue or isolated cardiomyocytes in a urea lysis buffer (8 M
urea, 2 M thiourea, 3% SDS, 75 mM DTT, 0.03% bromophe-
nol blue, 0.05M Tris-HCI, pH6.8). Protein lysates were
separated on 4% to 12% SDS-PAGE gels (Thermo Fisher Sci-
entific) and transferred at 4°C overnight onto nitrocellulose
membranes (Bio-Rad). After blocking for 1 hour in TBS con-
taining 0.1% Tween-20 (TBST) and 5% dry milk, the mem-
branes were incubated at 4°C overnight with the indicated
primary antibodies in a blocking buffer. Blots were washed
and incubated with the appropriate HRP-conjugated second-
ary antibodies (1:5000) for 1 hour at room temperature.
Immunoreactive protein bands were visualized using an
ECL reagent (Thermo Fisher Scientific).

2.5. Immunoprecipitation. After the transduction with Ad-
LacZ or Ad-Cre viruses for 48 hours, neonatal cardiomyo-
cytes were lysed in a RIPA lysis buffer (50 mM Tris, 10 mM
EDTA, 150 mM NaCl, 0.25% deoxycholic acid, 0.1% SDS,
2% NP-40 substitute, and 0.01% sodium azide). Cell lysates
were rotated in the RIPA buffer with 10 uL of RL2 or ULK1
antibody at 4°C overnight. Normal IgG (Santa Cruz) was
used as a negative control. Next, 25uL of PBS-washed
protein G beads (Thermo Scientific) were resuspended and
incubated in the lysate-antibody complexes for 2 hours at
4°C. After washing 3 times with the RIPA lysis buffer, beads
were incubated in 4 x LDS buffer (BioRad) at 70°C for 10
minutes, and the supernatants were collected. The immuno-
precipitates and input lysate were gel electrophoresed and
immunoblotted with the antibodies against O-GlcNAc
(RL2) and ULKI.

2.6. Neonatal Mouse Cardiomyocyte Isolation and Treatments.
Neonatal mouse cardiomyocytes were prepared as previously
described [24] and maintained in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with 10% horse
serum, 5% fetal bovine serum (FBS), 100 U/mL penicillin,
and 100 ug/mL streptomycin for 24 hours before adenovirus
transduction or other treatments. After being transduced with
adenoviruses at MOI of 50, cardiomyocytes were cultured for
additional 36 or 48 hours. Wild-type neonatal cardiomyocytes
were treated with TMG (25uM) for 48 hours before other
treatments. Right before collection, cardiomyocytes were
treated with Bafilomycin A1 (100 nM) for 4 hours or subjected
to starvation with serum-free medium for 18 hours.

2.7. Fluorescent Microscopy. 48 hours after the transduction
with Ad-tf-LC3 along with Ad-LacZ or Ad-Cre, cardiomyo-
cytes were fixed with 4% paraformaldehyde for 5 min before
confocal imaging. For immunostaining of pATG16L1, Ad-
LacZ or Ad-Cre, transduced neonatal cardiomyocytes were
fixed with 4% paraformaldehyde for 5min and blocked in
the blocking buffer (PBS with 1% BSA, 5% donkey serum,
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FIGURE 1: Acute loss of OGT attenuates autophagy in cardiomyocyte. (a) Western blot analysis of O-GlcNAc (RL2), OGT, LC3, and SQSTM1
using whole heart lysates from control and icKO mice with either food (fed) or water only (fasted). (b) Statistical analyses of the western blot
results, n =4 for each group. *Significantly different; M.W.: molecular weight.

and 0.2% Triton 100) for 2 hours. They were then incubated
with pATG16L1 antibody (1:200 in blocking bufter) over-
night followed by a secondary antibody (1:300 in blocking
buffer) incubation for 2 hours and confocal imaging.

2.8. Statistics. Data were presented as the mean + SEM unless
indicated otherwise. Statistical analysis was performed using
GraphPad Prism 6.0 (GraphPad Software), with a 2-tailed
Student’s ¢ test. P values of less than 0.05 were considered
statistically significant.

