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Abstract
High-throughput high-density genotyping arrays continue to be a fast, accurate, and 
cost-effective method for genotyping thousands of polymorphisms in high numbers 
of individuals. Here, we have developed a new high-density SNP genotyping array 
(103,270 SNPs) for honey bees, one of the most ecologically and economically impor-
tant pollinators worldwide. SNPs were detected by conducting whole-genome rese-
quencing of 61 honey bee drones (haploid males) from throughout Europe. Selection 
of SNPs for the chip was done in multiple steps using several criteria. The majority 
of SNPs were selected based on their location within known candidate regions or 
genes underlying a range of honey bee traits, including hygienic behavior against 
pathogens, foraging, and subspecies. Additionally, markers from a GWAS of hygienic 
behavior against the major honey bee parasite Varroa destructor were brought over. 
The chip also includes SNPs associated with each of three major breeding objec-
tives—honey yield, gentleness, and Varroa resistance. We validated the chip and 
make recommendations for its use by determining error rates in repeat genotypings, 
examining the genotyping performance of different tissues, and by testing how well 
different sample types represent the queen's genotype. The latter is a key test be-
cause it is highly beneficial to be able to determine the queen's genotype by nonlethal 
means. The array is now publicly available and we suggest it will be a useful tool in 
genomic selection and honey bee breeding, as well as for GWAS of different traits, 
and for population genomic, adaptation, and conservation questions.
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1  | INTRODUC TION

The European honey bee (Apis mellifera) is one of the most ecolog-
ically and economically important pollinators. It is the most fre-
quent floral visitor in natural habitats worldwide (Hung, Kingston, 
Albrecht, Holway, & Kohn, 2018), and it is a key contributor to 
pollination services in agriculture where there is an overall value 
of €153 billion globally (Gallai, Salles, Settele, & Vaissière,  2009). 
Additionally, honey bees have been managed for thousands of years 
as a source of honey and beeswax. Thus, it is not surprising that 
the genome of the honey bee was among the first to be sequenced 
(Weinstock et al., 2006), and that honey bees have been the focus 
of a diverse array of studies on ecology, the evolution of sociality, 
the genetic basis of behavior, and population genomics (e.g., Hung 
et al., 2018; Seeley, 1985; Shpigler et al., 2017; Smith, Toth, Suarez, 
& Robinson, 2008; Wallberg et al., 2014). Importantly, in recent de-
cades honey bee colony numbers have reportedly declined in some 
areas with the most likely explanation being a combination of stress-
ors, including synergistic interactions between parasites, pathogens, 
toxins including pesticides, and other stressors (Alburaki et al., 2015; 
Genersch et al., 2010; Goulson, Nicholls, Botías, & Rotheray, 2015; 
Sanchez-Bayo et  al.,  2016; Sánchez-Bayo & Wyckhuys,  2019). 
Despite the obvious importance of the ecosystem services they pro-
vide, broad focus in the scientific community, and economic value, 
one key genomic tool, a high-throughput, high-density genotyping 
array, is not yet available for screening genome-wide polymorphic 
variation in honey bees.

High-density single nucleotide polymorphism (SNP) ar-
rays, or “SNP chips” (Spencer, Su, Donnelly, & Marchini,  2009; 
Syvanen,  2001), are a fast, accurate, and efficient technique for 
genotyping thousands of polymorphisms in high numbers of in-
dividuals. SNP chips are one of the main technologies appropri-
ate for analytical techniques that require large sample sizes (Kim 
et  al.,  2018), such as genome-wide association studies (GWAS), 
quantitative trait locus (QTL) linkage mapping (Spötter, Gupta, 
Mayer, Reinsch, & Bienefeld, 2016; Visscher et al., 2017), molecular 
quantitative genetics including genomic selection in breeding pro-
grams (Gienapp et al., 2017; Jensen, Szulkin, & Slate, 2014), and stud-
ies utilizing relatedness/inbreeding coefficients (Powell, Visscher, & 
Goddard, 2010). The development of SNP chips has become routine 
in human genetics and in farmed animal and plant breeding, where 
genomic selection has revolutionized breeding. Traditionally, ani-
mal breeding, that is, selective breeding for economically important 
traits such as milk yield, was based on phenotypic records, where 
individual records and those of relatives were combined to estimate 
breeding values (Meuwissen, Hayes, & Goddard, 2016). Genotyping 
arrays can facilitate rapid and more accurate breeding value predic-
tions (or genomic breeding value estimations) (Gienapp et al., 2017; 
Meuwissen, Hayes, & Goddard,  2001; Meuwissen et  al.,  2016). 
Genomic selection was first applied, and is now widely used, in cat-
tle (Hayes, Bowman, Chamberlain, & Goddard,  2009). In Atlantic 
salmon, breeding programs using genomic selection have been sug-
gested to have the potential to increase selection accuracy, genetic 

gain, and reduce inbreeding (Houston et al., 2014). In plant breeding, 
the development of SNP genotyping arrays for germplasm charac-
terization is now common, with many crop plant species, including 
wheat, rice, maize, potato, rapeseed, apple, and tomato, having 
their own custom SNP genotyping arrays (Bayer et al., 2017; Bianco 
et al., 2016; Chen et al., 2014; Clarke et al., 2016; Ganal et al., 2011; 
Mason et  al.,  2017; Sim et  al.,  2012; Vos, Uitdewilligen, Voorrips, 
Visser, & van Eck, 2015; Winfield et al., 2016).

