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Abstract

Accurate gluteus medius (GMd) volume evaluation may aid in the analysis of muscular atro-

phy states and help gain an improved understanding of patient recovery via rehabilitation.

However, the segmentation of muscle regions in GMd images for cubic muscle volume

assessment is time-consuming and labor-intensive. This study automated GMd-region seg-

mentation from the computed tomography (CT) images of patients diagnosed with hip oste-

oarthritis using deep learning and evaluated the segmentation accuracy. To this end, 5250

augmented pairs of training data were obtained from five participants, and a conditional gen-

erative adversarial network was used to identify the relationships between the image pairs.

Using the preserved test datasets, the results of automatic segmentation with the trained

deep learning model were compared to those of manual segmentation in terms of the dice

similarity coefficient (DSC), volume similarity (VS), and shape similarity (MS). As observed,

the average DSC values for automatic and manual segmentations were 0.748 and 0.812,

respectively, with a significant difference (p < 0.0001); the average VS values were 0.247

and 0.203, respectively, with no significant difference (p = 0.069); and the average MS val-

ues were 1.394 and 1.156, respectively, with no significant difference (p = 0.308). The GMd

volumes obtained by automatic and manual segmentation were 246.2 cm3 and 282.9 cm3,

respectively. The noninferiority of the DSC obtained by automatic segmentation was verified

against that obtained by manual segmentation. Accordingly, the proposed GAN-based auto-

matic GMd-segmentation technique is confirmed to be noninferior to manual segmentation.

Therefore, the findings of this research confirm that the proposed method not only reduces

time and effort but also facilitates accurate assessment of the cubic muscle volume.

Introduction

The gluteus medius (GMd) plays a crucial role in stabilizing the hip joint in many daily activi-

ties, and the atrophy of this muscle can decrease the strength of the hip abductor muscle, lead-

ing to walking instability on the frontal plane. Trendelenburg gait—in which the pelvis

inclines toward the swinging leg owing to the insufficient contraction of the GMd to keep the
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pelvis horizontal when the leg on the affected side is supporting weight while walking—is a

widely known gait pattern. Patients with hip osteoarthritis (OA) experience leg shortening

because of lateral cranial subluxation or the flattening of the femur head with progress in

deformity, and hip flexion limitation becomes prominent. Consequently, the looseness and

dysfunction of the GMd lead to atrophy of the GMd.

Accurate evaluation of the GMd volume may be useful for analysis of the muscular atrophy

state because of the disease and understanding of the recovery process by rehabilitation. Many

studies [1, 2] have selected several slices of a representative axial, extracted a muscle contour,

and used the cross-sectional area (CSA) of the muscle as a substitute for volume evaluation.

Uemura et al. [2] measured the CSA of the GMd on the plane perpendicular to the anterior

pelvic plane through the bilateral anterior superior iliac spines to track chronological changes.

However, when the CSA is used as a substitute for volume evaluation, no rationale is given for

the slice to be selected.

In addition, some reports have suggested that cubic muscle volume measurements are

required for accurate muscle volume evaluation [3, 4]. Amini et al. [3] showed that the use of

the total psoas volume to define sarcopenia is associated with both short- and long-term out-

comes following resection of pancreatic cancer. They concluded that it might be more efficient

to assess the entire volume of the psoas muscle compared with assessing the total psoas area

using a single axial image, to define sarcopenia.

Thus, evaluation using the cubic volume is desirable, but it is still difficult to employ in clin-

ical practice because segmentation of the muscle regions of medical images required for cubic

muscle volume analysis requires considerable time and effort [5].

Contributions

This paper makes the following contributions.

1. A deep learning-based method for automatic segmentation of GMd regions from computed

tomography (CT) images of hip OA patients is proposed.

2. Three-dimensional volume evaluation is performed on medical images by segmenting the

structure of interest from all slices wherein the structure appears, multiplying the CSA

thereof with the tomographic thickness, and defining the result as a volume.

3. Automated muscle segmentation considerably reduces the time and effort required for

manual segmentation. Moreover, it facilitates the accurate assessment of the cubic muscle

volume, thereby enabling its application in medical practice.

4. Owing to its excellent reproducibility, there is little variation in the segmentation result

between procedures; furthermore, this approach is expected to improve the quantification

of chronological changes.

