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OBJECTIVES: Molecular prognostic biomarkers for gastric cancer (GC) are still limited. We aimed to identify potential

messenger RNAs (mRNAs) associated with GC prognosis and further establish an mRNA signature to

predict the survival of GC based on the publicly accessible databases.

METHODS: Discovery of potential mRNAs associated with GC survival was undertaken for 441 patients with GC

based on the Cancer Genome Atlas (TCGA), with information on clinical characteristics and vital status.

Gene ontology functional enrichment analysis and pathway enrichment analysis were conducted to

interrogate the possible biological functions. We narrowed down the list of mRNAs for validation study

based on a significance level of 1.00 3 1024, also integrating the information from the methylation

analysis and constructing the protein–protein interaction network for elucidating biological processes.

A total of 54 mRNAs were further studied in the validation stage, using the Gene Expression Omnibus

(GEO) database (GSE84437, n5433). The validatedmRNAswere used to construct a risk scoremodel

predicting the prognosis of GC.

RESULTS: A total of 13 mRNAs were significantly associated with survival of GC, after the validation stage,

including DCLK1, FLRT2, MCC, PRICKLE1, RIMS1, SLC25A15, SLCO2A1, CDO1, GHR, CD109,
SELP,UPK1B, andCD36. ExceptCD36,DCLK1, andSLCO2A1, othermRNAs are newly reported to be

associated with GC survival. The 13 mRNA-based risk score had good performance on distinguishing

GC prognosis, with a higher score indicating worse survival in both TCGA and GEO datasets.

CONCLUSIONS: We established a 13-mRNA signature to potentially predict the prognosis of patients with GC, which

might be useful in clinical practice for informing patient stratification.

SUPPLEMENTARY MATERIAL accompanies this paper at http://links.lww.com/CTG/A1
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INTRODUCTION
Gastric cancer (GC) is the fifth most common cancer and the
third leading cause of cancer death worldwide (1). It is imperative
to identify patients with GC at a high risk for poor prognosis, so
that timely and appropriate treatment strategy can be applied.
Although a considerable proportion of patients are diagnosed at
an advanced stage, patient outcomes can vary significantly even
for patients with similar clinical features. The host heterogeneity
in somatic or germline changes may have led to different
prognosis.

Several studies have examined both genetic and epigenetic
alterations as potential prognostic factors for GC. Alternative
patterns ofmessenger RNA (mRNA) expression involved in cycle
regulation (2), cell adhesion (3), angiogenesis (4), and tumor
carcinogenesis (5) have been reported to play an important role

in forecasting survival outcome of GC. One study examined the
gene expression profile of 65 patients with GC based on DNA
microarray data and reported 6 mRNAs associated with GC
prognosis (6). Another study reported 3 mRNAs associated
with GC survival based on DNAmicroarray data of 21 patients
with GC (7). A recent study reported 25 mRNAs associated
with GC prognosis using DNA microarray data of 78 patients
with GC (8). These studies were limited by either small sample
size or lacking suitable validation datasets, restricting the
possible application of the reportedmRNAs associatedwithGC
prognosis in clinical practices. Therefore, it is imperative to
identify novel mRNA signatures robustly associated with GC
survival.

The booming development in high-throughput transcriptome
sequencing and microarray technologies have provided
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opportunities to establish mRNA signatures associated with GC
survival. In the present study, we took advantage of the publicly
available databases to establish novel mRNA signatures, which
may predict GC prognosis. Discovery of potential mRNAs was
conducted among 441 patients with GC based on the Cancer Ge-
nome Atlas (TCGA), with information on clinical characteristics
and vital status. Gene ontology functional enrichment analysis and
pathway enrichment analysis were conducted to interrogate the
possible biological functions. The independent external microarray
data from the Gene Expression Omnibus (GEO) was used to vali-
date these candidate mRNAs. A risk score model was then con-
structed using the validated mRNAs to testify the potential
predictive value of integrated mRNA signature for GC prognosis.