To date, SNP chips are less widely used in ecological and evolu-
tionary research and in wild populations, but are gaining impetus. 
For instance, a high-density chip (500,000 SNPs) was recently de-
veloped for performing genomic studies of great tit (Parus major) 
populations, and this chip has been used to study the genetic archi-
tecture of exploration behavior (Kim et al., 2018). Other examples 
using smaller chips (40–50K) in wild vertebrate populations include 
Soay sheep (Ovis aries) (Johnston et al., 2013), collared flycatchers 
(Ficedula albicollis) (Kawakami et  al.,  2014; Silva et  al.,  2017), and 
house sparrows (Passer domesticus) (Silva et al., 2017). A SNP chip 
has also been developed for the dengue and yellow fever mosquito, 
Aedes aegypti. This mosquito chip has applications in a range of re-
search questions, from studies of potential range shifts due to cli-
mate change, to characterizing the genetic underpinnings of disease 
transmission (Evans et al., 2015).

The development of a high-density SNP chip for honey bees 
provides a cost-effective, high-throughput option for screening 
thousands of SNPs, and is also a tool that can be applied to diverse 
research questions. More specific SNP assays have already been 
developed and applied in honey bees, including a 44K SNP assay 
focusing on the analysis of defense behavior against one of the most 
destructive honey bee parasites—the Varroa destructor mite which 
transmits several viral diseases (Spötter, Gupta, Nurnberg, Reinsch, 
& Bienefeld, 2012). SNP panels have also been developed to detect 
Africanized honey bees (Chapman et al., 2015, 2017). Further, a SNP 
panel was developed for molecular identification and the estima-
tion of introgression levels of the “C” honey bee lineage, with the 
threatened subspecies A. mellifera mellifera (Henriques et al., 2018). 
A high-density SNP chip can extend such studies by enabling the 
detection of polymorphisms related to defenses against other 
pathogens and diseases, and potentially also the estimation of ge-
netic differentiation of other honey bee subspecies and popula-
tions. Dense genome-wide SNP data can facilitate fast and accurate 
honey bee breeding programs, GWAS of diverse traits, population 
genomic, adaptation and conservation questions, and investigations 
of the genetic underpinnings of disease resistance and resistance to 
other stressors.

To this end, we developed a high-density Illumina Custom 
Infinium Genotyping chip for honey bees with probes for over 
100  000 SNPs based on the subspecies A.  mellifera carnica and 
A. mellifera mellifera. We combined the wealth of available genomic 
information and resources for the honey bee and several selection 
criteria to detect and select genome-wide SNPs applicable to a di-
versity of key traits in bee breeding, and in evolutionary and ecologi-
cal studies. Additionally, we test the genotyping success of different 



6248  |     JONES et al.

tissue types that can be used as alternatives to sacrificing the queen 
of a colony—a key development for honey bee breeding and genomic 
selection studies.

2  | MATERIAL S AND METHODS

2.1 | Samples and DNA sequencing

To identify SNPs to include on the chip whole-genome resequenc-
ing was performed on 61 unrelated honey bee drones. Samples 
were sourced from breeders of the international A. mellifera carnica 
breeding program (37 samples from Germany and Austria), the in-
ternational A. mellifera mellifera breeding program (12 samples from 
Switzerland, Austria and Norway), and the protected A. mellifera car-
nica conservation region Slovenia (12 samples) (Table S1). Thus, 49 of 
the drones were from the subspecies A. mellifera carnica, and 12 from 
the subspecies A. mellifera mellifera. The subspecies of a sample bee 
was guaranteed by quality control of the breeding and conservation 
programs, and additionally confirmed with the use of morphomet-
ric traits known to distinguish the two subspecies (Ruttner,  1988; 
Tiesler, Bienefeld, & Büchler,  2016). DNA was extracted from the 
flight muscles of each individual drone using the NucleoSpin® 8 
Food (Macherey-Nagel) (Eurofins Ebersberg). Genomic libraries 
were prepared at Eurofins Ebersberg, using the NEBNext Ultra DNA 
Library Prep Kit E7370 (New England Biolabs). Pools of three indi-
vidually barcoded samples were sequenced on an Illumina HiSeq 

2500 platform at Eurofins. Sequencing was paired-end, 2 × 100 bp, 
using HiSeq Flow Cell v3 and TruSeq SBS Kit v3. Details of the cover-
age for each drone sample are presented in Table S1.

