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Abstract

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system, which is
heterogenous with respect to clinical manifestations and response to therapy. Identification of biomarkers appears desirable
for an improved diagnosis of MS as well as for monitoring of disease activity and treatment response. MicroRNAs (miRNAs)
are short non-coding RNAs, which have been shown to have the potential to serve as biomarkers for different human
diseases, most notably cancer. Here, we analyzed the expression profiles of 866 human miRNAs. In detail, we investigated
the miRNA expression in blood cells of 20 patients with relapsing-remitting MS (RRMS) and 19 healthy controls using a
human miRNA microarray and the Geniom Real Time Analyzer (GRTA) platform. We identified 165 miRNAs that were
significantly up- or downregulated in patients with RRMS as compared to healthy controls. The best single miRNA marker,
hsa-miR-145, allowed discriminating MS from controls with a specificity of 89.5%, a sensitivity of 90.0%, and an accuracy of
89.7%. A set of 48 miRNAs that was evaluated by radial basis function kernel support vector machines and 10-fold cross
validation yielded a specificity of 95%, a sensitivity of 97.6%, and an accuracy of 96.3%. While 43 of the 165 miRNAs
deregulated in patients with MS have previously been related to other human diseases, the remaining 122 miRNAs are so far
exclusively associated with MS. The implications of our study are twofold. The miRNA expression profiles in blood cells may
serve as a biomarker for MS, and deregulation of miRNA expression may play a role in the pathogenesis of MS.
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Introduction

Multiple sclerosis (MS) is a chronic inflammatory demyelinating

disease of the brain and spinal cord, primarily affecting young adults

[1]. It is widely believed that MS is an immune-mediated disease

whose clinical manifestations and course, as well as response to

therapy appear to be heterogeneous, as may be the underlying

pathogenic mechanisms [1]. Biomarkers are defined as parameters

that can be objectively measured and evaluated as indicators of

pathogenic processes or responses to a therapeutic intervention [2].

Identification of reliable biomarkers for MS bears the potential for

an improved diagnosis of MS, monitoring of disease activity and

progression, and evaluation of treatment responses. In recent years,

the field of biomarker discovery has gradually shifted from the aim

of finding a single perfect surrogate marker to the construction of

composite markers with higher performance, taking advantage of

technologies allowing unbiased screening, including microarray

analyses. However, identification of suitable biomarker sets for MS

based on parameters in peripheral blood is only in its infancy [2,3].

MicroRNAs (miRNAs) are short (about 22 nucleotides in

length) single-stranded regulatory RNAs that modulate gene

expression at the posttranscriptional level by repressing translation

of specific messenger RNA (mRNA) targets, eventually resulting in

downregulation of protein expression. They play important roles

in a variety of physiologic and pathologic processes, most notably

oncogenesis [4,5]. Furthermore, miRNAs are involved in the

regulation of the immune system [6]. Evidence suggests that

miRNAs are present in a remarkably stable form in human blood,

where they occur as free circulating nucleic acids, in microvesicles,

and in mononuclear blood cells [7,8]. Recent proof-of-principle

studies demonstrated that the analysis of miRNA expression in

sera or blood cells may be a promising approach for blood-based

diagnosis of a number of human cancers and also autoimmune

diseases [8–10]. Those studies have also shown that global patterns

of miRNA expression might be more revealing than analysis of

single miRNAs. Together, the previous findings suggest that

miRNA expression signatures in blood have the potential to serve

as biomarkers for various human diseases.
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Here, we investigated miRNA expression patterns in blood cells

of patients with relapsing-remitting MS (RRMS), as compared to

healthy controls, using a miRNA microarray which contains all

866 human miRNAs and miRNA star sequences deposited in the

Sanger miRBase version 12.0 [http://microrna.sanger.ac.uk/

sequences/, 11]. We thereby identified 165 significantly deregu-

lated miRNAs in MS and demonstrate that unique miRNA

signatures in patients with RRMS allow accurate differentiation

from healthy controls. These data suggest that miRNA expression

signatures may represent a potentially useful biomarker for the

diagnosis of MS and that dysregulation of miRNA expression

could play a role in the complex pathogenesis of MS.

