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Abstract

This article investigates the spatial patterns of coronavirus

disease 2019 (COVID-19) infection in Italy and its determi-

nants from March 9 to June 15, 2020, a time interval cover-

ing the so-called first wave of COVID pandemics in Europe.

The results, based on negative binomial regressions and

linear spatial models, confirm the importance of multiple

factors that positively correlate with the number of

recorded cases. Economic forces, including urban agglomer-

ation, industrial districts, concentration of large companies

(both before and after the beginning of the ‘lockdown’) and
a north–south gradient, are the most significant predictors

of the strength of COVID-19 infection. These effects are

statistically more robust in the spatial models than in the

aspatial ones. We interpretate our results in the light of

pitfalls related to data reliability, and we discuss policy

implications and possible avenues for future research.
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1 | INTRODUCTION

With over 75,000 deaths and more than 2,000,000 cases (as of January 3, 2021), Italy ranks among the worst-

hit countries by COVID-19 and among the first ones to react with total lockdown. The first confirmed cases
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emerged in Italy in January 2020, less than 1 month after the outbreak in China, and almost contemporarily to

the diffusion in the Asian countries close to China, such as Japan, South Korea, and Iran. The Italian government

soon adopted strategies based on the isolation and tracing of cases and their contacts, along with drastic social

distancing measures, including the quarantine of whole cities and regions, the closure of schools and workplaces,

and the cancellations of mass gatherings. After the quarantine imposed in some of the most infected municipali-

ties in the north of the country – Codogno, in the province of Lodi (Lombardy), and Vò Euganeo,1 in the

province of Padua (Veneto) – a full quarantine strategy was established by the national government on March

11, 2020, with the objective to counter the spreading of the virus and lower the pressure on the public health

system.

Subsequently, the restrictions on mobility have been gradually relieved starting from May 4, 2020. Since then,

production and construction activities have reopened under new safety regulations (e.g., spaced workstation,

temperature controls, masks). In addition to retail stores, restaurants, cafes, and hairdressers reopened on May

18 (the initial planned reopening was June 1) and sports facilities reopened on May 25, followed by cinemas and

theaters on June 15. Regional governments have been allowed to both anticipate or postpone the reopening. People

could travel within their own region of residence (Nomenclature of Territorial Units for Statistics [NUTS] level 2).

Restrictions on mobility between regions were lifted on June 3, when also international borders reopened without

restrictions to and from other European Union (EU) countries.

One of the topical issues dominating the scientific debate is how economic systems and societi will have

to reorganize themselves to better cope with similar situations that could become increasingly frequent (Bailey

et al., 2020). In addition to preparedness (e.g., through strengthening health systems), which requires long-term

investment, it is equally important to understand how to improve territorial resilience to pandemic shocks in

the short run. Research into COVID-19 in Italy suggests that its spatial spreading has been far from uniform;

hence, academic interest is now devoted to understanding the ‘conditioning factors’ that may explain the

spatial variation of COVID-19 cases and related mortality. Among these factors, there is growing consensus that

a wide range of factors – demographic, economic, and environmental – may explain the intrinsic variation of

detected COVID-19 cases over space. The spreading of the virus can be affected by place-specific factors and

the degree of connectiveness of local economies to wider global networks, for example, mimicking a transmis-

sion through jump modes. This article aims to contribute to this lively debate by investigating the determinants

of contagion in Italy during the first wave of the pandemic. Our analysis confirms that there is a positive and

significant correlation between COVID-19 diffusion and a set of socioeconomic variables related to population

age structure, urbanization, climate, presence of large firms, and spatial clustering of manufacturing activities.

Our results have important policy implications. First, our results can help the definition of containment mea-

sures that consider the high spatial heterogeneity. In this respect, it would be appropriate to differentiate miti-

gation policies not only between developed and most affected northern regions and comparatively less

developed and less affected southern regions, but also at a lower spatial scale. Second, the significant economic

determinants associated with COVID-19 contagion at the province level suggest that the management of eco-

nomic activities can be the object of policies to enhance the preparedness for future occurrence of pandemics

and shocks through an appropriate organization of work both within large establishments and along local

production networks of suppliers and subcontractors that are the typical organization of firms operating in

industrial districts.

The paper is organized as follows. Section 2 outlines the rationale of the work, then summarizes the most

relevant literature for the issue at hand, and finally provides an overview of the COVID-19 spreading in Italy during

the first wave of the pandemic. Section 3 describes the data and presents the methodological approach. The

empirical results, based on different multivariate cross-section models, are discussed in Section 4. Conclusions are

drawn, and limitations and directions for future research provided, in Section 5.
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2 | RATIONALE OF THE WORK AND RELEVANT LITERATURE REVIEW

The analysis of causes and mechanisms underlying COVID-19 contagion was carried out from a multidisciplinary per-

spective, considering environmental, demographic, and sociocultural factors at the local level, the spatial organization

of economic activities at regional scale, and broader factors, such as the degree of integration of local economies on

a global scale. For example, focusing on a sample of 119 regional economies in nine EU countries, Kapitsinis (2020)

provides early evidence on a variety of underlying factors affecting the spreading of COVID-19. Air quality, demo-

graphics, global interconnectedness, urbanization trends, and historic trends in health expenditure as well as the poli-

cies implemented to mitigate the pandemic were found to have influenced the regionally uneven mortality rate of

COVID-19.

Italy was the second country severely affected by the spread of the virus, after the causative agent, severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), was first detected in the human population in Wuhan City, Hubei

Province (China) around the beginning of December 2019. In this regard, the Italian case is particularly interesting

due to the highly concentrated and spatially persistent patterns of the early diffusion of the virus (Figure 1), at least

compared with neighboring countries (for an account of the high spatial concentration of excess mortality across EU

regions, see Guibourg, 2020).

At the beginning of March, the first diffusion of the epidemic was rather fast and spatially concentrated in the

north of the country (Figure 1a,b). After the nation-wide quarantine, heterogeneity in the spatial distribution of

COVID-19 cases remained almost unchanged. A simple visual inspection of spatiotemporal pattern of COVID-19

across Italian provinces (Figure 1) hints at the effectiveness of lockdown measures in counteracting the contagion, a

result already pointed out by studies in the related literature. Bertuzzo et al. (2020), for instance, have confirmed that

the virus transmission was substantially reduced during the lockdown. Cross-country panel analysis confirms

that lockdown has been effective in reducing the R0 index, that is, the number of people infected by each infected

person, and that its efficacy has continued to hold 20 days after the introduction of the policy (Alfano &

Ercolano, 2020).

It is worth noting that, in Italy, during the 2020 lockdown, some economic sectors continued their activities to

some degree, while other activities were fully blocked by the containment measures. Table 1 reports the estimated

percentage of local units drawn from a SVIMEZ report and estimates based on official statistics (Italian National Insti-

tute of Statistics, ISTAT) data. On the one hand, it is evident that some essential services – such as public utilities,

education, healthcare, and transport – continued functioning even during the lockdown, most of them thanks to

extensive use of teleworking. On the other hand, several nonessential service sectors have had to stop their activi-

ties completely. The provisioning of essential goods and services inevitably determines a risk of contagion for those

workers who are involved. In the case of manufacturing, six out of ten local units have closed down. In the cases of

construction and trade, the percentages are higher, 70% and 86%, respectively. Since in industrial activities the frac-

tion of teleworkable employment is low, local economies highly specialized in industrial activities may have been sub-

ject to some degree of propagation of the disease even during the lockdown because of the size of industry

employment. For this reason, our hypothesis is that different local economic structure may have played a moderating

effect on the reduction of COVID-19 cases after March 11, 2020; therefore, we included an index of relative indus-

trial specialization as a control variable.