2.2 | SNP detection

A total of 6,231,233,743 honey bee sequence reads (average 
of 102,151,372.8 reads per sample, SD  =  26 875 640.2) were 
mapped to the reference genome Amel_4.5 (INSDC assembly 
GCA_000002195.1). We identified and marked PCR duplicates 
using Picard Tools MarkDuplicates (version 1.108, http://picard.
sourc​eforge.net). Only reads with a minimum alignment quality of 
1 (Phred quality score) were used for variant detection, meaning 
all reads with ambiguous alignments were excluded. Variants were 
called using VarScan (version 2.3, (Koboldt et  al.,  2012)). VarScan 
was used to process the mapping output one base at a time and com-
pute the number of bases supporting each observed allele (minimum 
read depth 5). Only bases meeting the minimum base quality of 15 
(Phred quality score) were considered. Using VarScan each observed 
allele was examined and tested for support by at least two reads, and 
a minimum allele frequency threshold of 1%.

Primary filters were also applied to all detected SNPs prior to the 
SNP selection steps. Specifically, a filter was applied to remove any 
SNPs with unknown bases within a flanking area of 50 bp on either 
side of the SNP, and any loci with possible indels or multi-allelic SNPs 
were removed.

F I G U R E  1   Summary of SNP selection 
workflow steps for development of the 
HDHB SNP chip. SNP numbers for each 
criterium are provided in Table 1

Detected SNPs 

Existing honey 
bee genes, QTLs 
and SNPs

Subspecies 
specific

Breeding 
objectives

Promoter region

SNPs with even 
distribution

Distance filters

Haplotype cluster  
            filter 

SNPs with convert 
design probability  
score >0.72

Coding Region

Start 
Codon

Promoter

Stop 
Codon

SNP selection criteria
Number 
of SNPs

Existing literature 53,789

Varroa-resistant behavior, including overlap other categories 1,477

Subspecies specific, including overlap existing literature 12,964

Breeding objectives: honey yield, gentleness, Varroa resistance 14,304

Promoter region 2,035

Haplotype cluster 46

Within genes, and with moderate–high predicted effects 5,400

Others 13,255

TA B L E  1   Number of SNPs by SNP 
selection criteria

http://picard.sourceforge.net
http://picard.sourceforge.net
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2.3 | SNP selection

During SNP detection, many more SNPs were identified than 
could be included on the chip. Therefore, to prioritize which SNPs 
to use on the chip, selection was done in multiple steps using sev-
eral criteria (see also a summary of the SNP selection pipeline in 
Figure 1):

2.3.1 | Known honey bee genes, QTLs, and SNPs

A list of candidate genomic regions including genes, QTLs, and SNPs 
that may be involved in general honey bee biology, and/or could po-
tentially explain variation in a range of honey bee traits, was com-
piled, and the location of the detected SNPs within these regions 
(specifically within the candidate genes) was determined using a 
custom Python script. The list of candidate regions was compiled 
through searching the existing literature, using keyword searches of 
genes in the NCBI database, selecting genes in signaling, and im-
mune pathways (including Notch, JAK-STAT and Toll), and including 
all putative genes reported in the Beebase project (Elsik et al., 2014). 
Included in candidate SNPs brought over from existing literature 
were a large number of SNPs previously identified as being associ-
ated with the detection and uncapping of Varroa-parasitized brood 
in a GWAS (Spötter et al., 2016). This GWAS study utilized a 44K 
SNP chip designed for the analysis of hygienic behavior of individual 
worker bees against V. destructor (Spötter et al., 2012). Here, we in-
cluded 498 SNPs found to be significantly associated with hygienic 
behavior (Spötter et  al.,  2016; A. Spötter, P. Gupta, M. Mayer, N. 
Reinsch, & K. Bienefeld, unpublished data).

To further prioritize the above SNPs for use on the chip, we im-
plemented genomic region (coding) and distance criteria (see below) 
where SNPs within coding regions and with greater estimated 
regulatory effects were selected at higher density. Different dis-
tance criteria (in addition to genomic region criteria) were tested, 
and distance criteria predicted to enable a final SNP chip density 
of ~100,000 SNPs were implemented. The predicted effects of 
all SNPs were determined using SnpEff (version 4.3) (Cingolani 
et al., 2012). A customized Python script was used to select SNPs 
with an even distribution throughout the genome. Additionally, the 
distribution of genes selected from the literature also influenced 
the distribution of SNPs throughout the genome. The minimum dis-
tance allowed between SNPs within coding regions was 300 bp; the 
distance between SNPs located outside of coding regions but esti-
mated to have a high to moderate effect was 1,000 bp, and a low 
effect was 5,000 bp; the distance between SNPs located within the 
putative genes reported in Beebase was 3,000 bp. Additionally, the 
minimum distance allowed between SNPs located within promoter 
regions was 500 bp. Promoter regions were identified by character-
istic sequence pattern matching near coding regions. The sequence 
patterns used were TATA box and BRE combinations 25–35 bp up-
stream of the coding area, and the promoter region was then defined 
upstream of these markers. Specifically, when both these patterns 

were matched, the promoter region was defined as being within 
200bp upstream of the beginning of the TATA box.