5. Segmentation accuracy is evaluated using similarity metrics.

Literature review

In recent years, deep learning and generative models have been widely adopted in musculo-

skeletal radiology [6, 7]. Several methods proposed for the automated detection, grading, and

localization of abnormalities on spinal sagittal magnetic resonance imaging have yielded per-

formances comparable to those of human examiners [8, 9].

Several studies focused on automatic muscle segmentation from CT images have been con-

ducted. Lee et al. [10] proposed a method for automatically segmenting muscles from CT
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cross-sectional images at the third lumbar level using deep learning; however, the muscles

were treated as a lump and not individual segments. Castiglione et al. [11] proposed a U-Net-

based convolutional neural network model that could accurately identify the L3 levels and seg-

ment the skeletal muscle in pediatric CT scans. Kamiya et al. [12] proposed an automatic seg-

mentation method for the psoas major muscle using a shape model; however, it is difficult to

apply this approach to the GMd because the periphery of the psoas major muscle is covered

with adipose tissue, and the boundary is clear. Yokota et al. [13] proposed automated muscle

segmentation of the hip joint muscle using the hierarchical multi-atlas method and by employ-

ing 3D CT data of patients with hip OA. Their method overcomes the considerable shape vari-

ability while simultaneously segmenting the 19 skeletal muscles around the hip and thigh.

Hiasa et al. [14] proposed a method using Bayesian convolutional neural networks with U-Net

and Monte Carlo dropout for the automatic segmentation of individual muscles from clinical

CT images; their results showed significant improvements compared to the hierarchical multi-

atlas method.

None of the studies cited above investigated the application of conditional generative adver-

sarial networks (GANs) to muscle segmentation in CT images. GAN is good at generating

clean images, and it is more popular than flow-based generative models and variational auto-

encoders. Because of their simple structure, GANs have been used for training major machine

learning frameworks, such as TensorFlow, PyTorch, and Chainer. Unlike GANs, for which

several implementations have been prepared, the methods developed in the above-cited studies

are difficult to disseminate widely in clinical practice.

Materials and methods

This study has been approved by the institutional review board of Wakayama Medical Univer-

sity Hospital (No. 2907). In this retrospective study, preoperative hip CT scans of patients with

hip OA performed at Wakayama Medical University Hospital between May and September

2017 were reviewed. The inclusion criteria were as follows: 1) the patient planned to undergo

elective primary total hip replacement for OA; 2) a complete preoperative hip CT scan was

available, including the whole pelvis and knee; and 3) no evidence of hip or hamstring contrac-

tures was found. The exclusion criteria were as follows: 1) the patient had a history of surgery

for pelvic trauma, infections, or tumors, and 2) the patient had a history of previous hip surger-

ies for femoral trauma. The contracture of the hamstrings was defined as<70˚ in the straight

leg raise test. Hip contracture was defined as<90˚ flexion,�15˚ abduction,�10˚ external

rotation, or�20˚ flexion contracture. Written comprehensive informed consent regarding the

use of medical data in research was obtained from all participants.

Five female and two male participants (14 hips) were investigated in this study. The mean

age was 72.4 years (range, 65–82 years). The primary diagnosis was OA in nine hips and pros-

thetic joint in two hips, and three hips were radiographically normal. The demographic and

pathological characteristics of the seven participants are listed in Table 1.

All CT scans were obtained using a helical CT scanner (LightSpeed VCT 64 detector; GE,

Milwaukee, WI, USA) in the helical mode, with the slice thickness set to 1.25 mm, and the

spacing between slices set to 2.5 mm. The images were reviewed by an experienced orthopedic

surgeon using Synapse software (Fujifilm Medical Co. Ltd., Tokyo, Japan), and CT images

including the GMd were selected (Fig 1a). The number of images containing the GMd was

different for each participant according to their physique. All images had dimensions of

512 × 512 pixels.

An overview of the automatic segmentation system proposed in this study is presented in

Fig 1.
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Preparation of processing dataset

Automatic creation of guide images. The edges of the GMd in the 691 CT images

selected for the study were detected using a Canny edge detector [15]. The Open Computer

Vision (OpenCV) image analysis library (Version 4.1.1) was used for image processing. The

parameters were adjusted and optimized to detect the most effective edge (cv2.THRESH_BIN-

ARY: threshold = 140, max value = 200, cv2.Canny: threshold1 = 55, threshold2 = 45). The

detected images were used as guide images for manual contour extraction after resizing all

images to 217 × 217 pixels according to the format of the original deep learning algorithm

described in Fig 2b.