3. Results

3.1. Deletion of Cardiomyocyte OGT Leads to the Attenuation
of Autophagy in the Mouse Heart. To explore the possible
effects of O-GlcNAcylation on autophagy in the heart, we
crossed Ogt"" females with inducible a-MHC-MerCreMer
male mice to generate Ogtf/ Y a-MHC-MerCreMer mice,
which were injected with tamoxifen for 5 days to generate
OGT cardiac knockouts (hereafter icKO). Meanwhile,
age-matched Ogf”” mice injected with the same doses of
tamoxifen were used as controls. Ten days after the last dose
of tamoxifen, when the icKO mice did not show heart
dysfunction [6], western blot with RL2 and OGT antibodies
showed that global O-GlcNAcylation and OGT dramatically
decreased in icKO hearts. Under fed condition, the LC3-II
level in the heart was not statistically different between
control and icKO mice, although LC3-II in icKO mice was
decreased (Figure 1). In contrast, the SQSTM1 level in icKO
mice increased slightly but significantly (Figure 1). The most

potent known physiological inducer of autophagy is starva-
tion, and fasting has been widely used to investigate autoph-
agy in mouse models [25]. Thus, we next investigated
whether O-GlcNAcylation affected cardiac autophagy when
mice were subjected to fasting. Surprisingly, the LC3-II level
was significantly decreased in icKO mice when they were
subjected to fasting. The SQSTM1 level in icKO mouse heart
was further elevated accordingly (Figure 1). These data sug-
gested that O-GlcNAcylation in cardiomyocytes is indispens-
able for autophagy under fasting condition, while it has only
a mild influence on autophagy at the basal level.

3.2. Deletion of OGT in Isolated Neonatal Cardiomyocytes
Attenuates Autophagy. To investigate whether OGT regu-
lated autophagy in cardiomyocytes in a cell autonomous
manner, we isolated neonatal cardiomyocytes from newborn
pups from Ogt”’ female and Ogt”” crossings. Those isolated
neonatal cardiomyocytes were transduced with adenovirus
expressing Cre recombinase (Ad-Cre) to delete OGT. Cells
transduced with adenovirus expressing LacZ (Ad-LacZ) were
used as control. Western blot showed that the levels of
O-GlcNAcylation and OGT were dramatically decreased in
Ad-Cre-treated cells (Figure 2(a)). LC3-II was significantly
downregulated in knockout cells, regardless whether the cells
were cultured in complete medium (nutrient) or subjected to
starvation (starved) as described in Materials and Methods.
Also consistent with the previous in vivo result (Figure 1),
SQSTM1 was increased in knockout cells under both nutri-
ent and starved conditions (Figure 2(a)). To further confirm
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F1GURE 2: Deletion of OGT in isolated neonatal cardiomyocyte attenuates autophagy. (a) Left panel, western blot analysis for autophagy of
Ad-LacZ or Ad-Cre-infected Ogt”" and/or Ogt”’ neonatal cardiomyocytes with either full medium (nutrient) or starving medium
(starvation), using antibodies against OGT, O-GIcNAc, LC3, and SQSTM1. GAPDH was detected as a loading control. Right panel,
quantification of western blot results in the left panel, n=3 for each group. *Significantly different; M.W.: molecular weight. (b) Left
panel, representative fluorescent images of adenovirus RFP-GFP-LC3-infected control (Ad-LacZ treated) and knockout (Ad-Cre treated)

Ogtf/f

analyzed for each group. *Significantly different.

the attenuation of autophagy in OGT knockout cardiomyo-
cytes, the cardiomyocytes were transduced with adenovirus
expressing tandem fluorescent mRFP-GFP-LC3 (Ad-tf-LC3).
Ad-tf-LC3 allows the detailed monitoring of autophagy flux,
because LC3 puncta labeled with GFP and mRFP represent
autophagosomes, whereas those labeled with mRFP alone
represent autolysosomes [26]. Indeed, under nutrient condi-
tion, the numbers of both mRFP-labeled autolysosomes and
yellow autophagosomes were decreased in OGT knockout
cardiomyocytes (Figure 2(b)). Collectively, our data sug-
gested that O-GlcNAcylation is required for autophagy in
mouse cardiomyocytes.

and/or Ogt”” neonatal cardiomyocytes. Quantitative analyses of LC3 puncta per cell were shown in the right panel. 50 cells were

