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Abstract: Fractal and self-similarity are important characteristics of complex networks. The correla-
tion dimension is one of the measures implemented to characterize the fractal nature of unweighted
structures, but it has not been extended to weighted networks. In this paper, the correlation dimen-
sion is extended to the weighted networks. The proposed method uses edge-weights accumulation
to obtain scale distances. It can be used not only for weighted networks but also for unweighted
networks. We selected six weighted networks, including two synthetic fractal networks and four
real-world networks, to validate it. The results show that the proposed method was effective for the
fractal scaling analysis of weighted complex networks. Meanwhile, this method was used to analyze
the fractal properties of the Newman–Watts (NW) unweighted small-world networks. Compared
with other fractal dimensions, the correlation dimension is more suitable for the quantitative analysis
of small-world effects.

Keywords: fractal property; correlation dimension; weighted networks; small-world network

1. Introduction

Recently, revealing and characterizing complex systems from a complex networks
perspective has attracted attention. Network theory can fundamentally reshape the ap-
proach to the complexity of systems and solve various problems [1]. The studies of intricate
topology contribute to understanding and characterizing the complexity of the network [2].
This macroscopic property of complex networks has been the focus of intense scientific
activity [3]. Specifically, the small-world property [4] and the scale-free [5] property were
separately found in many networks. These findings accelerate the study of the impact of
network structure on various dynamical processes. In a small-world network, most nodes
can be reached from each other node by a small number of hops or steps. Many empirical
networks show a small-world effect, helping to study social networks, biological neural
networks, and epidemiological processes [6–8]. In addition, the network’s dimension can
be used to analyze the dynamics of networks. Furthermore, it is also one of the most
fundamental quantities to analyze systems topology and physical properties.

Dimensions are described as topological measurements of their coverage characteris-
tics [9]. The dimension of the mathematical space is informally considered as the minimum
number of coordinates and is typically an integer, but the fractal dimension is not necessar-
ily an integer. Mandelbrot proposed the concept of fractal in geometry [10], and the fractal
dimension is widely used in many fields to describe the fractal pattern of the systems.
Song et al. extended the fractal dimension to complex networks and found that many
real-world networks have self-repetitive structures at all scales [11,12]. The network di-
mension is one of the key concepts to understand network topology and network dynamic
process [13]. The fractal dimension can be used to quantitatively analyze the self-similarity
or fractal property of networks. In recent years, there have been many studies on the fractal
dimension of complex networks, and researchers have studied the fractal properties of net-
works from different perspectives. Wen et al. proposed the information dimension [14–16]
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of weighted complex networks based on the box covering algorithm (BCANw) of weighted
complex networks. Huang et al. considered the node degree information and the edge
weight information connected to the node, from the perspective of strength volume [17]
examine the fractal characteristics of the weighted network. Sometimes, a single fractal
exponent is not enough to characterize the fractal properties of the system. Multifractal
analysis can provide a continuous spectrum of dimension exponents for describing the
fractal patterns [18]. Song et al. proposed a modified sandbox algorithm to study the
multifractal problem of weighted networks [19]. In complex networks, the fractal analysis
is a useful tool that has been proven in many fields such as nonlinear time series [20],
economic systems [21,22], and physical phenomena [23]. For example, Li et al. studied the
vulnerability of the network from two perspectives: the connection mode between hub
nodes and the fractal dimension of the network [24].

In complex networks, there are many studies on fractal dimension. Li et al. redefined
the pheromone-updating rules and heuristic rules, proposed a heuristic algorithm, named
the max–min ant colony algorithm, which can reduce the number of boxes [25]. Zhao et al.
proposed a fractal dimension estimation method for RGB color images [26]. In addition,
there are many kinds of research on the correlation dimension, but each of them has
its limitations. Lacasa et al. proposed a method for correlation dimension in complex
networks, and it is only applicable to the networks in coordinate space [27,28]. Rosenberg
defined the correlation dimension in the finite unweighted and undirected rectilinear
gird [29,30]. Wang et al. [31] studied the correlation dimension in the planar networks. The
value of the correlation dimension depends on the distance and the number of node pairs.
The small-world effect is that the average distance between any two nodes in the network
increases logarithmically with the increase in the total number of network nodes. The
correlation dimension and the small-world effect are related to the distance of node pairs,
so there may exist an association between them. In this paper, we applied the correlation
dimension to the small-world network to quantitatively analyze the small-world effect. In
addition, the current method of calculating the correlation dimension cannot be used for
weighted networks.