METHODS

Screening mRNAs associated with GC survival in the

discovery stage

All data in the TCGA-STAD (stomach adenocarcinoma) training
set, including clinical information, mRNA expression data, and
DNAmethylationprofile, were downloaded fromTCGAdata portal
(9). We filtered the patients with missing survival information and
obtained the data for 441 patients withGCwho had intact follow-up
clinical information. Other clinical factors, including age, gender,
race, TNM (tumor, lymph nodes and metastasis) stage, family
history of GC, Helicobacter pylori infection, targeted molec-
ular therapy, and radiation therapy, were also obtained. Clinical
stage involved in our study was determined according to the newly
released 8th AJCC staging system (10). mRNA expression data
(RNA-Seq)was extracted from IlluminaRNA-SeqHiSeqplatform.
Weperformedquality control by removingmRNAs that havemore
than half of values as zero. As many as 19,754 mRNAs remained
with quantile normalization in the R package DESeq (11).

Cox regression models were used to calculate the hazard ratios
and 95% confidence intervals for the associations between each
examinedmRNAandGCdeath. Proportional assumptions forCox
proportional hazard model were tested and no violations of the
assumptions were found. The primary analyses were conducted
adjusting for age and gender. In a secondarymodel, we additionally
adjusted for race, family history of GC,H. pylori infection, targeted
molecular therapy, radiation therapy, and clinical stage in the Cox
regression model, in addition to age and gender.

Gene ontology functional enrichment analysis

Gene ontology functional enrichment analysis based on co-
occurrences with sets of genes associated with GC deaths could
rapidly unravel potential cellular component, biological process,
and molecular functions. To explore the encoding gene ontology
for the mRNAs identified with association P values,53 1023 in
the discovery stage (see Table S1, Supplemental Digital Content 1,
http://links.lww.com/CTG/A1), we described gene function, and
relationship between these concepts based on an online website
DAVID 6.8 (Database for Annotation, Visualization and In-
tegrated Discovery, https://david.ncifcrf.gov/) (12).

Pathway enrichment analysis

Pathway enrichment analysis can help gain mechanistic insights
into gene lists by identifying biological pathways that are enriched
in gene lists more than simply expected by chance. To explore
distinct pathways that might influence GC survival outcome, an
online website KOBAS (http://kobas.cbi.pku.edu.cn/) was

utilized to perform pathway enrichment analysis (13). P , 0.05
was set as the cut-off value.

Integrating prognostic mRNAs with methylation profiles

For the mRNAs significantly associated with GC survival at
P, 53 1023 in the discovery stage (see Table S1, Supplemental
Digital Content 1, http://links.lww.com/CTG/A1), we tested
whether the CpG (59-C-phosphate-G-39) loci located in the
encoding genes were associated with GC survival and also the as-
sociation between methylation and mRNA expression. In the
TCGA-STAD database, DNA methylation profiles were detected
using the Illumina HumanMethylation450 BeadChip, which
covers 96% of CpG sites defined by the University of California,
Santa Cruz. Prior probe selection was performed by removing
those containing missing values, those targeting the sex chro-
mosomes, those containing single-nucleotide polymorphism
(SNP), and those not annotated with any protein-coding or
non–protein-coding genes. Finally, 230,495 CpG loci were
retained from the original 485,577 sites. Cox regression models
were used to identify CpG loci associated with GC survival at P,
0.05, adjusting for age and gender. Spearman correlation analysis
was utilized to test the associations between CpG loci and the
corresponding genes mRNA expression. Correlation P , 0.05
and the absolute value of correlation coefficient.0.4 were set as
the cut-off criteria defining meaningful methylation-expression
associations (see Table S2, Supplemental Digital Content 1,
http://links.lww.com/CTG/A1).

Construction of protein–protein interaction network and

subnetwork analysis

We explored the potential protein–protein interaction (PPI) for
the encoding genes of the identifiedmRNAs with association P,
5 3 1023 in the discovery stage (see Table S1, Supplemental
Digital Content 1, http://links.lww.com/CTG/A1). We utilized
the STRING (Search Tool for the Retrieval of Interacting Genes/
Proteins, https://string-db.org/) (14) database to predict
protein–protein association and subsequently visualized the re-
sult by Cytoscape software (version: 3.6.1, http://www.cytoscape.
org/). The plugin software ClusterONE (version: 1.0, clustering
with overlapping neighborhood expansion) based on the concept
of the cohesiveness score and a greedy growth process was applied
to further detect significant models, which may represent mo-
lecular complexes (15) (minimum size5 5, minimum density5
0.6, and edge weights 5 unweighted).