3.3. OGT Regulates the Early Stages of Autophagy in
Cardiomyocytes. To further investigate how OGT regulates
autophagy in cardiomyocytes, we treated the control and
OGT deleted neonatal cardiomyocytes with or without Bafi-
lomycin A (BafA), a commonly used inhibitor of autophagy
through preventing autophagosome-lysosome fusion and
acidification of lysosome [27]. Clearly, western blot showed
that BafA treatment induced an accumulation of LC3-II in
control cardiomyocytes but to a much lower extent in OGT
deleted cardiomyocytes (Figure 3(a)). Those data indicated
that the loss of OGT in cardiomyocytes attenuated the early
stages of autophagy flux. A recent report has shown that
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FiGureg 3: OGT regulates the early stage of autophagy in cardiomyocytes. (a) Left panel, western blot analysis for autophagy of untreated or
Bafilomycin A-treated Ad-LacZ or Ad-Cre-infected Ogf’" neonatal cardiomyocytes, using antibody against O-GIcNAc, OGT, and LC3.
GAPDH was detected as loading control. Right panel, quantification of western blot results in left panel, n = 3 for each group. *Significantly
different; M.W.: molecular weight. (b) Left panel, western blot analysis for autophagy of Ad-LacZ- or Ad-Cre-infected Ogt’" and/or Ogt"”
neonatal cardiomyocytes with either full medium (nutrient) or starving medium (starved), using antibody against pATG16L. GAPDH was
detected as a loading control. Right panel, quantification of western blot results in the left panel, n =4 for each group. *Significantly
different; M.W.: molecular weight. (c) Left panel, representative immunomicroscopic images of pATG16L puncta (green) in Ad-LacZ- and
Ad-Cre-infected Ogt”* and/or Ogt”” neonatal cardiomyocytes, costained with alpha-actinin (gray) and DAPI (blue). Right panel,
quantification of pATG16L-positive puncta per cell, 7 =50 cells each group. *Significantly different.
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the level of phosphorylated ATG16L1 (pATG16L1) corre-
lates with the amount of newly formed autophagosome,
and it has suggested that the pATG16L1 level could deter-
mine the rate of autophagy [28]. Hence, we took advantage
of the newly generated antibody that recognizes pATG16L1
to confirm our finding. Consistently, western blot showed
that the level of pATG16L1 was decreased in OGT deleted
cardiomyocytes, under both nutrient and starved conditions
(Figure 3(b)). Immunostaining also showed that the number
of pATGI16L1-positive puncta in OGT knockout neonatal
cardiomyocytes under nutrient condition was decreased
(Figure 3(c)). These data suggested that the loss of OGT in
cardiomyocytes most likely affects autophagy induction
rather than the late stages of autophagy.

3.4. Elevated O-GIcNAcylation in  Neonatal Mouse
Cardiomyocytes Promotes Autophagy. To check whether

elevated O-GlcNAcylation in cardiomyocytes has the oppo-
site effect on autophagy, we treated wild-type neonatal
mouse cardiomyocytes with 25umol/L TMG, an OGA-
specific inhibitor. Western blot showed that TMG treatment
indeed significantly increased the level of O-GlcNAcyation
in cardiomyocytes (Figure 4(a)). Consequently, the LC3-II
level in cardiomyocytes was also increased significantly by
TMG treatment, both at the basal level and with BafA
(Figure 4(a)). Also, the pATGI16L1 level was increased in
cardiomyocytes treated with TMG (Figure 4(b)). Collec-
tively, these data indicated that elevated O-GlcNAcylation
in cardiomyocytes promotes autophagy.

3.5. ULKI Is O-GIcNAcylated in Cardiomyocytes. ULKI is
a key factor in controlling the initiation of autophagy
[12]. Both in vivo and in vitro data strongly suggested that
ULK1 is required for autophagy in cardiomyocytes [29].
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In addition, ULK1 is also responsible for the phosphorylation
of ATG16L1 [28]. Hence, we checked whether ULK1 was
decreased in OGT deleted cardiomyocytes. Surprisingly,
ULK1 showed an even higher protein level in OGT knockout
cardiomyocytes (Figure 5(a)), excluding the contribution of
decreased ULK1 to OGT deletion-induced autophagy atten-
uation. A recent report has shown that O-GlcNAcylation of
ULK1 is required for ULK1-mediated autophagy in liver cells
[19], which prompted us to examine whether ULKI1 was
O-GlcNAcylated in cardiomyocytes. Immunoprecipitation
showed that ULK-1 was O-GlcNAcylated in cardiomyocytes.
And the level of ULK1 O-GlcNAcylation was dramatically
decreased in OGT knockout cardiomyocytes (Figures 5(b)
and 5(c)). These data suggested that OGT control the initia-

tion of autophagy in cardiomyocytes through the regulation
of ULK1 O-GlcNAcylation.