Results

Altered miRNA expression in patients with relapsing-
remitting MS

We analyzed the expression of 866 miRNAs and miRNA star

sequences in blood cells of 20 patients with RRMS as well as 19

healthy controls. Demographic and clinical details of the study

subjects are listed in Supplemental Table S1. Following RNA

isolation and on-chip labeling of miRNAs, the miRNA expression

profiles were measured using the Geniom Biochip miRNA homo

sapiens and the Geniom Real Time Analyzer GRTA (febit

GmbH, Heidelberg). Raw images were analyzed using the

Geniom Wizard software and the intensity values were back-

ground subtracted and quantile normalized. To test the repro-

ducibility of the platform we screened 8 technical replicates of

purchased total RNA (Ambion). We determined a mean

correlation value of 0.97 for the technical replicates. Measurement

of biological replicates showed a mean correlation of 0.87 and a

variance of 0.009.

We next applied hypothesis testing to identify miRNAs

deregulated in blood cells of MS patients as compared to controls.

Following verification of an approximately normal distribution

using Shapiro-Wilk test, we performed two-tailed unpaired t-tests

for each miRNA. The respective p-values were adjusted for

multiple testing by the Benjamini-Hochberg approach. In total, we

detected 165 miRNAs significantly deregulated in blood cells of

MS patients as compared to controls. Histogram plots of the

logarithm of fold quotients, the raw t-test p-values and the adjusted

p-values are presented in Figure 1. A complete list of deregulated

miRNAs is given in Supplemental Table S1. From the 165

significantly deregulated miRNAs 74 (44.8%) were up-regulated

and 91 (55.2%) were down-regulated. The ten miRNAs that were

most significantly deregulated included hsa-miR-145 (1.46?1027),

hsa-miR-186 (2.89?1027), hsa-miR-664 (5.25?1025), hsa-miR-20b

(1.48?1024), hsa-miR-422a (1.48?1024), hsa-miR-142-3p

(1.54?1024), hsa-miR-584 (1.56?1024), hsa-miR-223 (1.63?1024),

hsa-miR-1275 (1.16?1024) and hsa-miR-491-5p (2.83?1024).

Remarkably, 9 of the best ten miRNA biomarkers (90%) were

significantly up-regulated in MS, while only one miRNA (hsa-

miR-20b) was down-regulated. For the two best miRNAs, hsa-

miR-186 and hsa-miR-145, we present bar plots showing the

intensity values for all MS and control samples in Figures 2a and

2b. For the single down-regulated miRNA hsa-miR-20b, the bar

plot is presented in Figure 2c. Table 1 shows the ten most

deregulated miRNAs. To further validate our data, we performed

RT-qPCR on two miRNAs that are up-regulated in our array

profiles and are associated from literature to be disease related

[12]. In detail, we exemplarily screened 4 diseased and 4 control

samples of miRNAs has-let-7c and has-miR-233. miR-let-7c was

up-regulated 1.57 fold in the arrays of the respective patients and

the RT-qPCR showed a fold change of 1.76. For miR-223, the

Figure 1. Histogram plot of the logarithm of fold changes, raw
t-test p-values and adjusted p-values for all screened miRNAs.
The upper part of the figure shows the logarithms of fold changes.
These are almost normally distributed between -3 and 3. The middle
and bottom part of the figure present histograms of adjusted p-values
for the limma test and t-test. The t-test showed a slightly decreased
number of significant miRNAs. Nevertheless, for both tests a clear
tendency towards low p-values and thus high significance can be seen.
The vertical blue line denotes the significance threshold of 0.05.
doi:10.1371/journal.pone.0007440.g001
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arrays showed a fold-change of 2.21 and the RT-qPCR of 1.84.

We additionally computed receiver operator characteristic curves

(ROC) for each of the best miRNAs together with the area under

the curve value (AUC). The more the AUC differs from 0.5, the

better a biomarker is. The most extreme values of the AUC are 0

and 1. A value of 1 means, that none of the control values exceeds

any of the MS values. A value of 0 means, that none of the MS

values exceeds any of the control values.