Selection of key candidate mRNAs for the validation

To select key candidate mRNAs for the validation stage, we fur-
ther narrowed down the list ofmRNAs that we obtained inTCGA
based on a significance level of 1.00 3 1024, also integrating the
information from the methylation analysis and constructing the
PPI network for elucidating biological processes. In detail, we also
included those mRNAs whose encoding gene methylation was
associated with GC survival, as well as genes in clustered sub-
networkswithin PPI network.A total of 54mRNAswere included
in the validation stage (see Table S3, Supplemental Digital Con-
tent 1, http://links.lww.com/CTG/A1).

The validation dataset of GC, including the transcription
profile based on GPL6947 platform (Illumina HumanHT-12
V3.0 expression BeadChip) and clinical information, were
obtained from GSE84437 in GEO (https://www.ncbi.nlm.nih.
gov/geo/), followed by background correction and quantile

Dai et al.2
ST

O
M
A
C
H

Clinical and Translational Gastroenterology VOLUME 10 | JANUARY 2019 www.clintranslgastro.com

http://links.lww.com/CTG/A1
https://david.ncifcrf.gov/
http://kobas.cbi.pku.edu.cn/
http://links.lww.com/CTG/A1
http://links.lww.com/CTG/A1
http://links.lww.com/CTG/A1
https://string-db.org/
http://www.cytoscape.org/
http://www.cytoscape.org/
http://links.lww.com/CTG/A1
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.clintranslgastro.com


Table 1. Clinical characteristics of patients from TCGA-STAD and GSE84437 datasets

TCGA-STAD GSE84437

Parameters

Patients with

intact OS

data (n5 441)

Patients with

methylation

data (n5 392)a

Patients with

mRNA expression

data (n5 373)a

Patients with

mRNA expression

data (n5 433)

Age (mean 6 s.d.) 65.696 10.69 65.206 10.66 65.83 6 10.58 60.02 6 11.56

Gender

Female 158 (35.8%) 136 (34.7%) 134 (35.9%) 137 (31.6%)

Male 283 (64.2%) 256 (65.3%) 239 (64.1%) 296 (68.4%)

Race

White 278 (63.0%) 252 (64.3%) 238 (63.8%) —

Asian 88 (20.0%) 88 (22.4%) 73 (19.6%) —

Other racesb 1 unknown 75 (17.0%) 52 (13.3%) 62 (16.6%) —

T_stage

T1 22 (5.0%) 20 (5.1%) 18 (4.8%) 11 (2.5%)

T2 92 (20.9%) 78 (19.9%) 79 (21.2%) 38 (8.8%)

T3 198 (44.9%) 184 (41.6%) 168 (45.0%) 92 (21.2%)

T4 119 (27.0%) 110 (28.1%) 100 (26.8%) 292 (67.5%)

TX 1 discrepancy 10 (2.2%) 0 (0%) 8 (2.2%) —

N_stage

N0 130 (29.5%) 123 (31.4%) 109 (29.2%) 80 (18.5%)

N1 119 (27.0%) 100 (25.5%) 97 (26.0%) 188 (43.4%)

N2 85 (19.3%) 78 (19.9%) 75 (20.1%) 132 (30.5%)

N3 88 (20.0%) 83 (21.2%) 74 (19.8%) 33 (7.6%)