The edge-weights of complex networks exhibit the strength of the correlation among
its components and are coupled into a topology for more accurately representing the
network structure. For instance, edge-weights in the scientists’ cooperative network can
represent the strength of cooperation. Moreover, in the aviation network, they can represent
the flight traffic of the two places. The calculation of the rich-club effect in the real-world-
weighted networks is completely different from unweighted representations [2]. Weighted
quantities have a specific correlation with potential network topology [3]. However, the
box-covering method proposed by Song et al. for calculating the fractal dimension [32]
cannot be applied to the weighted networks. Similarly, previous methods for calculating
correlation dimensions cannot be adapted to weighted networks. Wei et al. chose the box
size by accumulating the sorted edge-weights and extended the box-covering method to
the weighted networks [33]. Wei’s method was denoted by BCANw and proven to be valid
for calculating the information dimensions [14,34] and volume dimensions [17] in weighted
complex networks. Inspired by the BCANw algorithm, this paper comprehensively defines
the selection formula of the size r of the unweighted network and the weighted network and
extends the correlation dimension to the weighted network, which is closer to the fractal
theory dimension than other weighted network dimensions in most cases. The correlation
dimension can be used to distinguish between chaotic and truly random behavior in chaotic
systems [35]. Furthermore, researchers have tried to study chaotic sequences from the
perspective of weighted complex networks [36]. Therefore, the correlation dimension
should be extended to adapt to the real-world weighted networks and contribute to the
studies of chaotic signals from the perspective of complex networks.
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2. Preliminaries
2.1. Newman–Watts Small-World Networks

The Newman–Watts model [37] is a random graph generation model for producing
graphs with small-world properties and denoted by NW networks. Let G be an undirected
graph with N nodes and each node has K (assumed to be an even integer for symmetry)
neighbors, and the construction of the network starts with the nearest neighbors regular
ring lattice. Shortcuts are added with the probability P between unconnected nodes. The
probability P reflects the shortcuts density of the network. The typical distance L between
two chosen nodes scales as the logarithm of the number of nodes N, i.e., L ∝ log N. There
have been many studies on the fractal characteristics of small-world networks [38–40].
Rozenfeld et al. used renormalization group (RG) theory to explain the coexistence of
the seemingly contradictory fractal and small-world phases [38]. This means that we can
study the small-world network through the fractal of complex networks, so as to reveal the
relationship between the correlation dimension and the small-world phenomena. Moreover,
the correlation dimension is closely related to the distance of the node pairs, which means
that it has a specific relationship with the small-world property. Song et al. pointed out that
the NW small-world network has self-similar properties, and box-covering methods [11,32]
are usually used to quantify the fractal dimensions of networks. Since finding the optimal
coverings in Song’s method is an NP-hard problem, estimating the fractal dimension
by correlation dimension can the avoid NP problem, and it is an effective alternative
method [27]. We applied the correlation dimension method to NW small-world networks.
The fractal properties and the factors affecting the correlation dimension are studied.

2.2. Correlation Dimension of Complex Networks

The correlation dimension was originally introduced by the Grassberger–Procaccia
to measure the strange attractor in chaos theory [35,41,42]. Relying on an extension of
the Grassberger–Procaccia algorithm, Lacasa et al. proposed a method for the correlation
dimension of complex networks embedded in m-dimensional space [27]. Lacasa’s approach
requires that it be embedded in m-dimensional space by a random walker navigating the
network, and only applies to a network with the geometric coordinates of each node.
Rosenberg defines the correlation dimension in the finite unweighted and undirect recti-
linear grid [29]. Wang et al. proposed a method for calculating the correlation dimension
of an unweighted network [31]. Wang’s method is implemented as follows. Let G be an
unweighted network with N nodes and E edges. The correlation sum function C(r) is
defined as the fraction of node pairs whose distance is less than r:

C(r) =
2 ∑i<j θ(r− dij)

N(N − 1)
, (1)

where dij represents the distance between node i and j. θ(x) is the Heaviside step function,
when x ≥ 0, θ(x) = 1, and when x < 0, θ(x) = 0. Rosenberg in [43] pointed out that if the
network has fractal property, then C(r) will scale with distance r as