The epidemic basically spread over two geographical scales of diffusion, one being more local and the other

remaining intrinsically global and reticular (the so-called jump mode) (Bourdin et al., 2020). The literature that focuses

on the first wave of the pandemic in Italy provided evidence on a set of different local factors that positively

influenced the extent of contagion, such as demographic structure, urban agglomeration, air pollution, temperature,

spatial distribution of transport infrastructure, particularly airports, and economic structure in terms of both speciali-

zation and firms’ size. Early epidemiological studies on hospitalized patients suggest that older people have a higher

probability of being severely affected by the virus (e.g., Chen et al., 2020; Xu et al., 2020). The empirical evidence

produced so far confirms that, at least in the first wave of the epidemic in Italy, the virus has spread rapidly in more
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densely populated areas, and in areas where the incidence of older population was higher (Bourdin et al., 2020;

Musolino & Rizzi, 2020).

Studies that focus on the local economic determinants suggested that the economically stronger areas of the

country were affected the most by the COVID-19 contagion (Ascani et al., 2020), where the population density is

greater, in urban areas or in industrial areas better integrated in the global value chains (Bourdin et al., 2020;

Musolino & Rizzi, 2020). Antonietti et al., 2020 investigate the determinants of COVID-19 diffusion in a cross-

F IGURE 1 Geography of early COVID-19 spread in Italy. Notes: Number of COVID-19 cases across Italian
provinces at different points in time: (a) March 9, (b) March 31, (c) April 30, (d) June 15. Source: Ministry of Health
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section study on 142 countries, focusing on economic wealth and air quality. Overall, they confirm that the level of

wealth measured in terms of per capita gross domestic product (GDP) and manufacturing specialization correlates

strongly with the absolute number (or density) of COVID-19 reported cases. They also show that the level of air

quality, in terms of particulate (PM 2.5) concentrations, does not significantly contribute to explaining the diffusion

of COVID-19 and the related mortality after accounting for socioeconomic factors, especially per capita GDP,

although the positive relationship between infections and PM 2.5 holds if the analysis is restricted to high-income

countries. A large number of empirical studies found a positive and statistically significant association between air

pollution and adverse COVID-19 outcomes, such as the number of positive cases, deaths, and excess mortality rates

(see, among others, Becchetti et al., 2020; Conticini et al., 2020; Ogen, 2020; Setti et al., 2020; Wu et al., 2020; and

Becchetti et al., 2021 for a systematic survey).

Among territorial factors related to climate regimes, it is supposed that the effect of weather on virus

transmission is probably linked to the ability of the virus to survive in external environments. Nevertheless, the

role of temperature and other weather conditions is still controversial. For example, Palialol et al., 2020 suggest

that warm climate can diminish the virus transmission, but they find that the effect of temperature is stronger in

cold climates. They show that the number of COVID-19 cases is negatively correlated with temperature and

humidity, but not with precipitation. This is in line with recent observations of faster spread of the virus in

cold and dry environments (Antonietti et al., 2020; Araujo & Naimi, 2020; Confalonieri et al., 2020; Wang

et al., 2020).

As for the role of jump modes of epidemic transmission, previous studies have highlighted that air flows

facilitate long-distance contagion during the SARS epidemic in 2003 (Bowen & Laroe, 2006). For the specific case of

COVID-19, Li et al. (2020) show that the greater numbers of undocumented infections over known cases before

travel restrictions were implemented help to explain the lightning-fast spread of the virus around the world.

Likewise, Bourdin et al. (2020) in their analysis on Italy show that the coefficient associated with airline connections,

proxied by an airport’s number of passengers, is positive even though it is not particularly significant.

Asymptomatic transmission proved to be also important for the early global spreading (Rothe et al., 2020).

Therefore, human mobility is crucial among the realistic factors to be considered in understanding the spatiotemporal

patterns of international diffusion of infectious diseases (Balcan et al., 2009, 2010); however, different views were

proposed. For instance, even if international travel restrictions did help to slow contagion until mid-February,

TABLE 1 Percent share of local units affected by the containment measures of COVID-19 in Italy, by broad
economic sector

Economic sectors % of local units

Public utilities (D, E) 0%

Education (P) 0%

Health (Q) 0%

Transportation and storage (H) 0%

Professional, scientific, and technical activites (M) 2.80%

Manufacturing (C) 62,7%

Construction (F) 70.40%

Wholesale and retail trade (G) 86.30%

Accomodation and food service activities (I) 93%

Other services (S) 96%

Arts, sports, entertainment (R) 100%

Real estate activities (L) 100%

Source: Svimez (2020).
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according to the results provided by Chinazzi et al. (2020), early detection, hand washing, self-isolation, and house-

hold quarantine are likely to be more effective than travel restrictions at mitigating the pandemic.

3 | METHODOLOGY

The following analysis is aimed at assessing the role played by selected demo-economic and territorial factors in the

early diffusion of the disease in Italy (February–June 2020). We collected data from the Italian Ministry of Health

regarding the daily number of confirmed COVID-19 infections in the 110 Italian provinces (NUTS-3 level) starting

from February 24, 2020.

Even if data on COVID-19 cases are available at the municipality level, we opted for NUTS 3 for three main

reasons. First, information on economic factors and other possible determinants are available at the NUTS-3 level,

and this geographical granularity is suitable to account for the heterogeneity in local economic structures.

Second, NUTS-3 level in Italy allows a cross-section analysis to be conducted with a set of observations large

enough to obtain reliable estimates. Third, this relatively high geographical granularity makes it possible to avoid

the risk of a scale aggregation bias that may affect analyses based on country-level data, NUTS-2 or NUTS-1

level data.

Our dependent variable is the COVID-19 total cases detected in province p from February 24 until day

t (COVID19_p,t).

With reference to the dependent variable, data skewness makes the use of simplified, ordinary least squares

(OLS) regression models quite inappropriate. Since the dependent variable is based on counts, we first estimate a

negative binomial regression model that is considered more appropriate than the Poisson model in cases of over-

dispersion of the dependent variable.2 To evaluate the relationship between structural characteristics of the local

economies and the spread of the virus, we estimated the following negative binomial regression model at different

points in time (March 9, March 31, April 30, and June 15):

COVID_19p,t ¼ exp αþβ0Xp, tþεpð Þ ð1Þ

where β0 represents the vectors of point estimates associated with the structural characteristics. Xp includes

the explanatory variables of the cross-section regression model. Then, we ran post-estimation tests on the regression

residuals. These tests led us to reject, in the majority of specifications, the null hypothesis of absence of

spatial autocorrelation in the residuals at the 10% or 5% significance level. This is in line with previous evidence

that COVID cases and mortality across Italian provinces are subject to spatial correlation (Bourdin et al., 2020;

Ghosh & Cartone, 2020). Hence, we use different linear spatial dependence models (spatial autoregressive model

[SAR], spatial error model [SEM], spatial Durbin model [SDM]) for more robustness. We follow Elhorst (2014)

and refer to a full model with all types of interactions effects. A general nesting spatial model can be defined

as follows:

y¼ ρWyþXβþWXθþu ð2Þ

u¼ λWuþε ð3Þ

where:

• y is a (R � 1) vector of the dependent variable

• Wy is the spatially lagged dependent variable y to account for spatial dependence in the COVID-19 cases, with W

defined as (R � R) spatial weight matrix
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• β is (k � 1) vector of unknown parameters associated with exogenous explanatory variables

• X represents a (R � k) matrix

• θ is (k � 1) vector of unknown parameters

• ε is a (R � 1) vector whose elements follow ε�iid(0,σ2In)

The interaction effects are:

• ρWy: endogenous interaction effect

• θWX: exogenous interaction effect

(R is the number of observations: 101 provinces; k is the number of explanatory variables: 7)

Different spatial dependence models for cross-section data can be derived from the general nested model

defined in Equation 2.