NX 1 discrepancy 19 (4.2%) 8 (2.0%) 18 (4.9%) —

M_stage

M0 389 (88.2%) 351 (89.5%) 328 (87.9%) —

M1 30 (6.8%) 23 (5.9%) 25 (6.7%) —

MX 1 discrepancy 22 (5.0%) 18 (4.6%) 20 (5.4%) —

Family history of GC

Yes 18 (4.1%) 18 (4.6%) 16 (4.3%) —

No 324 (73.5%) 323 (82.4%) 271 (72.7%) —

Null 99 (22.4%) 51 (13.0%) 86 (23.0%) —

H. pylori infection

Yes 20 (44.5%) 20 (5.1%) 18 (4.8%) —

No 168 (38.1%) 168 (42.9%) 145 (38.9%) —

Null 253 (57.4%) 206 (52.6%) 210 (56.3%) —

Targeted molecular therapy

Yes 101 (22.9%) 101 (25.8%) 89 (23.9%) —

No 117 (26.5%) 117 (29.8%) 101 (27.1%) —

Null 223 (50.6%) 174 (44.4%) 183 (49.0%) —

Radiation therapy

Yes 50 (11.3%) 50 (12.8%) 43 (11.5%) —

No 166 (37.6%) 166 (42.3%) 145 (38.9%) —

Null 225 (51.1%) 176 (44.9%) 185 (49.6%) —
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normalization using R package lumi (16). All mRNA expression
valueswere log2-transformed and standardized for comparability
with the discovery set as above described.

The association analyses in the validation study were also
conducted using Cox regression models, adjusting for age and
gender,withone-sideP,0.05considered as statistically significant.

Construction and validation of risk score model

The risk score model consisted of mRNAs that were successfully
validated in GSE84437, based on a function

Risk score ¼ b1X1 1b2X2 1b3X3 1⋯bnXn:

Regression coefficient (b) of every mRNA derived from the
multivariate Cox proportional hazard analysis in GSE84437 was
used as b score of the risk score model. X represents standardized
expression value of each mRNA.

We then performed the risk score model in TCGA-STAD and
GSE84437, respectively, and calculated a risk score for each pa-
tient. The risk scores were categorized into tertiles. Survival
curves were drawn using Kaplan–Meiermethod andGCdeath by
tertiles of risk scores were compared among subgroups using log-
rank tests in both TCGA-STAD and GSE84437, respectively.

RESULTS

Discovery of potential mRNAs in the discovery stage based

on TCGA

The characteristics of TCGA-STAD and GSE84437 datasets are
presented in Table 1. A total of 184mRNAswere identified atP,
53 1023 associated with GC poor survival, out of 19,754mRNAs
(see Table S1, Supplemental Digital Content 1, http://links.lww.
com/CTG/A1).

Gene ontology functional enrichment analysis

To investigate the encoding gene ontology for the mRNAs
identified with association P values , 5 3 1023 in the discovery
stage (see Table S1, Supplemental Digital Content 1, http://links.
lww.com/CTG/A1), GO analysis was performed using online
biological tool DAVID. Twelve GO terms were obtained
(Figure 1a and see Table S4, Supplemental Digital Content 1,
http://links.lww.com/CTG/A1). Most genes were enriched in the
plasma membrane cellular component.

Pathway enrichment analysis

A total of 4 databases, including “KEGG pathway,” “Reactome,”
“BioCyc,” and “PANTHER,” were applied in pathway

enrichment analysis. Top 20 pathways were shown in Figure 1b
and Table S5 (Supplemental Digital Content 1, http://links.lww.
com/CTG/A1). The result indicated that encoding genes of
mRNAs significantly associated with GC survival in TCGA may
be mainly involved in signaling transduction pathways.

Construction of PPI network and subnetwork analysis

To achieve a better understanding of the biological processes in
GC survival, we adopted online database STRING (https://string-
db.org/) and visualization software Cytoscape (version: 3.6.1,
http://www.cytoscape.org/) to construct PPI network. Based on
the criterion (minimum required interaction score5 0.4), a total
of 66 genes associated with GC survival were filtered into the PPI
network. It comprised 66 nodes and 58 edges (Figure 2a). Fur-
thermore, a key subnetwork model, which could represent the
overlapping protein complexes in the PPI network, was identified
through the plugin software ClusterONE, containingVMF, SELP,
CD36, CD44, and CD109 (Figure 2b).

