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Improving bioaccessibility and
physicochemical property of
blue-grained wholemeal flour
by steam explosion
Feng Kong*†, Qinghua Zeng†, Yue Li, Yang Zhao and
Xingfeng Guo*

College of Agronomy, Liaocheng University, Liaocheng, China

Whole grain contains many health-promoting ingredients, but due to its poor

bioaccessibility and processibility, it is not widely accepted by consumers. The

steam explosion was exploited to modify the nutritional bioaccessibility and

the physicochemical properties of wholemeal flour in this study. In vitro starch

digestibility, in vitro protein digestibility of wholemeal flour, total flavonoids

content, and total phenolics content of digestive juice were used to evaluate

the bioaccessibility, and a significant variation (p < 0.05) was noted. Results

showed that steam explosion enhanced the gastric protein digestibility ranged

from 5.67 to 6.92% and the intestinal protein digestibility ranged from 16.77 to

49.12%. Steam-exploded wholemeal flour (0.5 MPa, 5 min) had the highest

protein digestibility and rapidly digestible starch content. Compared with

native flour, steam explosion (0.5 MPa, 5 min) contributed to a 0.72-fold and

0.33-fold increment of total flavonoids content and total phenolics content

in digestible juice. Chemical changes of wholemeal flour, induced by steam

explosion, caused the changes in the solvent retention capacity, rheological

property of wholemeal flour, and altered the falling number (and liquefaction

number). An increasing tendency to solid-like behavior and the gel strength of

wholemeal flour was significantly enhanced by the steam explosion at 0.5 MPa

for 5 min, while the gluten was not weakened. This study indicated that

steam-exploded wholemeal flour (0.5 MPa, 5 min) could serve as a potential

ingredient with the noticeable bioaccessibility and physicochemical properties

in cereal products.
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Introduction

Wheat is one of the most important grain crops worldwide, which provides the
essential dietary components for many individuals daily, such as energy, proteins,
dietary fibers, and phytochemicals (1). The consumption of wholemeal has been
associated with the prevention of chronic diseases, including cardiovascular diseases
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and diabetes (2). Despite the health-promoting ingredients
associated with wholemeal, there were nutritional and
technological challenges in consuming it as a staple food (3). The
technological unfavorable effects and poor bioaccessibility of
wholemeal resulted mostly from the insoluble part of bran (4–6).
Wheat bran contained aleurone as a monolayer of cells overlying
the endosperm, which was rich in dietary fiber and phenolic
compounds (7). However, dietary fiber mainly included
unextractable arabinoxylans found in plant cell walls, and the
bioactive compounds were encapsulated from intact cells (7–9).
The lower nutritional bioaccessibility was associated with intact
cells (10, 11), the cell walls reduced the permeability of enzymes
and the release of nutrients due to the encapsulation of nutrients
inside the food structure (12–15). These characteristics resulted
in the poor bioaccessibility of wholemeal. And due to the
insoluble part of bran exited, wholemeal in cereal-based
food processing with poor processibilities, such as reduced
dough elasticity (16). Therefore, increasing the soluble part
of arabinoxylans and breaking the intact cell wall might be
the efficient strategies to improve the bioaccessibility and
physicochemical properties of wholemeal.

Thermal treatments could increase the soluble dietary fiber
content and the bioaccessibility of bioactive compounds from
cereal bran together with some technological benefits (17,
18). Recently, researchers have shown an increased interest
in steam explosion applications. The steam explosion was
a novel hydrothermal processing technology in the food
industry with high efficiency and low energy consumption,
which was usually employed in high-fiber materials (5, 19,
20). The steam explosion was employed to modify the
physicochemical structure of the feedstock, resulting in a
partial rupture of cell walls, with the consequent release
of intracellular components and change in the functional

property of final products (5, 6, 21, 22). Therefore, steam
explosion treatment may be a potential strategy to improve
the bioaccessibility and processibility of wholemeal flour in
the food industry. However, the effects of steam explosion
on the biophysicochemical properties of wholemeal remain to
be demonstrated.

This study aimed to investigate the effect of steam
explosion on the bioaccessibility of wholemeal flour, which
was evaluated by starch digestibility, protein digestibility of
wholemeal flour, total flavonoids content, and total phenolics
content of digestive juice. And the effects of steam explosion
on the physicochemical properties of wholemeal flour, including
color profiles, chemical compounds, solvent retention capacity,
and rheological properties were analyzed.