For the best miRNA, hsa-miR-145, we obtained an AUC value

of 0.96. Using this miRNA we classified 35 (89.7%) of the 39

samples correctly, but four samples (9.8%) were misclassified (two

MS sera false negatively, and two control sera false positively)

leading to a specificity of 89.5%, a sensitivity of 90% and an

accuracy of 89.7%. However, these results are not validated by a

re-sampling technique as bootstrapping or cross-validation and are

based only on a single marker.

Evaluating complex fingerprints
In order to improve the statistical reliability we combined the

predictive power of multiple miRNAs by using statistical learning

techniques. In detail, we applied Support Vector Machines (SVM)

with different kernels (linear, polynomial, sigmoid, radial basis

function) to the data and carried out a hypothesis test based on

subset selection as described in Material and Methods. To gain

statistical significance we carried out 100 repetitions of standard

10-fold cross validation. Likewise, we computed 100 repetitions for

the permutation tests where samples with randomly assigned class

labels were classified.

The best results were obtained with radial basis function SVM

and a subset of 48 miRNAs (see Supplemental Table S1). These

miRNAs allowed the discrimination between blood samples of MS

patients and blood samples of controls with an accuracy of 96.3%,

a specificity of 95%, and a sensitivity of 97.6%. The permutation

tests showed significantly decreased accuracy, specificity, and

sensitivity rates, corresponding to random guessing. The classifi-

cation results and the results of the permutation tests are shown in

Figure 3. These results show that the obtained results are not due

to an overfit of the statistical model on the miRNA fingerprints.

Additionally, we present one randomly selected example of a

classification in MS and controls in Figure 4. This graphic shows

for each control (C) and each MS (M) sample the logarithm of the

quotient of the probability to be a MS sample and the probability

to be a control sample. The probabilities have been computed by

the R implementation of the libsvm relying on the distance of the

samples from the separating hyperplane. If the quotient of the

probabilities is greater than one (thus the logarithm is greater zero)

Figure 2. Barplots detailing the intensity values for the miRNAs hsa-miR-145 (a), hsa-mir-186 (b), and hsa-miR-20b (c). MS sera are
indicated by red bars, control sera are indicated by green bars.
doi:10.1371/journal.pone.0007440.g002

Table 1. The ten most significantly deregulated miRNAs.

median MS median normal fold quotient Logarithm of fold quotient t-test adjusted p-values

hsa-miR-145 474,928 150,87 3,148 1,147 1,46E-07

hsa-miR-186 221,159 57,826 3,825 1,341 2,89E-07

hsa-miR-664 563,351 239,837 2,349 0,854 5,25E-05

hsa-miR-20b 2197,846 4746,011 0,463 20,77 0,000148065

hsa-miR-422a 309,874 148,899 2,081 0,733 0,000148065

hsa-miR-142-3p 171,558 21,71 7,902 2,067 0,000154481

hsa-miR-584 266,721 76,725 3,476 1,246 0,000156481

hsa-miR-223 4131,063 1986,446 2,08 0,732 0,00016217

hsa-miR-1275 164,254 92,348 1,779 0,576 0,000163285

hsa-miR-491-5p 192,594 118,522 1,625 0,485 0,000283444

doi:10.1371/journal.pone.0007440.t001

miRNA - MS Profiling
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the sample is more likely to be a MS sample than a control sample.

Figure 4 clearly outlines that in general MS samples have

logarithmized quotients of greater 0 while control samples have

quotients of below 0.

No influence of age, gender, and MS therapy on miRNA
expression profiles

To cross-check that age and gender did not influence our

analysis, we computed t-tests using the normal samples. In case of

males versus females we did not find any statistically significant

deregulated miRNA. The most significant miRNA, hsa-miR-423,

showed an adjusted significance level of 0.78. To test for the

influence of donor age we compared the profiles obtained from old

versus young patients by splitting the total group in half based on

the age. Here, the most significant miRNA, hsa-miR-890,

obtained an adjusted p-value of 0.87. As for gender, we did not

find any deregulated miRNAs, thus providing evidence that age

and gender do not have a substantial influence on the miRNA

profiles. Additionally, we determined the influence of MS therapy

by comparing the group of patients treated with glatiramer acetate

(n = 9) to the group treated with interferon-b (n = 10). As for

gender and age we did not find any significantly deregulated

miRNAs between those two groups.