Manual segmentation. Based on the edge in the guide image obtained in the previous

step, the discontinuity line was complemented, and unnecessary edges were manually deleted;

the contours of the GMd on both sides were then extracted (Fig 2c). All extractions were per-

formed by an experienced independent orthopedic surgeon.

The extracted images were used as output images, and they were combined with the origi-

nal CT images as input images to create 691 image pairs.

Split dataset. The data were divided into training, model validation, and test datasets. The

data from participants 1 to 5, participant 6, and participant 7 were assigned to the training,

model validation, and test datasets, respectively (Table 1).

Data augmentation. Research on general image processing using a convolutional neural

network requires a large amount of data. Because real data are insufficient, data augmentation

methods are generally employed; image augmentation methods are used to create artificial var-

iations in existing images to expand an image dataset [16]. In this study, image pairs in the

training and model validation datasets were amplified by a factor of 10 to 6050 sets by applying

different combinational transformation techniques including rotating the existing image by 1˚

Table 1. Demographic and pathological characteristics of the seven participants.

Participant Dataset Gender Age (years) Right hip Left hip Number of slices including GMd

1 Training F 65 Crowe 1 Crowe 1 98

2 Training F 69 Crowe 1 Normal 101

3 Training F 75 Prosthetic joint Crowe 1 100

4 Training M 66 Crowe 1 Normal 117

5 Training M 71 Crowe 1 Prosthetic joint 109

6 Validation F 82 Normal Crowe 1 80

7 Test F 79 Crowe 1 Crowe 1 86

Mean 72.4 Total 691

Crowe 1: Crowe classification type 1 for hip dysplasia; GMd: gluteus medius; Mean: average.

https://doi.org/10.1371/journal.pone.0257371.t001

Fig 1. Overview of proposed automatic segmentation system.

https://doi.org/10.1371/journal.pone.0257371.g001
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or 2˚ and flipping the existing image horizontally. As the image data were scanned from the

upper left pixel toward the lower right, the images created from the existing images in this

manner were recognized as new and different images.

Manual segmentation. For comparison between the similarity of the output images

obtained by automatic segmentation and manual segmentation performed by another opera-

tor, the operator independently extracted the GMd contours manually for 86 guide images in

the test dataset (Fig 2e). This operator was an experienced orthopedic surgeon.

Deep learning

In this study, the deep learning model was trained using 5,250 training-data (image) pairs. The

model was based on "pix2pix"—the image-generation algorithm proposed by Isola et al. [17].

It represents the original formulation of a conditional GAN for image-to-image translation.

In this study, we used its TensorFlow implementation (available at https://github.com/

affinelayer/pix2pix-tensorflow). The GAN setup comprises two agents. The first corresponds

to a model (discriminator) trained to identify whether an image is real or fake. The second

agent is a generator that learns to create realistic new data to convince the discriminator that

the samples it generates are from the dataset [18].

The pix2pix generator is an encoder–decoder model that embeds an input image into a

low-dimensional vector and restores it to the expected output. This generator uses a structure

called U-Net with a skip connection, which directly connects the same layer between the

encoder and decoder. By providing the skip connection, the features of the intermediate layers

can be propagated directly, and the details can be restored faithfully. The pix2pix discriminator

uses the L1 loss function per pixel between the generated and training images to learn the

entire image (low-frequency component) and then captures the details of the image (high-fre-

quency component) using a convolutional “PatchGAN” classifier, which only penalizes the

structure at the scale of image patches [17]. As PatchGAN divides the entire image into patches

and assesses each patch area to identify real/fake images, the features of the high-frequency

components can be captured well. The L1 loss function and PatchGAN complement each

other to improve the accuracy.

We performed a grid search of the combinations of beta1 and L1_weight using model vali-

dation datasets to tune the hyperparameters. Beta1 is the exponential decay rate for the first

Fig 2. CT and segmentation images: (a) original CT image, (b) guide image using Canny edge detector, (c) manual

segmentation image of GMd contours, (d) Auto-segmentation image obtained using learning model with

beta1 = 0.9, L1_weight = 1000, and 100 epochs, and (e) manually segmented image prepared by another operator.

https://doi.org/10.1371/journal.pone.0257371.g002
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moment estimates, relative to the Adam optimizer. L1_weight is the weight on the L1 term for

the generator gradient. The grids of beta1 values in [0.1, 0.5, 0.9] and L1_weight values in [10,

100, 1000] were explored. For the top three combinations of beta1 and L1_weight, training

was continued for up to 100 epochs to determine the optimal number of training epochs.