The spatial lag model (SAR) allows for spatial correlation in the COVID-19 cases (ρ ≠ 0), while the

spatial error model (SEM) allows for spatial correlation in the error term (λ ≠ 0). The spatial lag/error model (SAC) is

more appropriate when spatial correlation is present both in the dependent variable and in the error term

(ρ ≠ 0, λ ≠ 0).

The spatial Durbin model (SDM) includes a spatial lagging of the dependent variable (ρ ≠ 0) in addition to a

spatial lagging of all the independent variables (θ ≠ 0). The spatial lagging of the dependent variable is included to

capture effects as described for the spatial lag model. The spatial lagging of the explanatory variables is added so that

the characteristics of neighboring provinces could have an influence on the COVID-19 cases of each province in the

sample. In this way the spatial Durbin model allows for neighboring COVID-19 cases to determine the COVID-19

cases of a province, in addition to the structural characteristics of neighboring provinces.

This model could be developed from the spatial error model (Anselin, 2006) or from a spatial lag model

(Bivand, 1984). This is done by additional constraints on the parameters.

Finally, the standard OLS model corresponds to a general nesting spatial model where the three parameters

(ρ, θ, λ) equal to zero.

The choice of the spatial model that best describes the data is not trivial. For model selection and management

of spatial options, we follow Elhorst (2014) and diagnostic results of the classic Lagrange multiplier (LM) tests

proposed by Anselin (1988) and the robust LM tests proposed by Anselin et al. (1996). We also rely on the selection

diagnostic criteria provided by Stata; in particular, we refer to the log likelihood function (LLF), the Akaike

information criterion (AIC), and the Schwarz criterion (SC).

In the absence of proper routines in Stata (the software used in this study) for spatial models based on count

data, maximum likelihood estimation (MLE) models are used; the dependent variable, yp, i,t, is the inverse hyperbolic

sine transformation of the number of COVID-19 cases in the province p defined as:

yp,t ¼ ln COVID_19p,tþ COVID_19p,t
2þ1

� �1=2
� �

:

The same methodology has been already applied in previous studies based on count data (e.g., Bonaccorsi

et al., 2013; Ciffolilli et al., 2019).

We identified a set of relevant explanatory variables, drawing upon the existing literature surveyed in Section 2

and on the basis of the statistics available on a provincial scale.

Xp,t in Equation 1 is a vector of control variables. For each of them, the average value of a preceding period is

considered. Several data sources are used in the analysis, collected from the Italian Ministry of Health, the Italian

National Institute of Statistics (ISTAT), and Eurostat. A detailed description of the variables and sources of data is

provided in Table 2.
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These variables have been selected to capture various aspects supposed to have a potential impact on the

spread of the epidemic, according to the early studies surveyed in Section 2. Rationale for their inclusion in the anal-

ysis is summarized as follows.

3.1 | Basic predictors

Essential demographic and environmental characteristics should be considered among local factors that can have

facilitated the contiguous spread of the virus. Moreover, factors relating to the mobility habits of a population are

supposed to play a role since the epidemic spreads through human contact.

• Population over 65 years old (percent share in total population): According to early epidemiological studies, older

people has been more severely affected by the virus. Therefore, we include an indicator of the incidence of

older population in the overall demographic structure. The higher the percentage of population aged 65 years in a

province, the faster the diffusion of the virus is expected to be.

• Airline networks: The epidemic spread rapidly along international airline networks. Hence, we include a specific

indicator constructed as the number of air passengers per 100,000 inhabitants in 2019. We expect higher conta-

gion in provinces with one or more airports, because of the higher amount of passenger traffic.

• Metropolitan area: Migration and mobility are among the major factors in the spread of epidemics at a global scale.

Moreover, the largest outbreaks are usually observed in more densely populated areas where personal contacts

are facilitated. We include a dummy variable that assumes the value 1 in the presence of a metropolitan region

within the province, as defined by the Joint Research Center (Seville) and the European Commission. We adopted

this indicator over the more traditional population density because the latter can weaken the effect of urban

agglomerations and it is not able to distinguish different urban structures within the province, as noticed by

Musolino and Rizzi (2020).

TABLE 2 Description of variables and data sources

Name Description Source

COVID19_p,t Number of COVID-19 total cases detected in province

p from February 24 until day t.

Italian Ministry of Health, data

available at https://github.com/

POP-65 Population over 65 years old (% share in total population,

log-transformed)

ISTAT

Airline

networks

Air passengers per 100,000 inhabitants Eurostat

Metropolitan

area

A dummy variable based on the presence of a NUTS-3

metropolitan region – Eurostat data on typologies and

local information corresponding to NUTS3 – urban–rural
typology

Eurostat, JRC and European

Commission Directorate-General

for Regional Policy

Latitude Positions of centroids in degrees ISTAT

Industrial

districts (IDs)

Number of industrial districts identified within a given

province p according to the ISTAT methodology

ISTAT (2015)

Location

quotient (LQ)

industry

Share of industrial value added over total value added in

province p, relative to the same share in the national

economy

Branch accounts (ESA 2010),

Eurostat

Large firms Share of employees in establishments with more than 250

employees over total number of employees (%)

ISTAT
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• Latitude: We add a further basic control variable that is aimed at capturing environmental/territorial conditions

mainly related to climate. For example, Murgante et al. (2020) highlighted some similarities between the two most

affected areas during the early wave of the pandemic, Wuhan area in Hubei Province, China, and Po Valley,

Greater Milan metropolis, Italy. They attempt to trace geoclimatic similarities, as well as those concerning human

activities. In particular, they suggest that both areas correspond to Cfa subclass – in Köppen climate classification

system (Skarbit et al., 2018) – as ‘humid subtropical’, typical of temperate continental areas. Both are located in

an alluvial plain, that is, Yangtze River (Wuhan urban agglomeration) and Po River (Greater Milan metropolis). In

this vein, in the absence of more detailed information, we consider the latitude of the centroid of the province as

a proxy of arid/dry climate conditions (Incerti et al., 2007; Salvati et al., 2008; Scarascia et al., 2006), assuming a

north–south gradient of rainfalls in Italy (from temperate-continental-alpine regimes in northern Italy to semi-arid,

Mediterranean regimes in Southern Italy; Bajocco et al., 2012; Recanatesi et al., 2016; Salvati et al., 2017).

More broadly, we interpretate this variable as a north–south gradient that gives an indication of the traditional

economic distinction in Italy between affluent/climatically temperate regions (north + center) and disadvantaged/

climatically dry regions (south).