Selection of key candidate mRNAs for the validation study

A total of 54mRNAs (see Table S3, Supplemental Digital Content
1, http://links.lww.com/CTG/A1) were examined in the valida-
tion study based on GSE84437 datasets, with 13 of them signifi-
cantly associated with GC survival at P , 0.05 in the validation.
Among them, high mRNA expression of 12 genes, including
RIMS1 (regulating synaptic membrane exocytosis 1), PRICKLE1
(prickle planar cell polarity protein 1), MCC (mutated in co-
lorectal cancers), DCLK1 (doublecortin-like kinase 1), FLRT2
(fibronectin leucine rich transmembrane protein 2), SLCO2A1
(solute carrier organic anion transporter family member 2A1),
CDO1 (cysteine dioxygenase type 1), GHR (growth hormone
receptor), CD109 (CD109 molecule), SELP (selectin P), UPK1B
(uroplakin 1B), andCD36 (CD36molecule), were associated with
poor survival, while high mRNA expression of SLC25A15 (solute
carrier family 25 member 15) was associated with improved
survival. The associations remained significant in the Cox re-
gression analysis, which adjusted additionally for clinical char-
acteristics (Table 2). Among these 13 mRNAs, SELP, CD36, and
CD109 were also highlighted in the key subnetwork, which could
represent the overlapping protein complexes in the PPI network,
as described above (Figure 2b).

Construction and validation of risk score model

Based on the mRNA expression levels of these 13 genes, we
established the risk score as follows:

Table 1. (continued)

TCGA-STAD GSE84437

Parameters

Patients with

intact OS

data (n 5 441)

Patients with

methylation

data (n 5 392)a

Patients with

mRNA expression

data (n 5 373)a

Patients with

mRNA expression

data (n5 433)

Vital status

Alive 355 (80.5%) 313 (79.8%) 299 (80.2%) —

Dead 86 (19.5%) 79 (20.2%) 74 (19.8%) —

GC, gastric cancer; mRNA, messenger RNA; OS, overall survival; TCGA, the Cancer Genome Atlas.
aPatients with intact OS data in TCGA-STAD.
bOther races include Black or African American and Native Hawaiian or other Pacific Islander.
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Risk score5 0.6183 DCLK11 0.4003 FLRT21 1.3953
MCC 1 0.458 3 PRICKLE1 1 0.881 3 RIMS1 1 (20.768) 3
SLC25A15 1 0.404 3 SLCO2A1 1 0.655 3 CDO1 1 0.379
GHR1 0.9693 CD1091 0.4413 SELP1 0.3823 UPK1B1
0.289 3 CD36, with a higher score indicating worse survival
potential. The risk score was independently associated with GC
survival, with a hazard ratio (95% confidence interval) of 1.34
(1.19–1.51) per one score increase in TCGA-STAD and of 1.22
(1.12–1.32) per one score increase in GSE84437. Kaplan–Meier
survival curves performed well on distinguishing patients with
GC with differential survival status in TCGA-STAD (Figure 3).
In GSE84437, the risk scores performed well in distinguishing
patients by survival probability, particularly for those with the
survival time of around 45 months or longer (Figure 3).

DISCUSSION
Molecular signatures associated with GC prognosis have been
sparse. In the present study, we comprehensively examined the
mRNA signature associated with GC survival in the discovery
stage (TCGA-STAD) based on RNA-Seq data and the validation
stage (GSE84437) based onmicroarray data. A total of 13mRNAs
were identified significantly associated with GC survival. Among
them, except for SLC25A15, 12 mRNAs were inversely associated
with GC survival in both the discovery and validation dataset,
including RIMS1, PRICKLE1, MCC, DCLK1, FLRT2, SLCO2A1,
CDO1, GHR, CD109, SELP, UPK1B, and CD36. A 13 mRNA-
based risk score model was established, which achieved good
performance on predicting GC survival in both TCGA and
GSE84437 datasets.