Materials and methods

Sample preparation

The steam explosion was performed using a self-designed
batch vessel (Figure 1), which consisted of a reaction chamber
(WY19, Big Soldier Food Machinery, Henan, China) and a
steam generator (WY19, Big Soldier Food Machinery, Henan,
China). Blue-grained wheat kernel (harvested from the test site
of Liaocheng University, Liaocheng, China) was loaded into the
reactor chamber and treated at 0.3–0.7 MPa for 3–7 min. The
reaction system was then terminated with a sudden explosion by
opening the feed valve, and the wheat was allowed to dry at 60◦C
for 12 h. The dried wheat sample (100 g) was ground for 2 min in
a ZT-150 high-speed grinder (Yongkang Zhanfan Industry and
Trade Co., Ltd., Zhejiang, China).

FIGURE 1

Schematic diagram of the experimental apparatus for the steam explosion.
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In vitro protein digestion of wholemeal
flour

Method (23, 24) adopted with modifications was considered
to evaluate the in vitro protein digestibility following gastric
(pepsin) and intestinal (trypsin) digestion. Briefly, 2 g of
wholemeal flour was mixed with 20 ml of distilled water, and
added 1 mol/L HCl to adjust pH = 2, then incubated with 1 g
of pepsin (P6322, >3,000 U/mg, Shanghai Macklin Biochemical
Co., Ltd., Shanghai, China) in 100 ml of 0.01 mol/L HCl at
37◦C for 2 h and neutralized with 1 mol/L NaHCO3. This was
followed by the addition of 0.4 g of trypsin (pig pancreas, 250
USP U/mg, Yuanye Biotechnology Co., Ltd., Shanghai, China),
2.5 g of bile powder in 100 ml of 0.1 mol/L NaHCO3, and
incubated at 37◦C for 2 h.

In vitro starch digestion of wholemeal
flour

In vitro starch digestibility was determined by the previous
report (25–29) with modifications. α-Amylase (6 g, 35 U/mg,
Shanghai Macklin Biochemical Co., Ltd., Shanghai, China) and
40 ml of deionized water were mixed and followed by stirring for
10 min. Then the mixed solution was centrifuged at 4,000 rpm
for 15 min. Finally, 30 ml of the supernatant was mixed with
2 ml of amyloglucosidase (from Aspergillus niger, 1 × 105 U/ml,
Shanghai Macklin Biochemical Co., Ltd., Shanghai, China) and

3 ml of deionized water to prepare digestive enzyme solution.
Wholemeal flours (500 mg) were mixed with 14 ml of deionized
water and boiled in a water bath for 5 min. Then 1 ml of
digestive enzyme solution was added, shaken, and incubated
at 37◦C. Sample solutions (0.2 ml) were added with 80% of
ethanol solution (5 ml) immediately, after 20, 60, 120, 180, and
240 min, respectively.

Antioxidant compounds and activity of
digestive juice

The total phenolics content of digestive juice after protein
digestion was analyzed using the Folin-Ciocalteu colorimetric
method described by Veronica et al. (30). The total flavonoids
content of digestive juice after protein digestion was analyzed
by the method (31). The DPPH radical scavenging activity
of digestive juice after protein digestion was analyzed by the
previous method (5).

Chemical compounds of wholemeal
flour

The protein content of wholemeal flour was analyzed
using the AACC method 46-08. Total arabinoxylans and
water-extractable arabinoxylans content were determined
using the Hashimoto’s method (32). The starch content of

FIGURE 2

Effect of steam explosion on in vitro protein digestibility of wholemeal flour. NWF, native wheat flour; SWF, steam-exploded wheat flour;
SWF0.3-5, SWF at 0.3 MPa for 5 min; SWF0.5-3, SWF at 0.5 MPa for 3 min; SWF0.5-5, SWF at 0.5 MPa for 5 min; SWF0.5-7, SWF at 0.5 MPa for
7 min; SWF0.7-5, SWF at 0.7 MPa for 5 min; NA, not available. (Means that do not share a letter are significantly different at p < 0.05.).
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wholemeal flour was measured by the Goñi’s method (25) with
modifications. Briefly, wholemeal flours (0.1 g) were mixed
with 2 mol/L of KOH solution (6 ml) and shaken at 25◦C for
30 min. Then, 98% of acetum (1 ml), 0.4 mol/L of sodium
acetate buffer solution (pH = 4.75, 3 ml), and amyloglucosidase
(from Aspergillus niger, 1 × 105 U/ml, 200 µl) were added and
incubated at 60◦C for 45 min.