MiRNA deregulated in patients with MS only partially
overlap with miRNAs previously associated with other
human diseases

To examine if the detected 165 significantly deregulated

miRNAs are already related to other human diseases we used

the ‘‘Human microRNA Disease Database (HMDD)’’ that

contains information on deregulated miRNA for over 100 human

diseases. Altogether, over 2000 relations are included in the

HMDD [12]. We created a bipartite graph were red nodes

indicate miRNAs and yellow nodes indicate human diseases (see

Figures 5 and 6). Edges between a miRNA and a disease indicate

deregulated miRNAs in the respective disease.

We created a network containing 452 nodes, 137 of which

belong to diseases and 315 to miRNAs. The network, which is

shown in Figure 3 (an enlarged high-resolution poster version is

Figure 3. Boxplot of the classification results. The blue boxes
show the classification accuracy, specificity and sensitivity over the
repeated cross-validation for a subset of 48 miRNAs. The red boxes
show the respective accuracy, specificity and sensitivity for permutation
test.
doi:10.1371/journal.pone.0007440.g003

Figure 4. Exemplarily classification result. The logarithm of the
quotient of the probability to be a MS sample and the probability to be
a control sample for each control (C) and each MS (M) sample is given
on the y-axis. If this quotient is greater than one (thus the logarithm
greater zero) the sample is more likely to be a MS sample than a control
sample.
doi:10.1371/journal.pone.0007440.g004

Figure 5. Complete disease network without MS. The network
indicates human diseases by yellow nodes and miRNAs by red nodes.
An edge between a disease and a miRNA indicates a miRNA that has
previously been associated with the respective disease. This figure is
available as DIN A0 Poster within the Supplemental Material
(Supplemental Figure S1).
doi:10.1371/journal.pone.0007440.g005
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available as Supplemental material to this manuscript), contained

1617 unique edges. Since MS is not included as disease in this

network, we modified the network as follows: We added a disease

node ‘‘Multiple Sclerosis’’ and created edges between this node

and all significant deregulated miRNAs. Additionally, we removed

all disease nodes that are not linked to any MS miRNA and all

miRNAs belonging only to removed disease nodes. Our novel

network, which is shown in Figure 4 thus contains only those

miRNAs that are significant in MS and other diseases (middle part

of Figure 4) and those that are significant in MS, only. This

shrunken network contained 76 disease nodes together with the

165 significant miRNAs. Remarkably, only 43 of the 165 (26%)

miRNAs were related to a disease other than MS while the

remaining 122 (74%) miRNAs were only connected to MS. Of

these 122 miRNAs, 33 (27%) were so-called mature star

sequences. These results provide strong evidence that the detected

complex miRNA profile appears to be rather specific for MS.

Discussion

In this study, we identified 165 significantly deregulated

miRNAs in blood cells of patients with RRMS compared to

healthy controls. The most significant deregulated miRNA, hsa-

miR-145, differentiated between MS patients and healthy controls

with an accuracy, specificity, and sensitivity of 89.7%, 89.5%, and

90.0%, respectively. Using a set of 48 of the 165 significantly

deregulated miRNAs, we were able to improve the classification

results, reaching an accuracy of 96.3%, a specificity of 95%, and a

sensitivity of 97.6%. Together, these data suggest that single

miRNAs, and even more so miRNA expression profiles, may have

the potential to serve as diagnostic biomarkers for RRMS.

Since our study includes patients with MS and healthy controls

only, future investigations should corroborate the specificity of the

observed miRNA expression patterns for MS by including groups

of patients with other inflammatory neurological diseases.