Figure 1.Gene functional and pathway enrichment analysis of the 184 genes, which encodemessenger RNAs significantly associated with gastric cancer
death at P, 53 1023 in discovery stage. P, 0.05 was considered as threshold values of significant difference in enrichment analysis. (a) Significantly
enrichedGO terms of the 184 genes using the online tool DAVID. (b) Significantly enrichedpathways of the 184 genes using the online tool KOBAS3.0. Four
databases were utilized for analyses, including “KEGG pathway,” “Reactome,” “BioCyc,” and “PANTHER.”
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Potential function of the mRNA encoding genes was anno-
tated based on the gene ontology functional enrichment analysis.
Among the encoding genes for 13 mRNAs significantly asso-
ciated with GC survival in the replication analysis, SLC25A15
was not enriched in the plasmamembrane cellular component.
Interestingly, also, SLC25A15 was the only mRNA inversely
associated with risk of GC death in our analysis. A previous
study suggested the association between plasma membrane

and cancer cell migration and invasion (17). Several bio-
markers based on plasma membrane proteins for GC de-
velopment and progression have also been identified (18,19).
The association of plasma membrane proteins with GC
prognosis has been investigated as well (20,21). Thus, we as-
sume that plasma membrane might play a key role in GC
survival through regulating these identified mRNA
expressions.

Figure2.Protein-protein interactionnetworkand subnetworkanalysis. (a) Protein–protein interactionnetworkconstructedby the184genes,whichencode
messengerRNAs significantly associatedwith gastric cancer death atP,531023 in the discovery set. (b) The key subnetworkmodule extracted from the
protein–protein interactionnetwork through theplugin softwareClusterONE (minimumsize55,minimumdensity50.6, andedgeweights5unweighted).

Table 2. The HRs and P values for the association between 13 messenger RNAs and gastric cancer death in TCGA and validated in

GSE84437

Genes Chromosome

TCGA-STAD GSE84337

Model 1a Model 2b Model 1a

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P valuec

RIMS1 chr14 14.44 (4.07–51.25) 3.58 3 1025 25.10 (6.31–99.91) 3.85 3 1023 2.41 (1.17–4.96) 8.25 3 1023

PRICKLE1 chr12 7.43 (2.80–19.73) 5.69 3 1025 8.81 (3.17–24.49) 2.94 3 1025 1.58 (1.24–2.01) 1.11 3 1024

UPK1B chr6 1.54 (1.23–1.94) 2.20 3 1024 1.50 (1.18–1.90) 7.67 3 1024 1.47 (1.00–2.15) 2.61 3 1022

SLC25A15 chr3 0.26 (0.12–0.56) 6.19 3 1024 0.18 (0.08–0.42) 7.19 3 1025 0.46 (0.31–0.70) 1.56 3 1024

MCC chr13 3.01 (1.57–5.79) 9.09 3 1024 3.34 (1.70–6.57) 4.72 3 1024 4.04 (1.56–10.43) 1.99 3 1023

DCLK1 chr13 2.69 (1.49–4.84) 9.61 3 1024 3.19 (1.71–5.93) 2.55 3 1024 1.86 (1.26–2.74) 9.65 3 1024

FLRT2 chr1 6.02 (2.07–17.50) 9.78 3 1024 7.74 (2.54–23.55) 3.13 3 1024 1.49 (1.13–1.97) 2.33 3 1023

SLCO2A1 chr3 2.11 (1.35–3.30) 9.94 3 1024 2.38 (1.47–3.86) 4.20 3 1024 1.50 (1.18–1.90) 4.09 3 1024

CD36 chr7 2.69 (1.42–5.09) 2.38 3 1023 2.87 (1.50–5.49) 1.60 3 1023 1.34 (0.95–1.88) 4.85 3 1022

SELP chr6 1.91 (1.25–2.91) 2.74 3 1023 2.90 (1.50–5.61) 6.11 3 1024 1.55 (1.09–2.21) 7.35 3 1023

CDO1 chr5 3.85 (1.58–9.38) 3.02 3 1023 4.99 (2.02–12.33) 4.90 3 1024 1.93 (1.37–2.70) 7.30 3 1025

GHR chr5 3.70 (1.54–8.90) 3.49 3 1023 5.30 (2.04–13.78) 6.35 3 1024 1.46 (1.14–1.88) 1.58 3 1023

CD109 chr5 1.73 (1.19–2.54) 4.58 3 1023 1.69 (1.14–2.53) 9.30 3 1023 2.64 (1.38–5.04) 1.71 3 1023