The Hagberg-Perten falling number
analysis of wholemeal flour

The Hagberg-Perten falling number (FN) of all samples
was determined using an FN-IV instrument (Hangzhou

Daji Electric Instrument Co., Ltd., Hangzhou, China)
according to the manufacturer’s instructions. Liquefaction
number (LN) was calculated using the following formula:
LN = 6,000/(FN-50).

Color measurement of wholemeal
flour

The color profiles of native and steam-exploded wholemeal
flours were measured with a chromameter (Minolta CR-10,
Japan). L∗ means lightness of the flour, a∗ indicates green or red-
purple color, and b∗ indicates yellow or blue color (33). Chroma
(34) and hue (35) were calculated using the L∗, a∗, and b∗ values.

FIGURE 3

Effect of steam explosion on in vitro starch digestibility of wholemeal flour. NWF, native wheat flour; SWF, steam-exploded wheat flour;
SWF0.3-5, SWF at 0.3 MPa for 5 min; SWF0.5-3, SWF at 0.5 MPa for 3 min; SWF0.5-5, SWF at 0.5 MPa for 5 min; SWF0.5-7, SWF at 0.5 MPa for
7 min; SWF0.7-5: SWF at 0.7 MPa for 5 min.

TABLE 1 Rapidly digestible starch, slowly digestible starch, and resistant starch content of native and steam-exploded wholemeal flour.

Samples Rapidly digestible starch (%) Slowly digestible starch (%) Resistant starch (%)

NWF 51.47 ± 0.94bc 5.43 ± 0.63d 43.10 ± 0.61a

SWF0.3-5 48.05 ± 2.69c 13.50 ± 0.56a 38.45 ± 3.18ab

SWF0.5-3 57.60 ± 3.63a 11.77 ± 1.61b 30.63 ± 5.22c

SWF0.5-5 58.31 ± 5.36a 7.92 ± 1.20c 33.77 ± 6.51bc

SWF0.5-7 54.17 ± 0.59ab 4.52 ± 0.39d 41.31 ± 0.92a

SWF0.7-5 50.68 ± 2.80bc 8.14 ± 0.64c 41.17 ± 2.74a

NWF, native wheat flour; SWF, steam-exploded wheat flour; SWF0.3-5, SWF at 0.3 MPa for 5 min; SWF0.5-3, SWF at 0.5 MPa for 3 min; SWF0.5-5, SWF at 0.5 MPa for 5 min; SWF0.5-7,
SWF at 0.5 MPa for 7 min; SWF0.7-5, SWF at 0.7 MPa for 5 min. Means that do not share a letter are significantly different at p < 0.05.
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Solvent retention capacity of
wholemeal flour

The solvent retention capacity (SRC) tests that included
5% lactic acid (LA), 5% sodium carbonate (SC), 50% sucrose
(Suc), and water (W) were measured according to the AACC
International Approved Method 56-11.02.

Rheological property analysis of
wholemeal flour

The dynamic rheological property of all samples was
investigated using an HR-1 Rheometer (TA Instruments,

United States) based on a method (6, 36). An amount of 4 g
of flours and 25 ml of deionized water were mixed and shaken
at 95◦C water for 30 min and stored at 4◦C. After pasting and
cooling, portions of each sample were transferred directly onto
the parallel plate (40 mm in diameter, Peltier plate steel). The
sweep procedure was run at 0.1–1,000 rad/s at 25◦C with a strain
amplitude of 2%.

Statistical analysis

Three replicated tests were performed, and the average
values were reported. Experimental data were processed by one-
way analysis of variance using IBM SPSS Statistics 20 (IBM, NY,

FIGURE 4

Effect of steam explosion on antioxidant compounds and activity of digestive juice. NWF, native wheat flour; SWF, steam-exploded wheat flour;
SWF0.3-5, SWF at 0.3 MPa for 5 min; SWF0.5-3, SWF at 0.5 MPa for 3 min; SWF0.5-5, SWF at 0.5 MPa for 5 min; SWF0.5-7, SWF at 0.5 MPa for
7 min; SWF0.7-5, SWF at 0.7 MPa for 5 min; TPC, total phenolics content; TFC, total flavonoids content; DPPH, DPPH radical scavenging activity.
Means that do not share a letter are significantly different at p < 0.05.