C(r) ∼ rβ, (2)

where exponent β is the correlation dimension of the network. The scaling distance r in
the unweighted network increases from integer 1 to the diameter of the network. The
correlation sum function C(r) should be calculated for each scaling distance r. If there
exists a scaling region on the log–log plot of C(r) as a function of r, then a straight line can
be fitted by a least-squares method in that region. The slope of that fitting line is the value
of the correlation dimension. If numerous non-integer edge-weights exist in the network,
the size r cannot be simply integer-incremented like in an unweighted network. The above
method for calculating the correlation dimension will be subject to restrictions.
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2.3. The Distance between Nodes

The value of edge-weights in the weighted network can be determined according
to different needs to express different physical meanings and the strength of correlation
between nodes. Coupling edge-weights to the network can describe its topological charac-
teristics more accurately. In the weighted network, the shortest path between node i and
node j is denoted as dij, and is defined as

dij = min{wij1 + wj1 j2 + · · ·+ wjm−1 jm + wjm j} (3)

where wij is the weight value of the edge of the directly connected node i and j,
jm (m = 1, 2, · · · ) are the IDs of nodes. The minimum function is the minimum of
all possible combined paths from node i to node j, that is, the shortest path length. It is
obvious that the shortest path defined by the above equation will increase with the increase
in the weight value, as is the case with the actual traffic network [3]. However, there is
also a weighted network, such as the scientist cooperative network [44], in which the more
scientists cooperate, the greater the weight, but the shorter the distance between them,
so another definition of the shortest path is given:

dij = min{w−1
ij1

+ w−1
j1 j2

+ · · ·+ w−1
jm−1jm + w−1

jm j} (4)

When analyzing the weighted network, defining the shortest path depends on the
specific meaning expressed by the weight value, and then analyzed the specific problems in
detail. If the weight type is dissimilarity weight, then Equation (3) is used, and the distance
is proportional to the weight. If the weight type is similarity weight, then Equation (4) is
used because the weight is inversely proportional to the distance. A common method for
solving the shortest path to a network is Dijkstra’s algorithm [45].

3. The Extended Method of Correlation Dimension

In a weighted network, sometimes the edge-weights are not an integer. If the value of
size r is still in integer increment, it causes correlation sum loss on the non-integer scale.
Estimates of correlation dimension will be affected. Inspired by the BCANw algorithm,
the size r is determined by the edge-weights. For a given weighted network, all the
edge-weights are sorted from small to large after removing duplicates, and the sorting set
W = [w1, w2, · · · , wM−1, wM] is obtained. The following formula is used to obtain the
values of r:

rk =

{
∑k

i=1 wi, (k ≤ M)

(k−M)wM + ∑M
i=1 wi, (k > M) ,

(5)

where k is the ID of the radius r, and M is the number of the edge-weights after removing
duplicate values. For weighted networks, the selection of scaling distance r is obtained by
the first part of Equation (5) to achieve the effect of obtaining r through the accumulation
of edge-weights; for unweighted networks, and all edge-weights are the same and are
generally recorded as 1, then there is only one element in the set W, and the selection of
the scaling distance r is obtained through the second part of Equation (5), to achieve the
effect that r increases one by one. This ensures that the final size r is not smaller than the
diameter of the network, and the algorithm is also applicable to the unweighted network
when considering k > M. The algorithm steps are as follows:

1. Firstly, all the edge-weights are sorted from small to large after removing duplicates
as (w1, w2, · · · , wM−1, wM). Set the initial size r = w1;

2. For a given size r, the correlation sum C(r) is calculated by Equation (1), where
the dij is obtained by Equation (3) or Equation (4) according to different network
edge-weight types. If it is the dissimilarity weight, Equation (3) is used, otherwise
Equation (4) is used;

3. The next size r is accumulated by Equation (5);
4. Repeat step 2 and step 3 until r is not less than the diameter of the network;
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5. Use least-squares method to fit C(r) as function of r in the scaling region on the
log–log plot. The slope of fitting line is the correlation dimension dc.