CI, confidence interval; HR, hazard ratio; TCGA, The Cancer Genome Atlas.
aCox regression analysis adjusting for age and gender.
bCox regression analysis adjusting for age, gender, race, clinical stage, family history of gastric cancer,H. pylori infection, targetedmolecular therapy, and radiation therapy.
cOne-side P value. One-side P , 0.05 was set as cut-off value for significant association with gastric cancer death in the validation set.
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We also conducted pathway enrichment analysis to identify
potential biological pathways associated with GC survival.
Among the 13mRNAs, we found once again that SLC25A15was
not involved in signal transduction pathway. A previous study
showed that the cancer development was encoded by altering
the patterns of signal transduction networks (21). Aberrant
activation of several signal transduction pathways, including
Hedgehog, Notch, and Wnt pathways, has already been asso-
ciated with multicancer development (22). Several cancer
therapeutics have been developed targeting signal transduction
pathways during past few years (23). Thus, the signal trans-
duction networks may be involved in the mechanisms un-
derlying the associations between identified mRNAs and GC
survival.

The contrasting associations with GC death that we found for
SLC25A15 and other mRNAs are interesting, but the underlying
mechanism is still unclear. Previous literature has not linked
SLC25A15 to cancer development or prognosis. Current knowl-
edge regarding the functional differences between SLC25A15 and
other mRNAs has been very sparse. In our study, further in-
tegrating the results for the gene ontology functional enrichment
analysis and pathway enrichment analysis, SLC25A15, which
encodes the only mRNA inversely associated with GC death, was
neither enriched in the plasma membrane cellular component
nor involved in the signal transduction pathway. It is therefore
reasonable to speculate that the plasma membrane cellular
component and signal transduction pathway might play impor-
tant roles in risk of GC death, which may partly explain the

Figure 3. Kaplan–Meier survival curves for patients in the discovery (the Cancer Genome Atlas-STAD) and validation (GSE84437) sets. The risk scores
based on 13messenger RNAswere categorized into tertiles. The green curve represents low risk score group. The blue curve representsmedian risk score
group. The pink curve represents high risk score group. Log-rank tests were conducted to compare survival curves among subgroups in each dataset.
(a) Kaplan–Meier survival curves for patients in the discovery set. (b) Kaplan–Meier survival curves for patients in the validation set.
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associations with GC death in the opposite directions that were
found for SLC25A15 and other mRNAs. However, our study
based on association analyses and function and pathway anno-
tations cannot directly respond to the mechanisms underlying
the associations. Efforts from basic laboratory are required to
elucidate the gene functions, which could clarify the contrasting
associations for SLC25A15 and other mRNAs with GC death.

Among the highlighted genes in our study,mRNAexpression of
CD36 and protein expression of DCLK1 and SLCO2A1 have been
previously associated with GC survival. CD36 mRNA over-
expression was associated with poor GC overall survival based on
cDNA microarray data of 18 patients with GC in the discovery set
and 30 patients with GC in the validation set (7). DCLK1 protein
overexpression has been associated with poor GC overall survival
using expression data of GC tumor specimens (n5 122) examined
by immunohistochemistry (25). Our findings are consistent with
these studies on the association of DCLK1 and CD36 with GC
survival, though they either lacked suitable validation sets or had
limited sample size. In addition, a DCLK1-based mRNA signature
has also been established previously to predict GC survival (26).
However, negative SLCO2A1 (also known as PGT) protein ex-
pression in GC tumor specimens (n 5 96), as examined by im-
munohistochemistry, was associated with poor survival (27), in
contrast to our findings on the inverse association between
SLCO2A1 mRNA expression and GC survival. As that study was
conducted based on a limited sample size, and also lacked a vali-
dation stage, the robustness of that finding may be of concern.

In previous studies, 4 mRNAs have been associated with
prognosis of other cancers, but not with GC prognosis. CD109
mRNA overexpression has been associated with poor overall
survival of lung adenocarcinoma (RNA-Seq) (28). SELP mRNA
overexpression has been associated with the poor overall survival
of gastrointestinal stromal tumors (microarray) (29). PRICKLE1
mRNA overexpression from cancer cell lines has been associated
with poor metastasis-free survival of basal breast cancer (30). In
addition,UPK1BmRNAoverexpression has been associated with
laryngeal cancer recurrence (microarray) (31). Our study is the
first to report the association of these 4 mRNAs with GC survival
in the same direction with the previously reported association of
these mRNAs with survival of other cancers.