TABLE 2 Proximate composition of native and steam-exploded wholemeal flour.

Samples AX (%) WEAX (%) Protein (%) Starch (%) FN LN

NWF 5.04 ± 0.04c 0.48 ± 0.00f 14.88 ± 1.56a 60.60 ± 0.88ab 342.33 ± 16.25a 20.57 ± 1.13b

SWF0.3-5 5.25 ± 0.05b 0.53 ± 0.01e 16.06 ± 0.32a 66.67 ± 1.43a 292.67 ± 31.39ab 24.99 ± 3.06b

SWF0.5-3 5.12 ± 0.12bc 0.54 ± 0.01d 15.29 ± 0.93a 59.42 ± 4.21ab 274.33 ± 24.21bc 26.94 ± 2.75b

SWF0.5-5 5.24 ± 0.05b 0.66 ± 0.00b 16.77 ± 1.18a 60.26 ± 5.41ab 231.50 ± 60.10c 30.14 ± 11.71b

SWF0.5-7 4.91 ± 0.09d 0.60 ± 0.00c 15.95 ± 0.98a 63.98 ± 1.06ab 74.50 ± 6.36d 253.45 ± 65.83a

SWF0.7-5 5.95 ± 0.03a 0.74 ± 0.00a 15.85 ± 1.56a 61.28 ± 2.79ab 73.67 ± 4.51d 259.76 ± 51.06a

NWF, native wheat flour; SWF, steam-exploded wheat flour; SWF0.3-5, SWF at 0.3 MPa for 5 min; SWF0.5-3, SWF at 0.5 MPa for 3 min; SWF0.5-5, SWF at 0.5 MPa for 5 min; SWF0.5-7,
SWF at 0.5 MPa for 7 min; SWF0.7-5, SWF at 0.7 MPa for 5 min; AX, arabinoxylans; WEAX, water-extractable arabinoxylans; FN, falling number; LN, liquefaction number. Different
letters indicated significant differences at p < 0.05 in the same column.
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United States) with Duncan’s multiple range test (p < 0.05). The
results were reported as mean ± standard deviation.

Results and discussion

Protein bioaccessibility of wholemeal
flour

The effect of steam explosion on bioaccessibility can be
evaluated in vitro by the simulation of gastric and intestinal
digestion, which estimated the bioaccessibility changes resulting
from the variations in the steam explosion processing (7, 37).
Protein bioaccessibility at the gastric stage and intestinal stage
during the in vitro gastrointestinal digestion of wholemeal
flours is shown in Figure 2. During the gastric stage,
protein digestibility of native wheat flour was 2.16%, while
steam-exploded flours exhibited protein digestibility ranging
between 2.05 and 6.92%, the highest protein digestibility was
noted for samples subjected to steam explosion treatment at
0.5 MPa for 3 min (6.92%), 0.5 MPa for 5 min (6.63%),
and 0.7 MPa for 5 min (5.67%), and differences between
the steam explosion at 0.5 MPa for 3 min and 5 min were
minimal. However, steam-exploded wheat flour at 0.3 MPa for
5 min and 0.5 MPa for 7 min showed no statistical variation

compared with that of native wholemeal flour (p > 0.05).
During the intestinal stage, protein digestibility of wheat flour
ranged from 6.81 to 49.12%. Protein digestibility of native
wheat flour (6.81%) increased significantly (p < 0.05) after
the steam explosion. The highest ultimate protein digestibility
(49.12%) of steam-exploded wholemeal flour was obtained
under the condition of the steam explosion at 0.5 MPa for
5 min. The steam explosion broke cell walls and promoted the
breakdown of proteins into smaller units, which might improve
the digestibility and bioaccessibility of wheat flour (5, 21, 38,
39). In this study, the results of in vitro protein digestibility
showed that steam explosion was an effective strategy that
could be employed to improve protein bioaccessibility in
wholemeal flour.