2.3.2 | Subspecies and breeding objectives

All detected SNPs associated with subspecies or specific breeding 
objectives were also selected at higher density. Subspecies asso-
ciation (carnica/mellifera) was estimated for all detected SNPs. For 
each SNP and each pair of bases, a significant association with sub-
species was estimated using a t test. The distance allowed between 
SNPs associated with subspecies was 500 bp.

The association between all detected SNPs and three breeding 
objectives ([a] honey yield, [b] gentleness, and [c] Varroa resistance) 
was also estimated. This was achieved using 37 of the drones that 
were from known breeding queens of the A. mellifera carnica breed-
ing program and were therefore associated with the breeding val-
ues of the 2015' breeding value estimation in www.beebr​eed.eu. A 
t test was performed to determine whether the average breeding 
values differed significantly between bases (p-value < .01). No cor-
rection for false positives was applied in this test because as this 
was a filtering step, emphasis was on sensitivity not specificity. The 
distance allowed between SNPs associated with breeding objectives 
was 100 bp.

2.3.3 | Haplotype filter

To further reduce the number of detected SNPs for use on the chip, 
all SNPs selected under the above criteria were additionally sub-
jected to a haplotype filter (cluster filter). That is, out of any linked 
SNPs, only one SNP was selected. Loci (SNPs) were designated as 
belonging to the same cluster if their vectors of bases (i.e., all bases) 
for all 61 sequenced drones were identical. It was assumed that the 
drones were representative of the population, and that different loci 
in one cluster are redundant (as markers), and therefore the SNPs, 
except one within a cluster, are obsolete (i.e., where including more 
SNPs would not add any further marker information). Single SNPs 
from each cluster were chosen by selecting the first SNP in the clus-
ter that had a distance of >300 bp to already selected neighboring 
SNPs. As above, the 300 bp distance was chosen under the objective 
of developing a final SNP chip with approximately 100,000 SNPs.

2.3.4 | Illumina SNP marker score cutoff

All SNPs remaining after implementing the above selection crite-
ria were subject to the further criterion of how likely it was that 
they could be converted to a working scorable assay on the chip. 
The list of SNPs and their flanking sequences were uploaded to the 
MyIllumina online portal (https://dashb​oard.my.illum​ina.com) and 
design scores were calculated. Design scores represent the prob-
ability that the probe will be successful in a genotyping assay. Lower 

http://www.beebreed.eu
https://dashboard.my.illumina.com
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probability scores can be caused by the possibility of secondary 
structures forming, or if a marker is in a duplicated or repetitive re-
gion. SNPs with a convert design score >0.72 were retained for in-
clusion on the chip. This threshold is even more stringent than those 
used in the design of HD Axiom chips for chicken, catfish, water buf-
falo, and great tits where thresholds of 0.20, 0.50, 0.60, and 0.69 
were used, respectively (Iamartino et  al.,  2017; Kim et  al.,  2018; 
Kranis et al., 2013; Liu et al., 2014). In total, 103,270 SNPs were in-
cluded on the chip.

2.4 | SNP validation and tests of tissue performance

To date, genotyping honey bee queens usually involves sacrificing 
the queen. However, honey bee biology research, especially in bee 
breeding, benefits from determining the queen's genotype by nonle-
thal means. Therefore, here we tested the DNA genotyping call rate 
success of different tissue types that could be used in place of the 
queen (queen cells where the queen develops, drone eggs, drone 
larvae and drone pupae). Additionally, we tested how well different 
sample types from a colony (queen cells and different numbers of 
drone eggs) represent the queen's genotype using empirical data, 
that is, where the queen's genotype is inferred from her haploid 
drone offspring (eggs). Discrepancies in genotype representation of 
the queen can arise due to queen cells potentially being contami-
nated by worker DNA, as for instance, workers enter the cells to 
feed the developing queens, and because drones are haploid suc-
cessfully determining the queen's genotype using drone samples 
relies on using a sufficient sample size of drones.

2.4.1 | Sample collection

Apis mellifera carnica queens, queen cells, drone pupae, larvae or 
eggs were collected by selected honey bee breeders in Germany, 
Austria, the Netherlands, and Switzerland (beebr​eed.eu) and sent to 
the authors at the Institute for Bee Research, Hohen Neuendorf. A 
large resource of samples was collected in this way, and their DNA 
was extracted and genotyped (as per the methods described below). 
In addition to forming the basis for setting the call rate thresholds 
(see below), these data will be utilized in future analyses. For all other 
analyses conducted here, subsets of the genotyping data were used.