3.2 | Explanatory variables related to the economic structure of the local economy

Most epidemiological studies suggest that transmission is gradual, although a number of studies have recognized that

the pre-existing spatial organization of the economy matters (Ascani et al., 2020; Becchetti et al., 2020; Bourdin

et al., 2020; Musolino & Rizzi, 2020). To evaluate the role of different profiles of the local economic structure, we

include variables capturing firms’ size, local productive systems/clustering, and relative specialization at the provin-

cial level, as follows.

• Industrial districts: Istat (2015) provides an updated list of local labor market areas (LLMAs) with the typical charac-

teristics of a cluster or a variant of the archetypal Marshallian industrial district. In any case, this variable is a proxy

for a local economy characterized by agglomeration of a large number of small and medium-sized firms that tend

to specialize in different stages of the production process and cluster to benefit from close contacts, knowledge

spillovers, and specialized suppliers.

• Location quotient (LQ), industry: Share of industrial value added as percentage of total value added, in the province

p, compared with the national average, is used to capture the degree of relative specialization of the province in

the industrial sector. We believe it is important to include this control variable in order to understand whether a

partial lockdown may have facilitated contagion, especially in those provinces where industrial activities are

overrepresented compared with the national average, since industry is one of the sectors that, at least partially,

has continued to work (Table 1).

• Large firms: A further indicator chosen to measure the production agglomeration is the percent share of

employees in establishments with more than 250 employees in total employees. We believe that the inclusion

of this variable may help understanding whether and to what extent contagion has occurred due to personal

contacts within large firms.

Table 3 presents the basic descriptive statistics for the dependent variable at different points in time and each

explanatory variable included in the model.

Data on these variables were collected for 107–110 Italian provinces, depending on data availability. The depen-

dent variables are characterized by a considerable variance. As an example, the total number of COVID-19 cases at

the provincial level as of March 31 was 957, on average; it ranged between a minimum of 9 in Isernia (Molise) and a

maximum of 8,911 in Milan (Lombardy).
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Bilateral correlations among explanatory variables are provided in Table A1. Most of the variables are able to

capture different factors of the local economic environment and have their own impact on the spreading of the

virus. Nevertheless, in an attempt to properly evaluate the role of each of the economic factors, we estimate dif-

ferent models to mitigate multicollinearity concerns. We thus consider, in the negative binomial regression

models, the relevant variables capturing local economic structure as alternative controls in separate regressions

(see Section 4.1).

4 | RESULTS

4.1 | Results based on the negative binomial regressions

This section reports the results of the negative binomial regressions of Equation 1. The estimates in all columns

in Table 4 use the same basic set of control variables, namely POP-65, airline networks, metropolitan area, and

latitude.

Each column from 1 to 3 considers alternative explanatory variables related to the economic structure, namely

industrial districts, industrial specialization, and large firms. Columns from 4 to 6 add different combinations of the

structural economic variables to the basic set of explanatory variables. Column 7 is the extended model with all

the selected regressors, basic and economic ones. Each panel of Table 4 presents the results of the estimates repli-

cated in different points in time: (a) March 9, 2020; (b) March 31, 2020; (c) April 30, 2020; (d) June 15, 2020.

As for the basic control variables, some results are in line with the existing literature whereas others are not. We

find positive and statistically significant effects for most of the demographic and territorial variables selected, namely

POP-65, metropolitan area, and latitude.

The positive and significant coefficients associated with POP-65 are in line with earlier evidence of a more

intense spread of the epidemic in areas where the incidence of older population was higher (Bourdin et al., 2020;

Musolino & Rizzi, 2020).

Table 4 shows that the significance level and the size of the associated regression coefficient increase over time.

Hence, the present study confirms previous findings and contributes additional evidence that suggests that a higher

incidence of older population facilitates COVID-19 contagion, from the end of March onward.

TABLE 3 Summary statistics

Observations Average Std. dev. Min Max

COVID-19 confirmed cases

March 9 110 77 197.1396 0 1,245

March 31 107 957 1,554.8 9 8,911

April 30 107 1,892 2,865.556 54 19,337

June 15 107 2,187 3,471.112 59 23,863

People over 65 years old (%) 107 11.50 0.67 9.96 13.74

Air passengers per 100,000 inhabitants 110 0.13 0.32 0.00 1.35

Metropolitan areas 110 0.19 0.39 0.00 1.00

Latitude (coordinates) 110 42.84 2.64 36.93 46.50

Share of employees in establishments with more than

250 employees (%)

110 11.59 8.97 0.00 44.11

No. of IDs according to ISTAT (2015) 110 1.87 2.55 0.00 14

Location quotient, industry 110 0.99 0.40 0.26 1.96
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As for the long-distance channel of contagion, our results indicate that the higher the number of visitors at an

airport in a province, the higher the number of cases detected. Nevertheless, the coefficient associated with airport

passengers is generally insignificant and decreases after the lockdown.

Our results show that there is a positive relation between metropolitan areas and the strength of COVID-19

infection. The coefficient associated with this variable is statistically significant but only until the end of March.

Latitude also plays a role in explaining virus diffusion, likely reflecting the intrinsic differences in climate regimes

between affluent northern and disadvantaged southern Italy (subhumid versus semiarid regimes).

As explained above, the correlation between the virus propagation and local economic conditions is inten-

tionally explored through the inclusion of specific variables, such as industrial districts, LQ industry, and large

firms. In this respect, caution must be applied to interpretate the results of Table 4. The findings clearly indicate

that the spatial clustering of manufacturing firms (IDs) is positively associated with the spread of COVID-19.

The associated coefficient is positive and highly significant throughout the entire period of our analysis. Instead,

with regard to the control variables capturing firm size and industrial specialization, our findings based on the

negative binomial regressions cast some doubts on the linkage between the local economic structure and the

spreading of the virus. In fact, comparing the estimates before the lockdown (Table 4a) and those related to

the lockdown (Table 4b,c), the coefficients associated with LQ industry and large firms are unstable over time,

they turn from negative before the lockdown to positive during the lockdown, and they are usually not

significant.

Overall, although negative binomial regression models do not allow conclusive results as to the role of industrial

specialization and firm size, they have successfully demonstrated that COVID-19 diffusion is associated with the

presence of clustering of manufacturing establishments.

It goes without saying that a major limitation of the ‘classical’ multivariate regression analysis provided so far is

that it neglects possible spatial spillover effects. As noticed, the geographical distribution of COVID-19 across Italian

provinces is highly uneven, and therefore it is deemed to be subject to spatial correlation (e.g., Bourdin et al., 2020;

Ghosh & Cartone, 2020). Spatial aspects in model specifications can be classified into two main categories, namely

spatial dependence and spatial heterogeneity. First, any econometric analysis for the issue at hand must verify and

eventually handle the presence of spatial dependence, the fact that the value assumed by a certain dependent vari-

able (e.g., cases) and/or independent variables depends on the value that the same variable assumes in the neighbor-

ing regions. Second, spatial heterogeneity should be accounted for since it is particularly relevant for the case of Italy

(among others, Benedetti et al., 2020; Panzera & Postiglione, 2014). To control for this second concern, we assume

discrete heterogeneity (Anselin, 2010) and we explicitly consider two different exogenous regimes (Le Gallo &

Dall'erba, 2003, 2006) by dividing Italy into north and south provinces and estimating separate spatial models,

allowing model coefficients and other parameters to vary between the two groups.