Starch bioaccessibility of wholemeal
flour

Starch was one of the main nutrients in wheat, and its
digestibility directly influenced the digestion and absorption
of flour (40). In the in vitro digestion process (Figure 3), the
enzymatic hydrolysis rate of all wholemeal flours increased
rapidly in the first 20 min and stabilized after 60 min, which was
in line with human digestible characteristics (41). Wholemeal
flour formed a more unstable structure after being saturated

FIGURE 5

Effect of steam explosion on color profile of blue-grained wheat flour. NWF, native wheat flour; SWF, steam-exploded wheat flour; SWF0.3-5,
SWF at 0.3 MPa for 5 min; SWF0.5-3, SWF at 0.5 MPa for 3 min; SWF0.5-5, SWF at 0.5 MPa for 5 min; SWF0.5-7, SWF at 0.5 MPa for 7 min;
SWF0.7-5, SWF at 0.7 MPa for 5 min. Means that do not share a letter are significantly different at p < 0.05.
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with steam with high-pressure and high-temperature treatment.
The highest hydrolysis rate of wholemeal starch was between 0
and 20 min. In this period, the hydrolysis rate of starch in native
wholemeal was 2.57% starch/min, and the highest hydrolysis
rate of starches was found in steam-exploded wholemeal flour
at 0.5 MPa for 5 min (2.92% starch/min), followed by 0.5 MPa
for 3 min (2.88% starch/min), 0.5 MPa for 7 min (2.71%
starch/min), 0.3 MPa for 5 min, and 0.7 MPa for 5 min (2.40–
2.53% starch/min). From 20 to 60 min, there was a remarkable
drop in the hydrolysis rate, particularly for steam-exploded
wholemeal at 0.5 MPa for 7 min (0.09% starch/min), whereas
native flour was 0.15% starch/min.

The rapidly digestible starch, slowly digestible starch,
and resistant starch contents of native wholemeal flour were
51.47, 5.43, and 43.10%, respectively (Table 1). The rapidly
digestible starch content of wholemeal increased significantly
to 57.60–58.31% (p < 0.05) by the steam explosion at
0.5 MPa for 3–5 min, whereas slowly digestible starch
and resistant starch content decreased to 7.92–11.77% and
30.63–33.77%, respectively. A proper and reasonable steam
explosion disrupted the cell wall structure and promoted
enzyme access starch, and the starch was gelatinized during
steam explosion processing, thus enhancing starch susceptibility
and bioaccessibility. Wholemeal modification by the steam
explosion at 0.5 MPa for 5 min had the highest rapidly digestible
starch (58.31%), lowest slowly digestible starch (7.92%), and
resistant starch (33.77%) contents, respectively.

Bioaccessibility of antioxidant
compounds in wholemeal flour

Phenolics could increase the reactive antioxidant potential
and subsequently decrease the risk of free radical-related
diseases (42). The healthy effect of phenolic acids was dependent
on their bioaccessibility and bioavailability (7). The thermal
treatment was conducive to release the bioactive compounds
from food, especially from high-fiber foods, and improve
their antioxidant capacity in vitro (43). Steam explosion
significantly (p < 0.05) enhanced total phenolics, flavonoids
contents, and DPPH radical scavenging activity (Figure 4).
Phenolics and flavonoids bioaccessibility of digestible juice
after steam explosion treatment were 1.30–1.50 and 1.72–
4.94 times of those native wholemeal digestible juice. The
results indicated that steam explosion improved the antioxidant
compounds’ bioaccessibility. Steam explosion significantly
increased the free and conjugated ferulic acid content in
the wheat bran (44) and enhanced the release of bound
phenolic compounds of barley bran (45) and soybean seed
coat phenolic profiles (46). The steam explosion could form
a large cavity and intercellular space, which aided the release
of phenolic profiles and enhanced the antioxidant activities
(5, 21, 46, 47). The bioavailability of these compounds

strongly depended on their bioaccessibility, which could be
affected by the processing (2). Bioactive compounds were
encapsulated from intact cells and that steam explosion
could have a significant effect of the high-shear and high
temperature on cell integrity and bioaccessibility, which might
influence the fraction that was made available for intestinal
absorption (7).