2.4.2 | DNA extraction

Honey bee samples were sent to Eurofins Ebersberg, for DNA ex-
traction. DNA was extracted from 3,272 samples, including individ-
ual and colony replicates. Samples included replicates of the same 
individual where different tissues were used for DNA extraction that 
is, queen and queen cell (see below); and pairs of individuals from the 
same colony with known relationships, for example, queen–daugh-
ter. A summary of the individual unique colonies from which samples 

were taken is available on Dryad (Table S2, https://doi.org/10.5061/
dryad.gxd25​47gp).

DNA was extracted from queen cells of recently emerged 
queens using a modified version of the DNeasy Blood and Tissue Kit 
(Qiagen), for nails, hair or feathers). Frozen queen cells were incu-
bated for 15 min in xylene, washed in ethanol (99%), dried at 37°C, 
cut into small pieces, and then the manufacturer instructions were 
followed (for further details see Figure S1). DNA was extracted from 
queen flight muscles and 30–120 drone eggs using the KingFisher 
automated extraction method (Thermofisher) and MagSi-DNA all-
round Kit (Magtivio). DNA of pools of 30–60 adult drones and pools 
of ca. 60 larvae or pupae was extracted in two subsamples (1 g of 
homogenized tissue per sample) using the Maxwell automated ex-
traction system (Promega) and the Maxwell-Kit (16 FFS Nucleic Acid 
Extraction System, Custom (REF.: X9431, Promega)). DNA subsam-
ples were pooled after extraction.

2.4.3 | Genotyping and call rate thresholds

Genomic DNA was sent to Eurofins Genomics in Aarhus, Denmark 
and genotyped in batches of 96. As a first step, 400 samples, in-
cluding all of the different tissue types, were selected for cluster 
file generation. The raw data were analyzed using the Illumina 
GenomeStudio software v 2.0 with standard settings and custom 
cluster generation. The 200 best performing samples were se-
lected (based on a call rate >98%) to optimize the custom cluster 
file. The cluster positions were then manually checked using the 
GenomeStudio software, and 3,637 markers were removed due to 
bad performance based on manual inspection of the clusters. The 
5,000 lowest scoring (GenTrain score) markers were manually ad-
justed. Cluster positions were then exported, and these positions 
were used in all subsequent genotyping analyses.

Genotyping quality thresholds were set by examining markers 
(SNP) and samples carried forward under different SNP call rate 
thresholds (80%, 90%, 95% and 97% thresholds). A balance was 
found between retaining the highest number of SNP markers, while 
also retaining a high number of successfully genotyped samples. To 
set the quality control thresholds, all genotyped samples were in-
cluded in the data examination (including different individuals from 
the same colonies and repeat genotypings of the same samples). 
First, we set a marker quality threshold of call rate >90%, mean-
ing all markers that were called in <90% of samples were removed. 
Second, we set a sample quality threshold of call rate >90%, meaning 
all samples where <90% of all remaining markers were called were 
removed.

2.4.4 | SNP statistics for a sample population

For each SNP that passed the marker quality threshold, the minor 
allele frequency (MAF), Hardy–Weinberg equilibrium (HWE) (p-val-
ues of chi-square tests), and call rates were calculated using a set of 

http://beebreed.eu
https://doi.org/10.5061/dryad.gxd2547gp
https://doi.org/10.5061/dryad.gxd2547gp
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quality-controlled samples (n  =  2,734). All 103,270 SNPs selected 
for the chip were considered for these analyses, and included 6,386 
SNPs of unplaced contig origin, as well as 580 unmapped SNPs. MAF 
and HWE for each locus were calculated using the GenomeStudio 
2.0 software according to the GenomeStudio Framework User 
Guide (Illumina) with default parameters.

2.4.5 | Quantifying genotyping error rate

A total of 61 replicated samples (i.e., where the same DNA had been 
genotyped twice) (marker quality >90% call rate; sample quality 
>90% call rate) enabled an estimation of the number of inconsistent 
genotype calls between different genotyping attempts of the same 
bee. This was achieved by calculating the average of different calls 
between replicates over all SNPs (i.e., where both samples had geno-
type calls at that locus, but the calls were different).

2.4.6 | Tissue performance tests

To determine the SNP chip genotyping success rate of different tis-
sue types, we measured the average genotyping call rate (i.e., success 
of being called at all) of all genotyped samples (see sample numbers 
in Table 2) and compared them using an ANOVA, with tissue type as 

a factor and call rate as the response variable, and Tukey post hoc 
tests in R.