Methylation has been associatedwith the risk and (or) prognosis
of GC and other cancers (32). Among the highlighted genes in our
study, CDO1 methylation has been correlated with prognosis of
other cancers previously (33,34), while our study is thefirst to report
the association between CDO1 hypermethylation and mRNA
overexpression and the risk ofGCdeath (see Figure S1 andTable S3,
Supplemental Digital Content 1, http://links.lww.com/CTG/A1).
Several studies have identified FLRT2 methylation as potential
biomarker for screening of prostate cancer (35) and breast cancer
(36). However, although our study showed the association between
FLRT2 mRNA overexpression and poor GC survival, we did not
find the association of FLRT2 methylation with GC prognosis. In
addition, our study is also the first to report an inverse association
betweenGHRmRNAexpression andmethylation (seeTable S2 and
Figure S1, Supplemental Digital Content 1, http://links.lww.com/
CTG/A1) and also the first to report GHR mRNA overexpression
and hypomethylation as risky factors for GC death (see Table S3,
Supplemental Digital Content 1, http://links.lww.com/CTG/A1).
GHR encodes the transmembrane receptor for growth hormone,
while the elevated serum level of growth hormone has been related
to increased risk of GC and several other cancers (37). For MCC,

RIMS1, and SLC25A15, previous evidence has been sparse re-
garding their associations with cancer development or prognosis.

Our study was conducted based on publicly accessible data-
bases with a relatively big sample size of both discovery and
validation datasets. A comprehensive approachwas conducted by
integrating prognostic mRNAs with methylation profiles and
subnetwork analysis for conspicuously thorough selection of key
mRNAs for validation, which yielded 13 mRNA signatures as-
sociated with GC survival. Except CD36, DCLK1, and SLCO2A1,
other mRNAs are newly reported to be associated with GC sur-
vival. The 13 mRNA-based risk score model performed well in
distinguishing the risk of GC prognosis, which might be useful in
clinical practice regarding patient stratification in the recent fu-
ture.We were able to control for the major clinical characteristics
in a secondary analysis, which did not change the results
materially.

We acknowledge several limitations. First, TCGA and GEO
databases were derived based on different platforms for mRNA
expression (RNA-Seq vs microarray). Although we deliberately
performed data processing, the interpretation of the results, par-
ticularly the effect magnitudes across the 2 platforms, should be
cautious. Second, our study was based on association studies and
bioinformatics analysis. Further studies are warranted to clarify the
mechanisms linking these mRNAs to GC poor survival. Third, our
analyses were restricted by the available clinical characteristics and
GC outcome variables. Gene expression may be varied by different
race/ethnicity but our validation dataset (GSE84437) does not have
the information on race/ethnicity. In the discovery stage, a second-
ary analysis additionally adjusting for race didnotmaterially change
the findings though. Further studies are warranted to examine the
potential predictive value of the 13 mRNA signatures associated
with other GC prognosis-related variables, such as progression-free
survival, and also to examine the mRNAs associated with GC sur-
vival in certain race/ethnicity group.

In conclusion, findings based on 2 well-established cohorts
suggest the 13 mRNA signatures might play an important role in
predicting GC survival ahead of time. Our study may have

Study Highlights

WHAT IS KNOWN

3 The prognosis of patients with GC vary significantly even
among those with similar clinical features.

3 Molecular biomarkers which predict GC prognosis are still
limited.

WHAT IS NEW HERE

3 This study was conducted based on publicly accessible
databases with a relatively big sample size of both discovery
and validation datasets.

3 The study yielded 13 mRNA signatures significantly
associated with GC survival.

3 ExceptCD36,DCLK1, andSLCO2A1, othermRNAs are newly
reported to be associated with GC survival.

3 The 13 mRNA-based risk score model performed well in
distinguishing the risk of GC prognosis, whichmight be useful
in clinical practice regarding patient stratification in the recent
future.
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implications for clinical practices regarding patient stratification.
Exploration in the laboratory setting may contribute to the un-
derstanding of underlying molecular mechanisms and may in-
spire the development of novel targeted therapeutic strategies.
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