Chemical compositions of wholemeal
flour

No significant differences (p > 0.05) in protein and starch
content were found among the native and all steam-exploded
wholemeal flours (Table 2). The protein and starch contents
of wholemeal flours ranged from 14.88 to 16.77% and 59.42
to 66.67%, respectively. Arabinoxylans and water-extractable
arabinoxylans content of different samples were shown in
Table 2, which of native wholemeal were 5.04 and 0.48%,

FIGURE 6

Effect of steam explosion on solvent retention capacity of wheat
flour. NWF, native wheat flour; SWF, steam-exploded wheat
flour; SWF0.3-5, SWF at 0.3 MPa for 5 min; SWF0.5-3, SWF at
0.5 MPa for 3 min; SWF0.5-5, SWF at 0.5 MPa for 5 min;
SWF0.5-7, SWF at 0.5 MPa for 7 min; SWF0.7-5, SWF at 0.7 MPa
for 5 min; GPI, gluten performance index. Means that do not
share a letter are significantly different at p < 0.05.

Frontiers in Nutrition 07 frontiersin.org

https://doi.org/10.3389/fnut.2022.877704
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-877704 July 21, 2022 Time: 13:46 # 8

Kong et al. 10.3389/fnut.2022.877704

FIGURE 7

Effect of the steam explosion on the rheological property of
wholemeal flour. (A) G’ of samples; (B) G” of samples; (C) tan δ

of samples; NWF, native wheat flour; SWF, steam-exploded
wheat flour; SWF0.3-5, SWF at 0.3 MPa for 5 min; SWF0.5-3,
SWF at 0.5 MPa for 3 min; SWF0.5-5, SWF at 0.5 MPa for 5 min;
SWF0.5-7, SWF at 0.5 MPa for 7 min; SWF0.7-5, SWF at 0.7 MPa
for 5 min.

respectively, while that of steam-exploded wholemeal were
4.91–5.95 and 0.53–0.74%, respectively. The water-extractable
arabinoxylans content was used to evaluate the effect of the
treatment on cell wall degradation (48). It demonstrated that
the water-extractable arabinoxylans content was significantly
(p< 0.05) increased to reach a peak (0.74%) by steam explosion.
The water-extractable arabinoxylans content increased with
increasing pressure to reach a peak at 0.7 MPa for 5 min.

At 0.5 MPa, the content showed a peak at 0.5 MPa for
5 min, and after 5 min, it decreased. The outer layer of
the wheat kernel was surrounded by the thick non-lignified
cell walls, which were composed mainly of dietary fiber,
with the predominance of arabinoxylans (7). The lower
starch digestibility/bioaccessibility was associated with intact
cells of cereal (11), which encapsulated intracellular starch
and delayed digestive enzyme access. The steam explosion
could promote the conversion of arabinoxylans to water-
extractable arabinoxylans, it broke the crystalline structure of
the dietary fiber, which validated that the steam explosion
could hydrolyze hemicelluloses (49). As a result, the steam
explosion might improve the starch digestibility/bioaccessibility
of wholemeal. The water-extractable arabinoxylans with the
functional properties of higher water absorption and higher
viscosity, and the suitable content of arabinoxylans was
beneficial for the dough extensibility and subsequent product
quality (50–52).

The falling number apparatus has been widely used in the
rapid determination of α-amylase activity in grain, which was
quantified by reducing the viscosity of the flour paste (53).
The falling number value of wholemeal flour was determined
by the different conditions of steam explosion (Table 2). The
result indicated that the flour paste liquefied quickly when
the intensity of the steam explosion was increased. Compared
with native wholemeal flour, the falling number of wholemeal
flours significantly (p < 0.05) decreased by the steam explosion
to reach a peak at 0.7 MPa for 5 min. Liquefaction numbers
could be used in the milling and baking industries to calculate
the mixing ratio of flour to be blended with a known falling
number (54, 55). Liquefaction number was a linear evaluation
of α-amylase activity in grain, and there were no significant
changes (p > 0.05) in liquefaction number found among the
native and all steam-exploded wholemeal flours at 0.3 MPa for
5 min and 0.5 MPa for 3–5 min. In general, the data suggested
that the steam explosion might enhance the susceptibility of
starch to digestive enzyme hydrolysis and increase the damage
of wheat starch, which together contributed to the decrease of
the falling number values.