Quantitative validation

The OpenCV Version 4.1.1 library was used for the quantitative evaluation. The similarity of

the segmented regions was verified using the following three methods.

Overlap measure. The dice similarity coefficient (DSC) was intended for application to

discrete data [19]. It is commonly used in image segmentation, particularly for comparing the

outputs of algorithms against reference masks in medical applications.

Given two sets, A and B, the DSC is defined as

DSC ¼
2jA \ Bj
Aþ B

:

The DSC is the quotient of the similarity and ranges between zero and one. In this study,

the DSC was calculated using the white pixel count of a binary image.

Volume measure. The volume similarity (VS) is defined as

VS ¼
2 � ðjvA � vBjÞ

vA þ vB
;

where vA and vB represent the areas of A and B, respectively [20].

Shape similarity measure. The seven Hu moment invariants combined with the normal-

ized central moments up to the third order do not change when the image is translated,

rotated, or scaled [21]. The shape similarity can be obtained with a MatchShapes (MS) func-

tion that represents the difference in shape obtained by calculation based on Hu moment

invariants. MS is defined as

I1 A;Bð Þ ¼
X

i¼1...7

1

mA
i

�
1

mB
i

�
�
�
�

�
�
�
�

mA
i ¼ sinðHA

i Þ � logH
A
i

mB
i ¼ sin HB

i

� �
� logHB

i ;

where HA
i and H

B
i represent the Hu moment invariants of A and B, respectively.

The contour line of the segmentation area was detected by applying the FindContours func-

tion of OpenCV [22]; the cv2.matchshapes_I1 function (MatchShapes), which is an OpenCV

intrinsic function, was used for the calculations. The MS function performs matching using

shape information and returns a number representing the difference between the shapes calcu-

lated based on the moment values. The smaller is the number, the more similar are the two

shapes.

The GMd-extracted images automatically generated by the trained model and output

images were compared, and the DSC was used to search for optimal hyperparameters using

the model validation dataset. The DSC, VS, and MS were used to compare the segmentation

results of manual segmentation and automatic segmentation (hereafter, auto-segmentation) in

the test dataset.
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Statistical analysis

The normality of the data distribution was confirmed using the skewness and kurtosis of the

univariate distribution. Then, a paired t test was performed. We set 10% of the average similar-

ity score of the manual segmentation by another operator as an acceptable noninferiority limit

value and performed the noninferiority test for auto-segmentation using the similarity score of

the manual segmentation as a control.

Results

The results of the grid search for the combinations of beta1 and L1_weight using the model

validation datasets are summarized in Table 2. The top three combinations of beta1 and

L1_weight extended the training to 100 epochs. The DSC results are described in Table 3.

The average DSC of the output images and auto-segmentation reached a peak of 0.728 in

[beta1 = 0.9, L1_weight = 1000] at 100 epochs. Based on this result, the similarity with the out-

put images was examined using this learning model.

The average DSC for auto-segmentation was 0.748, and the average for manual segmenta-

tion was 0.812, with a significant difference (p< 0.0001). The scatter diagram showed a differ-

ence in the DSC tendency depending on the CSA of the GMd (Fig 3). The average VSs for

auto-segmentation and manual segmentation were 0.247 and 0.203, respectively, with no sig-

nificant difference (p = 0.069). Furthermore, the average MSs for auto-segmentation and man-

ual segmentation were 1.394 and 1.156, respectively, with no significant difference (p = 0.308).

The results of the segmentations obtained using the three methods are compared in Fig 4. The

mean volume of GMd obtained by auto-segmentation on both sides was 282.9 cm3. For opera-

tor1 and operator2, the mean volume of GMd obtained by manual segmentation was 261.6

cm3 and 246.2 cm3, respectively.

The noninferiority test showed that the lower 95% confidence interval values for the DSC

surpassed the lower limit of the range of equivalence margins, verifying the noninferiority of

the auto-segmentation outcomes (Fig 5).

Discussion and conclusions

Several muscle-analysis studies have been performed using magnetic resonance imaging [23,

24], which depicts soft tissues in better contrast than CT scans. Because CT is often used to

manage hip OA, including surgical treatment, muscle volume evaluation using CT is

Table 2. Results of grid search for the combinations of beta1 and L1_weight in the model validation datasets.