4. Correlation Dimension of Newman-Watts Small-World Network

In this section, the method is used to study the fractal property of the NW small-world
network. The results are shown in Figure 1. We found that in a small-world network with
a different probability P, r can scale with the correlation sum C(r) size, and the correlation
dimension increases significantly with the increase in probability P. We found that fractal
properties were found in NW small-world networks with different parameters. When the
probability of first-order phase transition P = 0 [37], the correlation dimension dc = 0.99
has no tail distribution. Although the value of K or N is large, the correlation dimension
tends towards 1 during this phase. A short tail appears when P = 0.01. As P increases,
numerous shortcuts will be added to the network and the average distance of the nodes
will decrease. Therefore, the correlation sum will also increase. We also found that the
initial number of neighbors in the NW small-world network is an important factor in
the small-world network. When the number of network nodes N and the probability P
are constant, the value of the correlation dimension of the network increases with the
increase in number of neighbor nodes. Some numerical results are shown in Table 1.
However, Guo et al. found that the fractal dimension dV based on the volume of a node is
independent of K [46]. This means that volume dimensions do not fully reflect the nature
of the small world. For another volume dimension dVW , proposed by Wei et al., is based on
the degree of nodes [47]. This method allows K to be quantitatively reflected in the fractal
dimension dVW while making dVW independent of the number of nodes N. The added
shortcuts have different effects on different sizes of networks. The correlation dimension
can reflect the impact of K and P on networks of different sizes. This makes the correlation
dimension become the appropriate index that quantifies the network small-world effect.
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Figure 1. The correlation sum function C(r) within the size r in a NW small-world networks with
various probability P, where the dashed lines are the experimental fitting lines: (a) N = 1000, K = 2;
(b) N = 1000; K = 6; and (c) N = 3000, K = 2.
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Table 1. The correlation dimensions of Newman–Watts small-world networks with different parameters.

N P k = 2 k = 4 k = 6 k = 8 k = 10 k = 12 k = 14

1000

0 0.9928 0.9928 0.9928 0.9929 0.9929 0.9929 0.993
0.01 1.2951 1.7943 2.3778 2.3845 2.5369 2.7175 2.8563
0.02 2.0963 2.6473 2.7604 2.8389 3.0485 3.1493 3.2863
0.05 2.6434 2.9127 3.0698 2.9427 3.2597 3.2817 3.6556
0.1 2.7554 3.1952 3.2193 3.2892 3.5412 3.9118 4.1663
0.3 3.5012 3.6739 3.8769 4.1099 4.3303 4.3404 4.3963

2000

0 0.9964 0.9964 0.9964 0.9964 0.9964 0.9964 0.9964
0.01 2.0235 2.243 2.7706 2.9644 3.1692 3.246 3.3075
0.02 2.2443 2.8485 2.7821 3.2911 3.2367 3.4383 3.5424
0.05 2.8336 3.2113 3.3924 3.4125 3.5485 3.5871 3.7541
0.1 3.3166 3.6928 3.7177 3.8836 3.8562 4.0745 4.419
0.3 3.9042 3.8666 3.7783 4.3119 4.715 4.9166 4.9635

3000

0 0.9976 0.9976 0.9976 0.9976 0.9976 0.9976 0.9976
0.01 2.05 2.5912 2.783 2.8573 2.9366 3.2939 3.3541
0.02 2.6661 3.0472 3.1748 3.4464 3.5882 3.6701 3.7543
0.05 3.2911 3.5353 3.8673 3.8855 3.9201 3.9976 4.1099
0.1 3.6983 3.8749 3.8807 3.9527 3.9992 4.108 4.5074
0.3 3.8757 3.9531 4.21 4.4034 4.831 5.1289 5.2853

5000

0 0.9985 0.9985 0.9985 0.9986 0.9985 0.9986 0.9986
0.01 2.317 3.06 3.2107 3.332 3.4623 3.5619 3.6939
0.02 2.9298 3.3299 3.6783 3.9903 4.0966 3.776 4.1588
0.05 3.5714 3.9696 4.256 4.2406 4.3665 4.4102 4.4677
0.1 3.9889 4.2811 4.366 4.40426 4.4924 4.502 4.5754
0.3 4.5767 4.6517 4.8547 4.9715 5.2839 5.3029 5.5834

8000

0 0.9991 0.9991 0.9991 0.9991 0.9991 0.9991 0.9991
0.01 2.6598 3.3849 3.5494 3.7576 3.8403 3.9471 4.1057
0.02 3.1861 3.5808 3.9604 4.0501 4.1467 4.2819 4.3718
0.05 3.8462 3.9158 4.1813 4.2552 4.3968 4.4726 4.5833
0.1 4.4148 4.4527 4.5175 4.5836 4.5906 4.6994 4.8064
0.3 4.7167 5.0379 5.0734 5.076 5.1369 5.4082 5.7126

Here, N represents the number of nodes, k represents the initial number of neighbors, P represents the added
edge probability.