2.4.7 | Representation of the queen's genotype

To determine how well queen cells and pools of drone eggs repre-
sent the queen's genotype, we compared the percentage of differ-
ent calls with the queen (where DNA had been extracted from the 
queen's flight muscle) and these samples (i.e., queen cells, pools of 
30 drone eggs and pools of 120 drone eggs [minimum number of 
30 drone eggs determined using mathematical modeling {Bernstein 
et al., in prep.}]). For this comparison, we used samples that enabled 
the highest possible call rates for both groups (97%). Results were 
compared using an ANOVA in R, with tissue type as a factor and 
percentage of different calls as the response variable.

3  | RESULTS

3.1 | SNP detection and selection

To detect candidate SNPs for inclusion on an Illumina Infinium 
high-density SNP chip for honey bees (A.  mellifera) (High-density 
honey bee SNP chip: HDHB-chip), whole-genome resequencing 

F I G U R E  2   Genomic distribution of 
SNPs included on the HDHB SNP chip

0 5 10 15 20 25 30

LG16
LG15
LG14
LG13
LG12
LG11
LG10
LG9
LG8
LG7
LG6
LG5
LG4
LG3
LG2
LG1

Length (Mb)

48

500

1,000

1,556
Number of SNPs

Tissue type
Average call rate 
(%) ± SE (same scale)

Number of samples with 
call rate > 90%

Total number 
of samples

Queen flight 
muscles

98 ± 6 840 907

Queens cells 83 ± 17 84 175

Drone pupae 94 ± 6 45 62

Drone larvae 95 ± 6 59 75

Drone eggs 96 ± 7 1,666 1,860

TA B L E  2   Average call rates achieved 
using different tissue types
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of 61 unrelated honey bee drones from throughout Europe was 
completed. SNP selection was subsequently carried out in multiple 
steps using several criteria (see methods and Figure 1). Alignment 
of the genome sequence data to the honey bee reference genome 
(Amel_4.5) enabled the identification of 4,970,950 putative variable 
SNP positions (total SNPs before filtering and selection). After qual-
ity filtering and the implementation of the SNP selection criteria, a 
total of 103,270 SNPs were included on the final chip.

SNPs were selected by searching the existing literature, conduct-
ing keyword searches of the NCBI database, and selecting genes in key 
signaling and immune pathways. Genomic region and distance criteria 
were also implemented and SNPs associated with A. mellifera carnica 
and A. mellifera mellifera subspecies and breeding objectives were se-
lected. Finally, an Illumina marker score cutoff (convert design score 
>0.72) was implemented. A summary of the SNPs selected under the 
different selection criteria is provided in Table 1. A detailed overview 
of the candidate genomic regions selected from the literature, keyword 
searches of genes in the NCBI database, and genes in key signaling and 
immune pathways is provided in Tables S3–S5. The genomic distribu-
tion of SNPs included on the chip can be visualized in Figure 2. The 
SNP chip is available from Eurofins Genomics (https://www.eurof​insge​
nomics.eu/en/eurof​ins-genom​ics/servi​ce-corne​r/).

3.2 | SNP validation and tests of tissue performance

3.2.1 | Genotyping error rate and tissue 
performance tests

The average percentage of different calls between replicate geno-
typings of the same bees (61) over all SNPs was 0.23%. Additionally, 
we find that as expected, DNA extracted from queen flight muscle 
tissue enables the highest average call rate (98%) of all tissue types 
tested, and is significantly higher than the average call rate obtained 
from queen cell (83%), pupae (94%), larvae (95%), and egg tissues 
(96%) (Tukey post hoc tests, p  <  .05). All tissues provide average 
genotyping call rates above 90%, apart from queen cells where the 
average call rate (83%) is below 90% (Table 2).

3.2.2 | SNP statistics for a sample population

The newly constructed SNP chip was used to evaluate call rate, 
MAF and HWE, in 2,734 samples from unique colonies (Table S6). 

An average MAF of 17.6% was found across the 2,734 samples 
after excluding SNPs meeting one of the following criteria: (a) call 
rate < 90%; (b) significant deviation from HWE after Bonferroni cor-
rection (chi-square p-value <  .05 × 105); c) and MAF < 5%. A large 
proportion of SNPs (41%) were found to have a MAF < 5%. Under 
a milder threshold of a MAF 1%, and when call rate and HWE esti-
mates are controlled for as above, we find that 27% of SNPs would 
need to be removed from analyses, and that the resulting average 
MAF is 14.8%.

3.2.3 | Queen representation

We find no significant difference in how well the queen's genotype 
is represented between the alternative tissue types (F(2,30) = 6.11, 
p = .55). The queen cells and all drone egg pools tested (30 eggs, and 
120 eggs) represent the queen's genotype well overall (percent dif-
ferent calls between the queen's genotype and pools of drone eggs 
of the same colony are shown in Table 3). Tissue from queen cells 
where queens had recently emerged from had the lowest percent-
age of different calls compared with the queen's genotype (from 
flight muscle tissue) (Table  3). Additionally, the queen's genotype 
was slightly more accurately represented when a higher number of 
drones from the colony were pooled and genotyped.