We address these issues in the following section.

4.2 | Tackling spatial dependence and spatial heterogeneity

As already noticed, two geographical scales are involved in epidemic diffusion (a local one and a global/reticular one).

Moreover, we included in our model a specific explanatory variable to capture airline networks that clearly represent

a situation that may involve global spillovers. As a matter of fact, results of the diagnostic test to detect spatial

dependence (Table A2) suggest that, from March 31 onward, local spillovers and endogenous interaction lead to a

scenario where changes in one province set in motion a sequence of adjustments in (potentially) all provinces in the

sample. Hence, we cannot narrow down the relationship being investigated as reflecting only a local spillover situa-

tion and restrict our analysis, accordingly, to the spatial Durbin model, as suggested for practitioners in such cases

(LeSage, 2014).
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Therefore, we referred to the family of models – SAR, SEM, SDM, and SAC – popularized by Anselin (1988),

for more robustness. Results of the estimates through OLS and linear spatial dependent models on COVID-19

cases, in different points in time, are reported in Table 5. Column 1 corresponds to a standard OLS model with

all parameters of the general nesting spatial model equal to zero. Columns 2 and 3 allow for spatial correlation in

the dependent variable (ρ ≠ 0), and in the errors (λ ≠ 0), respectively. Column (4) represents a spatial Durbin

model (with ρ ≠ 0 and θ ≠ 0), while column 5 represents the spatial lag/error model – SAC (with ρ ≠ 0 and

λ ≠ 0).

We follow the directions provided by Elhorst (2014) as explained in Section 2 as a compass for model

selection and the basic principles devised by LeSage (2014) for the management of spatial options. The full diag-

nostic results are presented in Table A2. Following the rules of thumbs suggested by the author,3 we suggest

that the SEM are appropriate for the first two regressions at the beginning of the lockdown (Table 5), while

SDM and SAC are more appropriate for regressions referring to April 30 and to June 15, to deal with the spa-

tial correlation in both the dependent variable and the error term/regressors. When the spatial autoregressive

parameter is not significant in the SDM, we suggest that the SAC should be the preferred model since both the

LM test for spatial error and the LM test for spatial lag lead to rejection of the null hypothesis of no spatial

dependence.

We estimated the impacts – direct and indirect effects – for the spatial linear regressions, except for the spatial

error model (among others, LeSage, 2014). We provide the results in the Appendix for the SAR, the SDM, and the

SAC models in different points in time (Table A3). We present elasticity-based impact measures, where we found

that the direct effects are usually higher than indirect effects, as expected.

The results, which generally show the expected signs for the control variables considered, confirm that metro-

politan area, latitude, and industrial districts facilitate the COVID-19 diffusion in the early wave of the pandemic in

Italy, that is, as of March 9, 2020.

Since spatial heterogeneity may be an issue in our data, Table 6 presents the results for linear spatial models, as

of March 9, 2020, for north provinces and south provinces, separately. Splitting the sample into north and south

provinces unravels two different scenarios and allows a better understanding of the role of the local economic struc-

tures, at the beginning of the observation period.

With separate regression, we further confirm the different role of the economic base in the early spreading of

the virus in Italy (Ascani et al., 2020). As shown in Table 6, in the north the pre-existent economic structures, cap-

tured by the presence of IDs and large firms, have played a significant role in favoring the spreading of the virus.

By contrast, in the south of the country, the specialization in industrial activities (LQ industry) has a moderating

effect and the virus has spread mostly in more densely populated areas, and in areas where the incidence of older

population was higher. In this respect, it is useful to visualize three main predictors of COVID-19 cases, namely IDs,

metropolitan areas and LQ industry, for their different roles played in the spreading of the virus in the two macro-

regions (north and south of the country) (Figure A1, Appendix).

While the airline networks continue to be insignificant, the role of the variable ‘latitude’ is still an equally impor-

tant and significant predictor in the two macroareas, pointing to a possible role for economic and social conditions

shaping the north–south gradient beyond those being explicitly included in our analysis.

We have also estimated the elasticity-based impact measures to assess direct and indirect effects, conveniently

distinguishing the two macroregions, north Italy and south Italy. They are reported in the Appendix for different spa-

tial models: SAR, SDM, and SAC (Table A4).

To further check the stability of our results after the lockdown, we rerun the same spatial models at different

time points (Table 5b–d). Spatial models explain a high percentage of the variation in the dependent variable, approx-

imately 75–90% during the full nationwide quarantine.

Looking at the coefficients, these results are generally in line with our previous estimates, suggesting the statisti-

cal robustness of our findings.
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TABLE 5 Robustness checks: Nonspatial and linear spatial models in different points in time

(a) March 9, 2020

(1) (2) (3) (4) (5)

Nonspatial SAR-MLE SEM-MLE SDM-MLE SAC-MLE

POP-65 0.193*** 0.101 0.0958 0.0877 0.0817

(0.0598) (0.0866) (0.0871) (0.0772) (0.0871)

Airline networks 0.549 0.454 0.476 0.482 0.539

(0.413) (0.375) (0.371) (0.383) (0.372)

Metropolitan area 0.806** 0.656** 0.637** 0.744** 0.658**

(0.324) (0.297) (0.295) (0.320) (0.293)

Latitude 0.367*** 0.255*** 0.249*** 0.263*** 0.283***

(0.0608) (0.0661) (0.0632) (0.0694) (0.0662)

Industrial districts (IDs) 0.201*** 0.199*** 0.195*** 0.194*** 0.189***

(0.0530) (0.0484) (0.0480) (0.0510) (0.0478)

LQ industry �0.227 �0.175 �0.186 �0.262 �0.229

(0.404) (0.377) (0.373) (0.392) (0.370)

Large firms 0.0186 0.0221 0.0223 0.0294** 0.0215

(0.0159) (0.0148) (0.0147) (0.0146) (0.0145)

W � POP-65 �1.356**

(0.575)

W � airlines 0.262

(7.525)

W � metro 6.721

(6.941)

W � latitude 0.640***

(0.206)

W � IDs 0.400

(1.241)

W � LQ industry �7.513

(7.980)

W � large firms 0.0471

(0.286)

Constant �15.21*** �9.896*** �8.489*** �11.11*** �8.235***

(2.438) (2.654) (2.771) (2.988) (2.417)

ρ 0.275* �0.189 �1.510 �0.463

(0.153) (0.117) (0.928) (0.376)

θ 1.034*** 1.022*** 0.956*** 1.010***

(0.0730) (0.0721) (0.0685) (0.0715)

λ �0.189 �0.429*

(0.117) (0.249)

R2 0.6673 0.5683 0.5288 0.6865 0.575

Adjusted R2 0.6445 0.5387 0.4964 0.6403 0.5458

F-test 29.2288 19.186 16.3515 14.859 19.7118

(Continues)
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TABLE 5 (Continued)

(a) March 9, 2020

(1) (2) (3) (4) (5)