Comparison of the pattern of deregulated MS miRNAs with

miRNAs previously found to be deregulated in other human

diseases showed a remarkably high percentage of miRNAs (74%)

that are deregulated in MS but not in any other disease. Notably,

these diseases comprise neoplastic and degenerative neurological

diseases as well as systemic inflammatory diseases (see Figures 5

and 6). However, prior to claiming specificity it is necessary to test

the expression of each miRNA on an extended number of MS

patients and controls by at least two independent methods.

Currently, only one additional study investigated miRNA

expression in patients with MS [3]. Otaegui and coworkers

analyzed four patients with MS during a relapse and nine MS

patients during remission. Patients during relapse and patients

during remission were compared with each other and with eight

healthy individuals using a non-parametric ranking method called

Symmetrical Uncertainty (SU). In total Otaegui et al. analyzed the

expression of 364 miRNAs in peripheral mononuclear cells

(PBMC). In our study, we analyzed all 866 miRNAs and miRNA

star sequences deposited in the miRBase version 12.0 and ranked

the miRNAs according to their AUC value for the classification

MS versus healthy. Comparing the results of Otaegiu et al. with

our results, we found an overlap of seven miRNAs which had high

information content in both studies. Of these seven miRNAs, the

four miRNAs hsa-miR-509-3-5p, hsa-miR-214, hsa-miR-34c-3p,

and hsa-miR-509-5p show an AUC value lower than 0.3 in our

study, indicating a higher expression in healthy individuals

compared to MS patients. The remaining three miRNAs, namely

hsa-miR-328, hsa-miR-30a, and hsa-miR-30e, showed higher

expression in the blood cells of MS patients compared to the blood

cells of healthy individuals, as indicated by AUC values higher

than 0.7.

The small number of miRNAs that are highly informative in

both studies may be due to the different experimental approaches

used in the two studies. While Otaegui et al. performed

quantitative Real Time-PCR we hybridized microarrays with

labeled RNA without an initial reverse transcription or amplifi-

cation step. In addition, our study analyzed more than twice as

many miRNAs than the study of Otaegui and colleagues.

Besides the potential role of miRNAs as biomarkers for RRMS,

the finding of deregulated miRNA expression in patients

with MS suggests that the disease process of MS may result

in altered miRNA expression profiles or that deregulation of

miRNAs may contribute to the disease process of MS. Among the

ten most deregulated miRNAs, hsa-miR-145, hsa-miR-186, and

hsa-miR-20b have been found to be deregulated in different types

of cancer such as prostate cancer, pancreatic cancer or gastric

Figure 6. Multiple Sclerosis Network. This network indicates diseases by yellow nodes and miRNAs by red nodes. The network is restricted to the
miRNAs significant for MS. Most of the miRNAs are associated with MS but not with other diseases, indicated by the red circles in the right part of this
figure. This figure is available as DIN A0 Poster within the Supplemental Material (Supplemental Figure S2).
doi:10.1371/journal.pone.0007440.g006
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cancer [13–15]. Notably, two of the ten most significantly

deregulated miRNAs in our study, namely hsa-miR-142-3p

and hsa-miR-223, have previously been found to be differentially

expressed in hematopoietic cell lineages. hsa-miR-142-3p is

also highly expressed in T-cells [16,17]. This may be compatible

with a role of these miRNAs in haematopoiesis and probably

in the immune system. Five out of the ten most deregulated

miRNAs (miRNAs hsa-miR-664, hsa-miR-422a, hsa-miR-584,

hsa-miR-1275, and hsa-miR-491-5p) have not yet been associated

with any specific functions or human diseases.

In conclusion, the data presented in this study demonstrate that

miRNA expression profiles differentiate patients with MS from

healthy subjects with high accuracy, indicating that miRNAs have

the potential to serve as a diagnostic biomarker for RRMS. Future

studies should clarify whether these small molecules are also suited

for differentiation of specific courses or different pathogenetic

subtypes of MS.