Color measurement of wholemeal
flour

The color profiles of L∗, a∗, and b∗ values of wholemeal
flours are shown in Figure 5. L∗, a∗, and b∗values denoted
lightness to darkness, redness to greenness, and yellowness
to blueness, respectively (56). The steam-exploded wholemeal
samples exhibited no change in L∗ values without the sample at
0.5 MPa for 7 min and 0.7 MPa for 5 min and showed no change
in a∗ values without the sample at 0.5 MPa for 3 min and 0.7 MPa
for 5 min and b∗ values without the sample (0.3 MPa for 5 min,
0.5 MPa for 7 min, and 0.7 MPa for 5 min), compared to native

Frontiers in Nutrition 08 frontiersin.org

https://doi.org/10.3389/fnut.2022.877704
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-877704 July 21, 2022 Time: 13:46 # 9

Kong et al. 10.3389/fnut.2022.877704

FIGURE 8

Pearson’s correlation between bioaccessibility and flour characteristics of wholemeal flour. AX, arabinoxylans; WEAX, water-extractable
arabinoxylans; FN, falling number; LN, liquefaction number; TPC, total phenolics content; TFC, total flavonoids content; DPPH, radical
scavenging activity; RDS, rapidly digestible starch; SDS, slowly digestible starch; RS, resistant starch; GPI, gluten performance index; GPD, gastric
protein digestibility; IPD, intestinal protein digestibility.

wholemeal flour (L∗ = 47.03, a∗ = 31.70, b∗ = 19.17). Color
measurements indicated that the severe conditions of steam
explosion treatment on wholemeal at 0.5 MPa for 7 min and
0.7 MPa for 5 min yielded a darker color (lower L∗ values were
44.80 and 43.93). The undesired Maillard browning reaction,
caramelization, and oxidation product formation could be
responsible for the decrease of lightness in steam-exploded
flours compared to native powder (6, 22). The a∗ values of the
steam-exploded wholemeal ranged from 30.60 to 31.90, and
the b∗ values ranged from 18.57 to 21.67. The chroma values
indicated the purity or saturation and showed no significant
variation compared to native powder (34). No change was found
in chroma between native and steam-exploded wholemeal flours
at 0.5 MPa for 5–7 min (p > 0.05), which indicated the stability
of color in wholemeal flours. The Hue angle values increased
from 0.54 to 0.57–0.61 during the steam explosion process
at 0.3 MPa for 5 min and 0.5 MPa for 3 min. It suggested
increment from a greener color to an orange-red color of
steam-exploded wholemeal. These results indicated that the
partial steam explosion affected the color quality of wholemeal
flour and produced more browning compound(s). There was
a remarkable positive relationship (p < 0.01) between b∗ and
Hue value (r = 0.948). The steam explosion at 0.5 MPa for
5 min had better color performance than other conditions,

which was conducive in maintaining the color acceptability of
native wholemeal.

Solvent retention capacity of
wholemeal flour

Solvent retention capacity (SRC) was deemed to be an
efficient method to evaluate wheat flour quality; it is a special
method for predicting the flour function by estimating the
relative contributions of individual flour compounds to water
absorption, which is also used to evaluate oat flour properties
(57). The differences in the SRC values between native and
steam-exploded wholemeal flour were observed, and the SRC
values were significantly (p < 0.05) increased by the steam
explosion (Figure 6). W-SRC significantly (p < 0.05) increased
with the steam explosion treatment time extended at 0.5 MPa
from 3 to 7 min. W-SRC also increased with the extension of
steam explosion treatment pressure from 0.3 to 0.7 MPa for
5 min. This might be caused by the fracture of wholemeal under
the high pressure and high temperature of steam explosion,
which exposed more hydrophilic groups and allowed the flour
more water-binding capacity (6). Steam explosion enhanced
the Suc-SRC value compared with that of the native, which
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might be owing to the water-extractable arabinoxylans content
increased by steam explosion. Suc-SRC significantly (p < 0.05)
increased with the steam explosion treatment time extended
at 0.5 MPa from 3 to 7 min. However, Suc-SRC decreased
with the increase in pressure from 0.3 to 0.7 MPa for 5 min.
Compared to native flour, LA-SRC was significantly (p < 0.05)
increased by steam explosion. The LA-SRC of steam-exploded
flour showed no change when the treatment was at 0.5 MPa
for 5 min. SC-SRC increased significantly (p < 0.05) with the
extending of steam explosion pressure from 0.3 to 0.7 MPa for
5 min, which might be attributed to the increase of damaged
starch content induced by steam explosion. GPI might be a
proper predictive index of the gluten property influenced by all
the components in wheat flour (58). The steam explosion did not
change significantly (p > 0.05) on the GPI of wholemeal flour,
except for the condition at 0.3 MPa for 5 min, which showed
that steam explosion was conducive to maintaining the gluten
strength. According to the results above, the steam explosion
was beneficial in improving the SRC values of wholemeal flour
while the gluten was not weakened.