Nonspatial SAR-MLE SEM-MLE SDM-MLE SAC-MLE

p-Value 0 0 0 0 0

Wald test 204.6017 134.3019 114.4603 208.0257 137.9828

p-Value 0 0 0 0 0

χ2 43.0686 45.3999 43.1806 46.7757

p-Value 0 0 0 0

Log likelihood function �167.01 �145.4757 �144.31 �138.7339 �143.6221

Akaike information criterion (AIC) 310.9513 308.62 311.4678 309.2443

Schwarz criterion (SC) 1.7169 1.8875 2.4319 2.2753 3.1613

Observations 110 110 110 110 110

(b) March 31, 2020

(1) (2) (3) (4) (5)
Nonspatial SAR-MLE SEM-MLE SDM-MLE SAC-MLE

POP-65 0.517*** 0.470*** 0.467*** 0.454*** 0.459***

(0.0348) (0.0460) (0.0460) (0.0433) (0.0480)

Airline networks 0.216 0.233 0.236 0.182 0.248

(0.240) (0.232) (0.232) (0.235) (0.233)

Metropolitan area 0.300 0.289 0.290 0.294 0.300

(0.189) (0.183) (0.183) (0.199) (0.184)

Latitude 0.234*** 0.207*** 0.208*** 0.206*** 0.217***

(0.0354) (0.0365) (0.0356) (0.0371) (0.0378)

Industrial districts (IDs) 0.102*** 0.105*** 0.103*** 0.0950*** 0.1000***

(0.0308) (0.0299) (0.0299) (0.0316) (0.0303)

LQ industry 0.0992 0.0890 0.0879 0.139 0.0811

(0.235) (0.227) (0.227) (0.236) (0.226)

Large firms 0.0187** 0.0199** 0.0199** 0.0232*** 0.0199**

(0.00925) (0.00899) (0.00897) (0.00880) (0.00894)

W � POP-65 �0.959**

(0.375)

W � airlines �3.618

(4.631)

W � metro 2.352

(4.197)

W � latitude 0.403***

(0.131)

W � IDs �0.689

(0.714)

W � LQ industry �2.360

(4.681)
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TABLE 5 (Continued)

(b) March 31, 2020

(1) (2) (3) (4) (5)

Nonspatial SAR-MLE SEM-MLE SDM-MLE SAC-MLE

W � large firms 0.0996

(0.170)

Constant �9.816*** �8.618*** �7.914*** �8.661*** �7.004***

(1.418) (1.446) (1.519) (1.581) (1.780)

ρ 0.103* �0.461 �0.187

(0.0538) (0.849) (0.258)

θ 0.644*** 0.642*** 0.597*** 0.641***

(0.0442) (0.0441) (0.0411) (0.0440)

λ �0.103* �0.310

(0.0592) (0.330)

R2 0.855 0.7722 0.8286 0.8772 0.1199

Adjusted R2 0.845 0.7566 0.8168 0.8591 0.0595

F-test 85.887 49.3928 70.4209 48.4753 1.9851

p-Value 0 0 0 0 0.0642

Wald test 601.2091 345.7494 492.9465 678.6548 13.896

p-Value 0 0 0 0 0.0531

χ2 2.6575 3.2237 �1.74 3.6669

p-Value 0.2648 0.1995 1 0.2997

Log likelihood function �107.4242 �106.0955 �105.8124 �98.343 �105.5908

Akaike information criterion

(AIC)

232.191 231.6248 230.6859 233.1816

Schwarz criterion (SC) 0.5811 0.5784 0.6868 0.6725 1.129

Observations 110 110 110 110 110

(c) April 30, 2020

(1) (2) (3) (4) (5)
Nonspatial SAR-MLE SEM-MLE SDM-MLE SAC-MLE

POP-65 0.590*** 0.550*** 0.546*** 0.552*** 0.551***

(0.0313) (0.0410) (0.0411) (0.0372) (0.0418)

Airline networks 0.167 0.181 0.187 0.107 0.179

(0.216) (0.206) (0.207) (0.203) (0.207)

Metropolitan area 0.323* 0.304* 0.309* 0.316* 0.303*

(0.170) (0.163) (0.163) (0.170) (0.163)

Latitude 0.289*** 0.258*** 0.263*** 0.254*** 0.257***

(0.0318) (0.0325) (0.0317) (0.0321) (0.0332)

Industrial districts (IDs) 0.0672** 0.0694*** 0.0681** 0.0704*** 0.0697***

(0.0278) (0.0266) (0.0267) (0.0272) (0.0267)

LQ industry �0.0953 �0.102 �0.107 �0.111

(0.212) (0.202) (0.202) (0.204)

(Continues)
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TABLE 5 (Continued)

(c) April 30, 2020

(1) (2) (3) (4) (5)

Nonspatial SAR-MLE SEM-MLE SDM-MLE SAC-MLE

Large firms 0.0161* 0.0170** 0.0170** 0.0201***

(0.00833) (0.00800) (0.00801) (0.00758)

W � POP-65 �1.293*** �0.101

(0.303) (0.202)

W � airlines �2.600 0.0170**

(3.999) (0.00799)

W � metro 2.710

(3.520)

W � latitude 0.358***

(0.113)

W � IDs �0.349

(0.616)

W � LQ industry �4.345

(4.028)

W � large firms 0.0483

(0.147)

Constant �11.88*** �10.68*** �10.03*** �10.35*** �10.90***

(1.277) (1.288) (1.349) (1.367) (2.220)

ρ 0.107** 0.521 0.139

(0.0428) (0.532) (0.258)

θ 0.573*** 0.574*** 0.516*** 0.573***

(0.0393) (0.0394) (0.0355) (0.0393)

λ �0.0855** 0.0245

(0.0402) (0.191)

R2 0.8963 0.7939 0.8705 0.9178 0.686

Adjusted R2 0.8892 0.7797 0.8616 0.9057 0.6644

F-test 125.9689 56.1202 97.9455 75.7518 31.8319

p-Value 0 0 0 0 0

Wald test 881.7824 392.8414 685.6184 1,060.5252 222.823

p-Value 0 0 0 0 0

χ2 4.6243 4.4766 �2.4462 4.557

p-Value 0.099 0.1066 1 0.2073

Log likelihood function �92.5893 �90.2771 �90.351 �80.523 �93.5987

Akaike information criterion (AIC) 200.5542 200.7019 195.0459 209.1973

Schwarz criterion (SC) 0.4437 0.4324 0.5542 0.4823 0.4702

Observations 110 110 110 110 110

(d) June 15, 2020

(1) (2) (3) (4) (5)
Nonspatial SAR-MLE SEM-MLE SDM-MLE SAC-MLE
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TABLE 5 (Continued)

(d) June 15, 2020

(1) (2) (3) (4) (5)

Nonspatial SAR-MLE SEM-MLE SDM-MLE SAC-MLE

POP-65 0.517*** 0.470*** 0.467*** 0.454*** 0.459***

(0.0348) (0.0460) (0.0460) (0.0433) (0.0480)

Airline networks 0.216 0.233 0.236 0.182 0.248

(0.240) (0.232) (0.232) (0.235) (0.233)

Metropolitan area 0.300 0.289 0.290 0.294 0.300

(0.189) (0.183) (0.183) (0.199) (0.184)

Latitude 0.234*** 0.207*** 0.208*** 0.206*** 0.217***

(0.0354) (0.0365) (0.0356) (0.0371) (0.0378)

Industrial districts (IDs) 0.102*** 0.105*** 0.103*** 0.0950*** 0.1000***

(0.0308) (0.0299) (0.0299) (0.0316) (0.0303)