4  | DISCUSSION

In this study, we describe the development of a high-density SNP 
chip for the honey bee A. mellifera (HDHB-chip) and test error rates 
of the chip, the performance of different tissues in genotyping, and 
how well alternative samples represent the queen's genotype. We 
show that most SNPs on the chip could be genotyped accurately in 
repeat genotypings, with an average error rate of <1%. Similar and 
higher density chips are commonly used in agriculturally important 
species (Rincon, Weber, Eenennaam, Golden, & Medrano,  2011; 
Winfield et  al.,  2016), in human studies (International HapMap 
Consortium et  al.,  2007; Simonson et  al.,  2010), model organisms 
(Yang et al., 2011), and companion animals (Hayward et al., 2016). 
Such tools in wild populations are less common but are increasingly 
being developed (Evans et al., 2015; Johnston et al., 2013; Kawakami 
et al., 2014; Kim et al., 2018; Silva et al., 2017). This is the first time 
that a robust high-density SNP chip has been made available for the 
honey bee. We suggest that this chip will be a useful tool in studies 

TA B L E  3   Representation of the queen by queen cell and drone egg tissues

Tissue comparison Pairs of samples
Different calls (% of all 
loci) ± SE

Queen flight muscle call 
rate ± SE

Call rate of the 
alternative tissue ± SE

Queen versus queen cell 19 0.09 ± 0.20 99.42 ± 0.60 99.31 ± 0.61

Queen versus 120 eggs 7 0.14 ± 0.12 98.72 ± 1.07 98.71 ± 0.67

Queen versus 30 eggs 7 0.17 ± 0.14 98.52 ± 1.02 98.06 ± 0.52

Note: All queen genotypes were generated using DNA from flight muscle tissue in these comparisons.

https://www.eurofinsgenomics.eu/en/eurofins-genomics/service-corner/
https://www.eurofinsgenomics.eu/en/eurofins-genomics/service-corner/
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spanning a variety of research areas, from applications in agriculture 
and breeding programs, to population genetics and adaptive evolu-
tion questions.

For analyses requiring large sample sizes, the main alterna-
tive technologies to whole-genome sequencing are SNP chips, 
(Spencer et al., 2009; Syvanen, 2001) and genotyping-by-sequenc-
ing (GBS) methods (Davey et  al.,  2011; Elshire et  al.,  2011) such 
as restriction-site associated DNA sequencing (RAD-seq) (e.g., 
Franchini, Monné Parera, Kautt, & Meyer, 2017; Heliconius Genome 
Consortium,  2012; Hohenlohe et  al.,  2010; Jones, Fan, Franchini, 
Schartl, & Meyer, 2013). Whole-genome sequencing approaches can 
still be prohibitively expensive for many research groups and appli-
cations (Kim et al., 2018), including for organisms with small genomes 
such as the honey bee. Further, whole-genome sequencing requires 
a greater amount and higher quality of DNA than other approaches, 
which can be limited when working with some organisms such as 
insects, and can translate into analyses of large samples sizes being 
more labor intensive. Although SNP chips tend to be more expen-
sive than GBS approaches, specific target SNPs of interest can be in-
cluded on a chip whereas marker sites are usually not known before 
genotyping is conducted under GBS approaches. Additionally, SNP 
chips tend to have higher call rates per SNP than in GBS approaches, 
and when using SNP chips, the same SNPs are genotyped in every 
individual which is not possible with GBS methods (Bajgain, Rouse, & 
Anderson, 2016). Ascertainment bias is a disadvantage of SNP chip 
data and can be introduced when SNPs are selected from a small 
panel of individuals (Albrechtsen, Nielsen, & Nielsen, 2010). Using 
small panels means there is a higher chance of finding a common SNP 
with a higher minor allele frequency (MAF) than finding a SNP of low 
MAF (Albrechtsen et al., 2010). Similarly, there is often a bias toward 
including SNPs with a higher MAF due to the fact that SNPs have 
to be discovered before being included on a chip (Kim et al., 2018). 
However, this is not necessarily a disadvantage for some types of 
analyses such as GWAS (Kim et al., 2018). Here, the average MAF 
estimated from 2,734 bees collected by honey bee breeders across 
Germany, Austria, the Netherlands, and Switzerland (beebr​eed.eu) 
(17.6%) is low compared with estimates in other studies utilizing SNP 
chips to study agriculturally important species such as goats (MAF 
25%) (Lashmar, Visser, & Van Marle-Köster,  2015), horses (MAF 
range 18%–23%) (McCue & Michelson, 2013), and different cattle 
breeds (MAF range 17%–22%) (Qwabe, vanMarle-Koster, Maiwashe, 
& Muchadeyi,  2013). Although the MAF is relatively low, 73% of 
SNPs can still be retained under the commonly used MAF threshold 
of 1%. Ultimately, the best method for genotyping large numbers of 
individuals depends on the research question, the laboratory, and 
bioinformatics experience of the user and the funding available (see 
also Kim et al., 2018).