Rheological property of wholemeal
flour

Both the storage modulus and the loss modulus of
wholemeal flour increased with the increase of frequency, and
the elasticity and viscosity were frequency-dependent (59). The
storage modulus and loss modulus were increased by the steam
explosion compared with native, which might be attributed
to the porous structure and consequently a solvent retention
capacity in steam-exploded wholemeal flour. The values of both
the storage modulus and loss modulus of native wheat flour
increased through the frequency range, which indicated that
wholemeal flour behaved more like soft gels (60). Rheological
evaluation (Figures 7A,B) revealed an increasing tendency to
solid-like behavior after steam explosion treatment, and the
steam explosion increased the gel strength of wholemeal flour.
Steam explosion treatment was conducive in modifying the
natural viscoelastic properties of wholemeal flour gel, and the
highest storage modulus and loss modulus of steam-exploded
flour gel were at 0.5 MPa for 5 min. The tanδ is the ratio of
the loss modulus to the storage modulus; the larger the tanδ

value, the higher the viscosity and smaller the elasticity of the
gel (61). The steam explosion remained the inherent rheological
property, with the same trend of storage modulus being greater
than loss modulus (6). The tanδ value of all wholemeal samples
was less than 1, steam explosion at 0.5 MPa for 5–7 min and
0.7 MPa for 5 min decreased the tanδ value of wholemeal
flour, and the tanδ value of steam-exploded wholemeal flour at
0.5 MPa for 5 min showed the lowest value (Figure 7C). In this
case, it indicated that the steam-exploded wholemeal flour gel
was more elastic than the native flour. The results showed that

the solid property of wholemeal flour was increased by the steam
explosion at 0.5 MPa for 5 min.

Correlation of various parameters of
wholemeal flour

Elucidating the correlations of bioaccessibility and
physicochemical properties of wholemeal flour as shown
in Figure 8 might be conducive in developing an indirect
processing strategy to control the flour characteristics according
to the changes in conditions in the steam explosion. Total
phenolics exhibited significant (p < 0.05) correlations with
the DPPH radical scavenging activity of wholemeal extracts.
A positive correlation was found between the Suc-SRC and
loss modulus (r = 0.93, p < 0.05). The water-extractable
arabinoxylans and total phenolics content were significantly
(p < 0.05) correlated with LA-SRC. Total phenolics content was
positively related to the W-SRC (r = 0.99), LA-SRC (r = 0.97),
and SC-SRC (r = 0.98), whereas negatively connected to the
falling number (r = –0.89). Protein content was positively
related to the intestinal protein digestion, viscosity, storage
modulus, and loss modulus, whereas negatively connected to
the loss factor. The falling number showed a strong negative
relationship with the liquefaction number, while the falling
number positively correlated with the total flavonoids content.

Conclusion

The bioaccessibility and physicochemical properties of
wholemeal flour were altered by the thermal-mechanical
action of steam explosion. The cell wall was broken by
facilitating the conversion of water-unextractable to water-
extractable arabinoxylans. As a result, steam explosion
treatment improved protein digestibility, starch digestibility,
and phenolics bioaccessibility of wholemeal flour. Compared
with native wholemeal flour, steam-exploded wholemeal flour
existed the highest protein digestibility and the hydrolysis
rate of starches at 0.5 MPa for 5 min. And steam explosion
contributed to the increase of total flavonoids content, total
phenolics content, and DPPH radical scavenging activity
in digestible juice. Above chemical changes in wholemeal
flour induced by steam explosion caused the physicochemical
property changes of wholemeal flour, including the color
profiles, solvent retention capacity, and rheological property.
Results showed steam explosion was beneficial in improving
the solvent retention capacity values while the gluten was not
weakened. An increasing tendency to solid-like behavior and
the gel strength of wholemeal flour was significantly enhanced
by the steam explosion at 0.5 MPa for 5 min. These phenomena
demonstrated that steam explosion induced physicochemical
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property changes of wholemeal flour depending on the chemical
constituent change, such as arabinoxylans and starch. This study
provided an effective strategy that could be employed to improve
the nutritional bioaccessibility and modify the physicochemical
property of cereal flour.
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