DSC of model trained on 20 epochs Beta1 = 0.1 Beta1 = 0.5 Beta1 = 0.9

L1_weight = 10 0.008 0.614 0.513

L1_weight = 100 0.651 0.625 0.62

L1_weight = 1000 0.704 0.707 0.702

DSC: dice similarity coefficient.

https://doi.org/10.1371/journal.pone.0257371.t002

Table 3. Results of grid search for beta1 and L1_weight combinations as well as training epochs in the model validation datasets.

Epochs 20 30 40 60 80 100

beta1 = 0.5; L1_weight = 1000 0.707 0.715 0.694 0.698 0.683 0.707

beta1 = 0.1; L1_weight = 1000 0.704 0.653 0.708 0.727 0.668 0.682

beta1 = 0.9; L1_weight = 1000 0.702 0.684 0.672 0.694 0.708 0.728

https://doi.org/10.1371/journal.pone.0257371.t003
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Fig 3. Scatter plot of CSA (unit: Pixels) and DSC in the model validation datasets.

https://doi.org/10.1371/journal.pone.0257371.g003

Fig 4. Comparison of segmentation similarity between two segmentation methods.

https://doi.org/10.1371/journal.pone.0257371.g004

Fig 5. Noninferiority test comparing automatic and manual segmentation techniques using the 95% confidence

interval of difference between two groups: δ: Equivalence margin (10% of average similarity score of manual

segmentation performed by another operator).

https://doi.org/10.1371/journal.pone.0257371.g005

PLOS ONE Generative model for muscle segmentation in CT scans

PLOS ONE | https://doi.org/10.1371/journal.pone.0257371 September 10, 2021 8 / 11

https://doi.org/10.1371/journal.pone.0257371.g003
https://doi.org/10.1371/journal.pone.0257371.g004
https://doi.org/10.1371/journal.pone.0257371.g005
https://doi.org/10.1371/journal.pone.0257371


considered more convenient. However, there is high inter-operator variability in manual mus-

cle segmentation because the muscle boundary is difficult to identify (Fig 2c and 2e).

In recent years, deep learning and generative models have been widely adopted in musculo-

skeletal radiology [6, 7]. Deep learning involves a multi-layered model constructed using a

neural network that imitates human neural circuits and performs highly accurate inferences;

great progress was made in this area in the 2010s. Since then, deep learning-based research

and development have become active, and drastic improvements have been achieved in image

and speech recognition. Currently, deep learning is used in several fields, including systems

for playing intellectual games, such as chess and Shogi; image-recognition systems (computer

vision) for identifying objects and people in images and videos; speech-recognition systems

that listen to human speech and understand instructions; advanced and autonomous control

systems for machines, such as robots and automobiles (autonomous driving); natural language

processing systems, such as automatic summarization and question answering systems; and

advanced and natural machine-translation systems [25].

In this study, we applied a deep generative model using GANs and attempted automatic

GMd segmentation using the CT images of hip OA patients. Deep generative models, which

consist of deep neural networks for generative models focusing on the data generation process,

can learn high-dimensional and large-scale data; furthermore, they can generate high-quality

images because of the expressive power of the network, which has attracted considerable atten-

tion. GANs are generative models; by extracting and learning the features of data, nonexistent

data can be generated or transformed along with the existing data features. Additionally,

GANs comprise two neural networks, and these networks improve each other’s accuracy by

using multiple models called the generator and discriminator. This characteristic method gen-

erates highly accurate data that are difficult for humans to distinguish as the learning step

(epoch) progresses. As the performance of deep learning plateaued in the present study, we

did not increase the number of epochs further.

In this study, the DSC of auto-segmentation was extremely low in slices with small CSAs of

the GMd (Fig 3). In the slice at the distal GMd, the periphery was surrounded by the gluteus

minimus, tensor fasciae latae, and gluteus maximus, and it was difficult to identify the bound-

aries between muscles with similar CT values. Therefore, manual segmentation had to be per-

formed with reference to the position and morphology of the GMd in the preceding and

subsequent slices. By contrast, in the slice containing the proximal GMd, the GMd was tangent

to the ilium, which facilitated manual segmentation, but it could not be generated by auto-seg-

mentation. This difference may have affected the overall performance.

In the noninferiority test, which was performed considering the similarity performance

realized via manual segmentation control, VS and MS did not demonstrate the auto-segmenta-

tion noninferiority (Fig 5). However, considering that manual segmentation requires a pro-

cessing time of approximately 5 min per slice and more than 6 h per case, these results are

worth considering for clinical use.