The majority of SNPs selected for the honey bee chip fall within 
an extensive list of candidate genomic regions from previous re-
search, including genes suggested to be important in general honey 
bee biology and/or associated with a range of honey bee traits, and 
genes in key signaling and immune pathways. The chip includes 498 
SNPs found to be significantly associated with the trait of hygienic 

behavior against the major honey bee parasite, Varroa (detecting 
and uncapping of Varroa-parasitized brood) in a GWAS (Spötter 
et  al.,  2016; Spötter et  al.,  2012, Spötter et al. unpublished data). 
Further, a large number of SNPs found to be associated with two 
of the honey bee subspecies (A.  mellifera carnica and A.  mellifera 
mellifera) (7,680) are also included on the chip, and genomic regions 
related to subspecies were also mined from the literature and SNPs 
within these regions were included on the chip. We focused on dif-
ferentiating these two particular subspecies because A.  mellifera 
carnica is the most widely employed subspecies in Eastern Central 
Europe, and A.  mellifera mellifera is native to this region and still 
present (De la Rúa, Jaffé, Dall'Olio, Muñoz, & Serrano, 2009). We 
suggest that this chip will be a useful tool in studies that require the 
delineation of these two honey bee subspecies, and potentially ad-
ditionally for distinguishing the other honey bee subspecies, and in 
determining the molecular underpinnings of key subspecies traits. 
Further, a large number of SNPs found to be associated with each 
of three major breeding objectives (honey yield, 4,791; gentleness, 
1,035; and Varroa resistance 8,478) used in the beebreed database 
by breeders across Europe, were also included on the chip. The lat-
ter results should be taken as preliminary as the sample size for the 
analysis for selecting these SNPs was necessarily limited to 37 of the 
whole-genome resequenced drones. However, the chip will likely 
also be particularly useful in bee breeding programs and genomic 
selection for traits of interest in honey bee breeding in future. We 
note that because we selected specific SNPs for the chip, the SNPs 
are not evenly distributed across chromosomes. However, biases in 
the genomic distribution of SNPs associated with different traits will 
be interesting to investigate in future studies.

4.1 | Tests of tissue performance and queen 
representation

As expected, queen flight muscle enabled the highest average 
call rate, dependent on higher quality, and quantity of DNA yield 
(DNA was measured using gel electrophoresis before genotyping). 
Therefore, the best results will be achieved for population genom-
ics and ecology research questions utilizing flight muscle tissue of 
honey bee samples. However, important for honey bee breeding 
and genomic selection questions, we find that although drone eggs, 
pupae, and larvae enable significantly lower average call rates, they 
are useful alternative tissue types for DNA extraction and genotyp-
ing as they avoid sacrificing the queen and the average call rates for 
these tissues are above the 90% threshold determined.

Drone eggs (when pools of 30 eggs and higher are used) are also 
found to be a good alternative to sacrificing the queen while still 
accurately representing the queen's genotype. Our comparison of 
the percentage of different genotype calls shows pools of 30 or 120 
drone eggs represent the queen's genotype accurately. Thus, overall, 
we find that using a minimum pool of 30 drone eggs is a reasonable 
alternative to sacrificing the queen, while still accurately represent-
ing the queen's genotype. Further, using 30 drone eggs as opposed 

http://beebreed.eu
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to 120 facilitates simpler and more efficient methods because sam-
pling and extracting DNA from a lower number of drone eggs is eas-
ier and less time-consuming. Of note is that when a call rate above 
90% is achieved for genotyping queen cell DNA, this tissue provides 
the most accurate representation of the queen's genotype (a call rate 
above 90% was achieved in 79% of queen cell samples). Using DNA 
from queen cells of newly emerged queens is the most accurate 
possible alternative to sacrificing the queen, and allows immediate 
breeding value estimation for selection of queens in breeding stud-
ies and programs. We suggest that the continued rapid optimization 
of extracting good-quality DNA from small amounts of tissue means 
queen cells are also a good alternative to sacrificing the queen.

High-density SNP chips continue to offer a robust and rela-
tively straightforward means of investigating different research 
questions, from genomic selection and breeding topics, to a range 
of evolutionary genomics and adaptation questions. Eventually 
whole-genome sequencing will be used in place of SNP chips, but 
SNP chips are likely to be used for several more years due to the rel-
atively simple laboratory and bioinformatics protocols and pipelines 
required, the more affordable costs for investigating population 
level numbers of individuals, and population genetic questions. We 
suggest that the methods of development and validation presented 
here for the honey bee SNP chip will be useful to other researchers 
developing chips for their study organisms, and that the chip will 
be a useful tool in a diversity of bee research studies and applica-
tions. The honey bee chip we describe is available to other users at 
Eurofins Genomics.
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