LQ industry 0.0992 0.0890 0.0879 0.139 0.0811

(0.235) (0.227) (0.227) (0.236) (0.226)

Large firms 0.0187** 0.0199** 0.0199** 0.0232*** 0.0199**

(0.00925) (0.00899) (0.00897) (0.00880) (0.00894)

W � POP-65 �0.959**

(0.375)

W � airlines �3.618

(4.631)

W � metro 2.352

(4.197)

W � latitude 0.403***

(0.131)

W � IDs �0.689

(0.714)

W � LQ industry �2.360

(4.681)

W � large firms 0.0996

(0.170)

Constant �9.816*** �8.618*** �7.914*** �8.661*** �7.004***

(1.418) (1.446) (1.519) (1.581) (1.780)

ρ 0.103* �0.461 �0.187

(0.0538) (0.849) (0.258)

θ 0.644*** 0.642*** 0.597*** 0.641***

(0.0442) (0.0441) (0.0411) (0.0440)

λ �0.103* �0.310

(0.0592) (0.330)

R2 0.8937 0.7926 0.8685 0.9172 0.686

Adjusted R2 0.8864 0.7783 0.8595 0.905 0.6644

F-test 122.4988 55.6705 96.2552 75.1894 31.8319

(Continues)
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In all estimates during and after the lockdown (Table 5b–d), we observe, as expected, that the higher the

incidence of old population, the higher the number of COVID-19 cases, and the associated coefficient is also highly

significant (99%) and stable over time. Moreover, we show that latitude has positive coefficients, being significant

for all models starting from the beginning of our observation period onwards (Table 5a–d).

Similarly, a positive correlation emerges between metropolitan areas and COVID-19 contagion, and the

coefficient associated with this variable is stable over time, even if it is not always statistically significant throughout

the period analyzed.

Airline networks maintain the expected positive signs. Not surprisingly, when comparing the results on airline

networks over time, we observe that, after the lockdown, the estimated coefficient is half the coefficient estimated

with data on March 9. Nevertheless, it remains statistical insignificant throughout the period of our analysis.

With regard to the local economic structure, spatial models confirm the results provided with the negative

binomial regressions, in that industrial districts continue to show a positive and statistically significant coefficient,

suggesting that provinces hosting manufacturing clusters have higher COVID-19 cases than provinces that do not.

Moreover, COVID-19 contagion is higher when the share of employees in large firms in the composition of the local

economy is higher, all else being equal.

Instead, like the results based on the binomial regressions, the evidence based on the linear spatial models is

unclear with respect to the role of industrial specialization. The impact of LQ industry in explaining COVID-19 conta-

gion is much more limited than IDs and large firms, and the associated coefficient is very low and insignificant. More-

over, the coefficient has a negative sign in some specifications with the whole set of Italian provinces (Table 5a,c),

and it turns significantly negative when the sample is restricted to south Italy (Table 6b).

Overall, our results may indicate that the industrial specialization of the local economic structure (LQ industry),

does not significantly contribute to the COVID-19 diffusion in Italy, once controlled for other variables capturing

local economic interactions (IDs) and the internal scale of the firm (large firms). This result may suggest that this

variable is too coarse to capture the real determinants of virus transmission. Moreover, the negative coefficients

after the lockdown may indicate that, even if industrial activities may have not completely closed, particularly those

associated with production plants because of their low teleworkability, they did not significantly contribute to the

spreading of the virus.

TABLE 5 (Continued)

(d) June 15, 2020

(1) (2) (3) (4) (5)

Nonspatial SAR-MLE SEM-MLE SDM-MLE SAC-MLE

p-Value 0 0 0 0 0

Wald test 857.4913 389.6937 673.7866 1,052.651 222.823

p-Value 0 0 0 0 0

χ2 4.541 4.2425 �2.054 4.557

p-Value 0.1033 0.1199 1 0.2073

Log likelihood function �95.8772 �93.6066 �93.7559 �82.6579 �93.5987

Akaike information criterion (AIC) 207.2133 207.5118 199.3158 209.1973

Schwarz criterion (SC) 0.471 0.4603 0.5826 0.5028 0.4702

Observations 110 110 110 110 110

Note: Linear spatial dependent models on COVID-19 confirmed cases. The parameter estimates are obtained by applying

maximum likelihood (ML). The dependent variable yp ,t is the inverse hyperbolic sine transformation of the number of

COVID-19 confirmed cases in province p at time t, defined as yp ,t¼ lnðCOVID19_p,tþðCOVID19_p,t2þ1Þ1
2 Þ. Standard errors are

in brackets. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.
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TABLE 6 Robustness checks: Spatial heterogeneity, spatial models for north and south provinces, March 9, 2020

(a) North Italy

(1) (2) (3) (4) (5)

Nonspatial SAR-MLE SEM-MLE SDM-MLE SAC-MLE

POP-65 0.561 0.393 0.357 0.155 0.347

(0.351) (0.314) (0.318) (0.332) (0.321)

Airline networks 0.336 0.387 0.378 0.957* 0.375

(0.571) (0.504) (0.504) (0.565) (0.504)

Metropolitan area 0.432 0.438 0.480 �0.0910 0.498

(0.442) (0.390) (0.390) (0.454) (0.399)

Latitude 0.492*** 0.349** 0.370*** 0.176 0.384**

(0.152) (0.143) (0.137) (0.160) (0.152)

Industrial districts (IDs) 0.191*** 0.192*** 0.191*** 0.214*** 0.191***

(0.0688) (0.0615) (0.0611) (0.0576) (0.0611)

LQ industry �0.103 �0.198 �0.178 �0.470 �0.171

(0.543) (0.488) (0.488) (0.489) (0.489)

Large firms 0.0149 0.0151 0.0172 0.0455** 0.0178

(0.0221) (0.0195) (0.0197) (0.0212) (0.0199)

W � POP-65 �9.122**

(4.264)

W � airlines 8.939

(11.51)

W � metro 1.145

(7.440)

W � latitude 2.299*

(1.227)

W � IDs 0.184

(0.912)

W � LQ industry �2.363

(10.87)

W � large firms 1.041***

(0.356)

Constant �24.98*** �17.25** �16.56** �7.526 �16.57**

(8.097) (7.506) (7.533) (8.094) (7.460)

ρ 0.263 �2.254* �0.129

(0.223) (1.191) (0.581)

θ 1.114*** �0.0911 0.967*** 1.110***

(0.0974) (0.0831) (0.0865) (0.0970)

λ 1.111*** �0.125

(0.0971) (0.178)

R2 0.5057 0.3373 0.3807 0.6098 0.0732

Adjusted R2 0.4471 0.2587 0.3072 0.5047 �0.0367

F-test 8.6246 4.2895 5.1804 5.8034 0.6662

(Continues)
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TABLE 6 (Continued)

(a) North Italy

(1) (2) (3) (4) (5)

Nonspatial SAR-MLE SEM-MLE SDM-MLE SAC-MLE

p-Value 0 0.0007 0.0001 0 0.6996

Wald test 60.372 30.0268 36.2627 81.248 4.6631

p-Value 0 0.0001 0 0 0.701

χ2 14.1666 14.6617 14.4912 14.7111

p-Value 0.0008 0.0007 0.0007 0.0021

Log likelihood function �106.4761 �99.3928 �99.1452 �91.4881 �99.1205

Akaike information criterion (AIC) 218.7855 218.2904 216.9762 220.241

Schwarz criterion (SC) 2.3223 2.3041 2.9101 2.8749 3.2331

Observations 67 67 67 67 67

(b) South Italy

(1) (2) (3) (4) (5)
Nonspatial SAR-MLE SEM-MLE SDM-MLE SAC-MLE

POP-65 0.225*** 0.0712 0.0718 �0.0134 0.0737

(0.0632) (0.113) (0.109) (0.102) (0.109)