4. Discussion

Previous studies have showed that cardiomyocyte OGT or
O-GlcNAcylation was essential for cardiac function at both
the basal level and under stress such as ischemia [6, 7],
and the loss of OGT promoted cardiomyocyte’s apoptosis
[6, 7]. Interestingly, upregulation of autophagy during heart
ischemia and reperfusion has also been shown to be
cardiac-protective and prevented apoptosis of cardiomyo-
cytes [30-32]. Therefore, we anticipated that the protective
effect of O-GlcNAcylation in cardiomyocytes is mediated,



at least partially, via the promoting of autophagy especially
under stress. Indeed, our data from both in vivo and in vitro
models clearly demonstrated that the loss of OGT in cardi-
omyocytes attenuated autophagy.

Interestingly, we found that the loss of O-GlcNAcylation
in the heart decreased autophagy only when mice were sub-
jected to starvation, while the loss of O-GlcNAcylation in iso-
lated neonatal cardiomyocytes attenuated autophagy under
both nutrient and starved conditions. One possible explana-
tion is that during the process of isolation, the isolated cardi-
omyocytes might already had gone through stress, which
increased the basic requirement of autophagy. Another
explanation is that underdeveloped neonatal cardiomyocytes
and mature adult cardiomcyotes might behave differently in
the extent of autophagy regulations.

Of note, our results were different from the previous stud-
ies which showed that elevated O-GlcNAcylation blunted
autophagy in the heart and cardiomyocytes [20, 21]. In those
studies, STZ was used to elevate O-GlcNAcylation because
STZ can induce hyperglycemia by damaging /3 cells. Conse-
quently, STZ induces altered O-GlcNAcylation globally
instead of just in cardiomyocytes, preventing the effects of
O-GlcNAcylation in cardiomyocytes on autophagy to be
elucidated. Also, STZ treatment in animals has numerous side
effects [22], which further compromise the relationship
between O-GlcNAcylation and autophagy inside cardiomyo-
cytes. Our results from the OGT cardiomyocyte-specific
knockout mouse model demonstrated that O-GlcNAcylation
promotes autophagy in cardiomyocyte cell autonomously.

We also showed that O-GlcNAcylation is required for
the early stages of autophagy because LC3-II level was
decreased even with BafA treatment. Additionally, pATG16L1
level, a novel marker of newly formed autophagosome [28],
was also decreased when OGT was knocked out in cardiomyo-
cytes. Consistently, ULK1, a key regulator of autophagy at the
early stage, was shown to be O-GlcNAcylated in cardiomyo-
cytes, and O-GlcNAcylation of ULK1 was diminished when
OGT was knocked out. In line with our findings, ULK1
cardiomyocyte-specific knockout mice show autophagy
defects under stress [29]. Considering that ULKI1 is a critical
regulator of autophagy initiation and its O-GlcNAcylation is
required for the induction of autophagy in other cell types
[19, 33], we anticipate that OGT promotes autophagy through
regulating ULK1 activity by O-GlcNAcylation in cardiomyo-
cytes. Future studies are needed for confirmation.

In conclusion, using a cardiomyocyte-specific genetic
deletion mouse model, for the first time, we demonstrated
that O-GlcNAcylation is required for autophagy in cardio-
myocytes especially under stress conditions. We also found
that O-GlcNAcylation promotes initiation of autophagy
probably through the regulation of ULKI activity in cardi-
omyocytes. Our findings provide a better understanding of
heart dysfunction and should be considered for their
potentials in the prevention and treatment of heart failure.

Data Availability

All data used to support the findings of this study are
available from the corresponding author upon request.
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