5. Correlation Dimension and Fractal Properties of Weighted Networks
5.1. Correlation Dimension of Synthetic Weighted Fractal Networks

Our method was applied to weighted networks. To validate the method, we first
applied the algorithm to the weighted synthetic fractal networks, which are the “Sierpinski”
network and “Cantor Dust” triangle network [48]. The weighted fractal network (WFN)
contains small copies of the entire network in distorted and degenerate forms [10]. The
WFNs were constructed by iterated function systems [49,50]. These two WFNs are con-
trolled by two parameters, the number of copies s > 1 and the scaling factor 0 < f < 1.
The construction processes of WFNs are shown in Figure 2. The fractal dimension of the
network is also a self-similar dimension, and its theoretical calculation is as follows:

d f ract = − log s/ log ( f ) (6)
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(a)

G1 G2 G3

(b)

G1 G2 G3

Figure 2. G1 is the first generation of the networks. The different colors of the edges represent different
weights: the lighter the color, the smaller the weight: (a) “Sierpinski” WFN, s = 3; (b) “Cantor dust”
WFN, s = 4.

We applied the methods to the WFNs with various scaling factor f . Due to the limita-
tion of computing capability, we iterated the “Sierpinski” WFN to the eighth generation
G8. The WFN G8 has 9841 nodes and 9837 edges. The set of non-repetitive edge-weights
is W = [ f n−1, f n−2, · · · , f 1, 1]. If f = 1/2, the edge-weights W = [ 1

27 , 1
26 , · · · , 1

2 , 1]. The
minimum edge-weight is the value of initial r1, i.e., r1 = 1/27. The correlation sum C(r1) is
calculated by Equation (1). The edge-weights of WFNs do not represent any actual physical
meaning. We use Equation (3) to obtain the shortest distance between nodes. The next size
r2 = 1/27 + 1/26, and the following scaling size will continue to accumulate until the kth
scaling size rk is not less than the diameter of the network. If there exists a scaling region
on the log–log plot of C(r) as a function of r, the straight line in that region is fitted by the
least-squares method. The slope of the fitting line is the correlation dimension dc.

The log–log plots of r and C(r) with various scaling factors f in “Sierpinski” WFN
are shown in the part (a) of Figure 3. The result shows that the “Sierpinsk” WFN has
a strongly fractal property at different scale factors. Similarly, we iterate the “Cantor
Dust” WFN to the sixth generation G6 and G6 has 13,653 nodes and 17,748 edges. The
calculation results are shown in part (b) of Figure 3. In “Sierpinski” WFN, the number
of copies s = 3, thus its theoretical fractal dimension is d f ract = − log(3)/ log( f ). The
theoretical fractal dimension of “Cantor Dust" WFN is d f ract = − log(4)/ log( f ). We
compare the theoretical computation with the computation of correlation dimensions
shown in Figure 4. The correlation dimension is very close to the theoretical fractal
dimension in either the“Sierpinski” WFN or the “Cantor Dust” WFN, so our method is
effective to quantitatively study the fractal properties of the weighted fractal network. We
calculated some fractal dimensions, including the correlation dimensions, information
dimensions, and the dimensions calculated by BCANw method. These three dimensions
and the theoretical dimensions with different scales are shown in Tables 2 and 3. The results
show that compared with other fractal dimensions, the correlation dimension of WFNs is
close to the theoretical value.
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Figure 3. The fractal analysis of weighted fractal network with various scaling factors f by using
correlation dimension: (a) “Sierpinski” WFN, s = 3; and (b) “Cantor Dust” WFN s = 4.
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Correlation dimensions in Cantor Dust WFNs
Theoretical values in Sierpinski WFNs
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Figure 4. The curves are the theoretical calculation. The scatters represent the correlation dimension
of two WFNs with different scaling factors f .

Table 2. The theoretical dimensions (dt), correlation dimension (dc), information dimension (dI) and
the dimensions calculated by BCANw method (dB) of “Sierpinski” WFNs.

dt dc dI dB

f = 1/2 1.585 1.562 1.505 1.389
f = 1/3 1 0.987 0.953 0.919
f = 1/4 0.792 0.822 0.803 0.776
f = 1/5 0.683 0.710 0.694 0.674
f = 1/6 0.613 0.613 0.590 0.579
f = 1/7 0.565 0.565 0.571 0.563
f = 1/8 0.528 0.529 0.530 0.526
f = 1/9 0.5 0.5 0.485 0.479
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Table 3. The theoretical dimensions (dt), correlation dimension (dc), information dimension (dI) and
the dimensions calculated by BCANw method (dB) of “Cantor Dust” WFNs.