Materials and Methods

Patients with MS and healthy controls
We included 20 patients with a diagnosis of RRMS according to

McDonald criteria [18] as well as 19 healthy controls in our study

(see supplemental Table S1). Patients were either treated with

glatiramer acetate (n = 9), or interferon-b (n = 10), or did not take

any disease-modifying therapy (n = 1). None of the patients had

received glucocorticosteroids for at least 3 months before inclusion

in the study. All participants of the study have given their written

informed consent. Blood from MS patients was obtained during

clinical diagnosis. Blood analysis from healthy donors was also

performed with written informed consent.

miRNA microarray screening
About 5 ml blood was collected from study subjects in PAXgene

Blood RNA tubes (BD, Franklin Lakes, New Jersey USA). Total

RNA was extracted from blood cells using the miRNeasy Mini Kit

(Qiagen GmbH, Hilden, Germany) and stored at 270uC. Samples

were analyzed with a Geniom Realtime Analyzer (GRTA, febit

GmbH, Heidelberg, Germany) using the Geniom Biochip miRNA

homo sapiens. Each array contains 7 replicates of 866 miRNAs

and miRNA star sequences as annotated in the Sanger miRBase

12.0 [11]. Sample labelling with biotine was carried out by

microfluidic-based enzymatic on-chip labelling of miRNAs

(MPEA) as described before [19].

Following hybridization for 16 hours at 42uC the biochip was

washed automatically and a program for signal enhancement was

processed with the GRTA. The resulting detection pictures were

evaluated using the Geniom Wizard Software. For each array, the

median signal intensity was extracted from the raw data file such

that for each miRNA seven intensity values were calculated

corresponding to each replicate copy of miRBase on the array.

Following background correction, the seven replicate intensity

values of each miRNA were summarized by their median value.

To normalize the data across different arrays, quantile normal-

ization was applied and all further analyses were carried out using

the normalized and background subtracted intensity values.

The raw data and normalized data are available under Gene

Expression Omnibus, one of the largest MIAME compatible

expression profile resources on the web, under accession

GSE17846.

Statistical analysis
After having verified the approximate normal distribution of the

measured data using Shapiro Wilk test, we carried out parametric

t-test (unpaired, two-tailed) for each miRNA separately, to detect

miRNAs with different expression levels between study groups.

The resulting p-values were adjusted for multiple testing by

Benjamini-Hochberg adjustment.

To analyze the relationship of the detected miRNAs to miRNAs

previously detected in other human diseases we used the ‘‘Human

miRNA-associated Disease Database (HMDD, [12], http://202.

38.126.151/hmdd/login/?next = /hmdd/mirna/md/). In more

detail, we built a bipartite graph where nodes correspond either

to a miRNA or to a disease. Only edges between miRNA and

disease nodes are allowed, where an edge between miRNA A and

disease B means that the miRNA A is differentially regulated in

disease B. Since for MS no deregulated miRNAs have been

described so far we added the node ‘‘Multiple Sclerosis’’ to this

network and linked it to all miRNAs that were significant

deregulated in our analysis.

In addition to the single biomarker analysis and network analysis,

classification of samples using miRNA patterns was carried out

using Support Vector Machines (SVM) as implemented in the R

e1071 package. In particular, different kernel (linear, polynomial,

sigmoid, radial basis function) SVMs were evaluated, where the cost

parameter was sampled from 0.01 to 10 in decimal powers. The

measured miRNA profiles were classified using 100 repetitions of

standard 10-fold cross-validation.

To detect the most suitable set of miRNAs that achieves the best

discriminatory performance, a feature extraction (subset selection)

method relying on t-test p-values has been used. In detail, we

decided to use the following stepwise forward filter approach: The

s miRNAs with lowest p-values in the t-test were computed on the

training set in each fold of the cross validation, where s was

sampled from 1 to 866. The respective subset was used to train the

SVM and to carry out the prediction of the test samples. As result,

the mean accuracy, specificity, and sensitivity were calculated

together with the 95% confidence intervals (95% CI) for each

subset size. To check for overtraining we applied permutation

tests. Here, we sampled the class labels randomly and carried out

classifications using the permuted class labels. All statistical

analyzes were performed using R.
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