During the abovementioned noninferiority test, the DSC values corresponding to the lower

95% confidence interval surpassed the lower limit of the equivalence-margin range. This con-

firms the noninferiority of the auto-segmentation outcomes. Contrastingly, VS did not dem-

onstrate the auto-segmentation noninferiority. Therefore, the auto-segmentation of GMd

using deep conditional GANs is not inferior to manual segmentation in terms of the seg-

mented-area commonality. Automation reduces the effort and time required for muscle seg-

mentation and therefore facilitates an accurate assessment of the cubic muscle volume, which

makes it usable in medical practice. Although clinical validation of severe hip OA is yet to be

undertaken, the proposed method demonstrates the potential for use to that end without

requiring special reconstruction techniques.

PLOS ONE Generative model for muscle segmentation in CT scans

PLOS ONE | https://doi.org/10.1371/journal.pone.0257371 September 10, 2021 9 / 11

https://doi.org/10.1371/journal.pone.0257371


Supporting information

S1 Data.

(XLSX)

Acknowledgments

We would like to thank Editage (www.editage.com) for English language editing.

Author Contributions

Conceptualization: Daisuke Nishiyama.

Investigation: Takaya Taniguchi, Daisuke Fukui, Manabu Yamanaka, Teiji Harada.

Methodology: Daisuke Nishiyama.

Project administration: Hiroshi Iwasaki.

Supervision: Hiroshi Yamada.

Writing – original draft: Daisuke Nishiyama.

References

1. Rasch A, Byström AH, Dalén N, Martinez-Carranza N, Berg HE. Persisting muscle atrophy two years

after replacement of the hip. J Bone Joint Surg Br. 2009; 91(5): 583–588. https://doi.org/10.1302/0301-

620X.91B5.21477 PMID: 19407289.

2. Uemura K, Takao M, Sakai T, Nishii T, Sugano N. Volume increases of the gluteus maximus, gluteus

medius, and thigh muscles after hip arthroplasty. J Arthroplasty. 2016; 31(4): 906–912.e1. https://doi.

org/10.1016/j.arth.2015.10.036 PMID: 26652475.

3. Amini N, Spolverato G, Gupta R, Margonis GA, Kim Y, Wagner D, et al. Impact total psoas volume on

short- and long-term outcome in patient undergoing curative resection for pancreatic adenocarcinoma:

A new tool to assess sarcopenia. J Gastrointest Surg. 2015; 19(9): 1593–1602. https://doi.org/10.1007/

s11605-015-2835-y PMID: 25925237

4. Valero V, Amini N, Spolverato G, Weiss MJ, Hirose K, Dagher NN, et al. Sarcopenia adversely impacts

postoperative complications following resection or transplantation in patients with primary liver tumors.

J Gastrointest Surg. 2015; 19(2): 272–281. https://doi.org/10.1007/s11605-014-2680-4 PMID:

25389056.

5. Kemnitz J, Eckstein F, Culvenor AG, Ruhdorfer A, Dannhauer T, Ring-Dimitriou S, et al. Validation of

an active shape model-based semi-automated segmentation algorithm for the analysis of thigh muscle

and adipose tissue cross-sectional areas. MAGMA. 2017; 30(5): 489–503. https://doi.org/10.1007/

s10334-017-0622-3 PMID: 28455629.

6. Galbusera F, Bassani T, Casaroli G, Gitto S, Zanchetta E, Costa F, et al. Generative models: An

upcoming innovation in musculoskeletal radiology? A preliminary test in spine imaging. Eur Radiol Exp.

2018; 2(1): 29. https://doi.org/10.1186/s41747-018-0060-7 PMID: 30377873.

7. Man Y, Huang Y, Feng J, Li X, Wu F. Deep Q learning driven CT pancreas segmentation with geome-

try-aware U-Net. IEEE Trans Med Imaging. 2019; 38(8): 1971–1980. https://doi.org/10.1109/TMI.2019.

2911588 PMID: 30998461.

8. Jamaludin A, Kadir T, Zisserman A. SpineNet: Automated classification and evidence visualization in

spinal MRIs. Med Image Anal. 2017; 41: 63–73. https://doi.org/10.1016/j.media.2017.07.002 PMID:

28756059.

9. Jamaludin A, Lootus M, Kadir T, Zisserman A, Urban J, Battié MC, et al. Automation of reading of radio-
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