dt dc dI dB

f = 1/2 2 1.863 1.857 1.704
f = 1/3 1.262 1.245 1.228 1.195
f = 1/4 1 1.008 1.006 0.974
f = 1/5 0.861 0.873 0.871 0.849
f = 1/6 0.774 0.780 0.786 0.767
f = 1/7 0.712 0.719 0.725 0.771
f = 1/8 0.667 0.678 0.676 0.728
f = 1/9 0.631 0.637 0.642 0.685

5.2. Fractal Properties of Real-World Weighted Complex Networks

We applied the method to study the fractal properties of four real-world weighted
networks. Netscience is a collaborative network of the co-author in network science [44],
Cgscience is a collaborative network in computational geometry, USAir is a US Airlines
weighted network [51], and Coplant is a biological network that captures global cellular
connectivity within the hypocotyl of plants [52].

The USAir network has 332 nodes and 2126 edges. Furthermore, edge-weights of
USAir are the number of seats available on the scheduled flights with millions per year.
Then, we consider USAir as an unweighted network and calculate the values of r and
C(r) by Wang’s method [31]. The numerical result is shown in Figure 5. An appropriate
scaling region for linear fitting could not be found in the log–log plot of r and C(r). Wang’s
method shows that the USAir network does not have fractal property. We obtained a
reverse result when using our method and the result is shown in part (a) of Figure 6. It was
found that USAir is a network with the fractal property. USAir has fractal properties and is
also described in the references [33]. The correlation dimension of USAir is equal to 1.82,
and r is strongly linear with C(r) on the scaling region. Therefore, the consideration of
edge-weights is effective and necessary for weighted networks.

2 3 4 5 6 7
r

10-1

100

C
(r

)

Numerical result

Figure 5. The log–log plot of scaling distance r and correlation sum C(r) of the USAir without consid-
ering edge-weights, i.e., all edge-weights are set to 1 for using Wang’s correlation dimension method.
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Numerical result
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Numerical result
Linear fit
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10-4
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100

C
(r

)
(d)

Numerical result
Linear fit

Figure 6. The correlation dimension of 4 real-world weighted networks: (a) USAir; (b) Netscience;
(c) Cgscience; and (d) Coplant.

In collaboration networks, the edge-weights wij represent the strength of the collabo-
ration if any between scientists i and j is:

wij = ∑
k

δk
i δk

j

nk − 1
(7)

where nk is the number of co-authors of the paper k. δk
i = 1 if scientist i is the co-author of

the paper k. The closer the cooperation, the larger the edge-weight. Therefore, we use the
Equation (4) to obtain the shortest distance between nodes. The Netscience network has
1589 nodes and 2742 edges and Cgscience has 7343 nodes and 11,898 edges. Numerical
results and fitting lines are shown in Figure 6. The results show that the two cooperative
networks have fractal properties. Similarly, we found that the Coplant biological network
has fractal property. We compare the information dimension and the correlation dimension
of these weighted networks in Table 4. Numerical results show that the two dimensions
are significantly different. The reason is that the correlation dimension and the information
dimension characterize the fractal property of weighted networks from different perspec-
tives. These dimensions can more accurately characterize the fractal and self-similarity
properties of weighted complex networks from different perspectives.

Table 4. Correlation dimension (dc) and information dimension (dI) of real-world weighted networks.
The information dimension does not exist in biological network Coplant.

Name of Network Nodes Edges dc dI

USAir 332 2126 1.82 1.302
Netscience 1589 2742 2.288 0.634
Cgscience 7343 11898 2.908 2.419
Coplant 2210 12188 2.199 -
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6. Conclusions

In this paper, we extended the correlation dimension to weighted networks and
discussed the factors that affect the correlation dimension of Newman–Watts small-world
networks. First, we found that the increase in the correlation dimension was related to
the additional edge probability. In the NW small-world, the influence of the number of
neighboring nodes and network size can be quantitatively reflected by the correlation
dimension and the results which are different from the volume dimension. This shows
that the correlation dimension is a suitable indicator for quantitatively analyzing the small-
world effects of networks. We then extend the correlation dimension to the weighted
network and apply it to the analysis of two synthetic weighted fractal networks and four
real-world networks. The numerical results show that the proposed method can reveal
the self-similarity and fractal property of weighted networks. Meanwhile, the proposed
method can also be applied to the global efficiency evaluation of complex networks, node
influence identification and image processing.
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