Airline networks 0.309 0.364 0.324 �0.642 0.301

(0.750) (0.699) (0.683) (1.162) (0.706)

Metropolitan area 1.191** 1.070** 1.094** 1.864*** 1.095**

(0.504) (0.455) (0.455) (0.544) (0.455)

Latitude 0.532*** 0.473*** 0.521*** 0.310 0.531***

(0.104) (0.0991) (0.108) (0.279) (0.130)

Industrial districts (IDs) �0.0419 �0.113 �0.117 �0.184 �0.116

(0.151) (0.139) (0.138) (0.166) (0.138)

LQ industry �1.380* �1.227* �1.178* �0.0762 �1.167*

(0.723) (0.675) (0.673) (0.728) (0.678)

Large firms 0.00517 0.00397 0.00160 �0.0516 0.00130

(0.0394) (0.0372) (0.0372) (0.0483) (0.0372)

W � POP-65 �1.150

(1.259)

W � airlines �39.95

(31.76)

W � metro 47.61**

(20.53)

W � latitude 0.0487

(0.337)

W � IDs �7.081

(5.486)

W � LQ industry 57.64**

(22.55)
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4.3 | A discussion of the main results

Although a strict comparison of the results shown in Sections 4.1 and 4.2 is subject to certain limitations, we provide

a summary and a general discussion of the evidence provided by our study in what follows.

Taken together, the two kinds of models adopted in this article suggest that, in the Italian case, more economi-

cally dynamic areas and more densely populated cities have experienced the highest numbers of COVID-19 cases,

differently from the spatial pattern of the outbreak in Germany where the areas most affected by the contagion have

been smaller cities in a rural environment where a ‘superspreading’ event occurred (Kuebart & Stabler, 2020).

As for the role of the demographic structure, the present study confirms previous findings on the positive asso-

ciation at the local level between a higher incidence of older population and COVID-19 contagion. In our regressions,

the significance level and the size of the coefficient associated with population over 65 years old increase over time.

It should be emphasized that a potential source of bias for the present research is that data on confirmed cases that

is our dependent variable are based on the tests performed for the detection of COVID-19, and in the early phase of

TABLE 6 (Continued)

(b) South Italy

(1) (2) (3) (4) (5)

Nonspatial SAR-MLE SEM-MLE SDM-MLE SAC-MLE

W � large firms �2.619*

(1.426)

Constant �21.05*** �17.28*** �16.83*** �11.85 �16.74***

(4.026) (4.083) (3.905) (12.32) (3.919)

ρ 0.832 �2.791 �0.240

(0.836) (2.592) (1.884)

θ 1.006*** 1.000*** 0.818*** 0.999***

(0.115) (0.114) (0.0961) (0.114)

λ �0.171 �0.204

(0.132) (0.288)

R2 0.6029 0.5004 0.5292 0.597 0.5145

Adjusted R2 0.5298 0.4083 0.4425 0.415 0.4251

F-test 8.2427 5.4364 6.1018 3.2798 5.7531

p-Value 0 0.0002 0.0001 0.0029 0.0001

Wald test 57.699 38.0546 42.7128 45.9165 40.2715

p-Value 0 0 0 0 0

χ2 21.7142 22.1692 26.8013 22.1857

p-Value 0 0 0 0.0001

Log likelihood function �66.6657 �55.8086 �55.5811 �48.3736 �55.5728

Akaike information criterion (AIC) 131.6171 131.1622 130.7471 133.1457

Schwarz criterion (SC) 2.0678 2.7607 12.0778 3.8569 13.7326

Observations 46 46 46 46 46

Note: Linear spatial dependent models on COVID-19 confirmed cases. The parameter estimates are obtained by applying

maximum likelihood (ML). The dependent variable yp ,t is the inverse hyperbolic sine transformation of the number of

COVID-19 confirmed cases in province p at time t, defined as yp ,t¼ lnðCOVID19_p,tþðCOVID19_p,t2þ1Þ1
2 Þ. Standard errors are

in brackets. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.
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the epidemic, the screening in Italy was limited to persons with higher degrees of illness, which were mostly old peo-

ple. Therefore, it is possible that this correlation would have been lower had the screening and tracking been massive

and systematic in that period.

As for the role of mobility via air transportation, this study confirms the findings of Bourdin et al. (2020), who

found that the number of airport passengers is positive but not particularly significant.

With regard to the economic structure, while our results based on the spatial models are still unclear on the role

of industrial specialization, they did substantiate the role of large firms and spatial clustering of establishments spe-

cialized in manufacturing industries. In this respect, our analysis confirms previous findings (Ascani et al., 2020;

Antonietti et al., 2020; Becchetti et al., 2020; Bourdin et al., 2020; Musolino & Rizzi, 2020) and contributes additional

evidence on the importance of factors shaping the spatial organization of economic activities. It is worth noting that

clustering of manufacturing firms traditionally finds advantages in the possibility of recurrent face-to face relation-

ships. Besides, many ‘leader’ firms operating in Italian industrial districts have long been inserted in global value

chains.

The regressor capturing environmental and climate conditions has a positive impact, suggesting that the epi-

demic spreads more easily in specific conditions, likely associated with colder and wet climates, such as in northern

Italy and some districts of central Italy. The associated coefficients are significant at 1% significant level even after

the lockdown (Tables 4 and 5), and when the sample is divided into two macroregions (Table 6). We also interpretate

our finding on the correlation between latitude (or north–south gradient) and COVID-19 propagation as evidence on

the impact of economic dynamisms in all the perspective of social life and productions (e.g., traveling, competitive

networking, less secularized social life), going beyond the specific economic predictors used in this paper.

In summary, the results of the estimations based on multivariate cross-section models at the beginning, during,

and after the lockdown provide preliminary evidence that a number of socioeconomic variables are positively and

significantly correlated with the COVID-19 outbreak in Italy. In particular, we confirm that virus spread correlates

with POP-65, metropolitan area, latitude, and industrial districts. These effects are statistically more robust in the lin-

ear spatial specifications than in the aspatial negative binomial ones. Moreover, spatial models provide clear-cut evi-

dence on the positive correlation between COVID-19 diffusion and the incidence of large firms in the local

economy.

One of the more significant findings to emerge from this study is the correlation between a north–south gradi-

ent and the strength of COVID-19 infection. This evidence is further confirmed by the robustness analysis specifi-

cally performed to handle spatial heterogeneity. The findings of this study have several important policy implications.

In particular, the results suggest the need for designing different containment policies in advanced regions and

policy-subsidized, disadvantaged contexts of southern Italy, as suggested in the concluding section.

5 | CONCLUDING REMARKS, POLICY IMPLICATIONS, AND FURTHER
DEVELOPMENTS

The COVID-19 pandemic, which began in December 2019 in the city of Wuhan in China, soon spread around the

world with devastating consequences on public health and with highly uneven economic impacts among countries

and regions. The pandemic has highlighted the lack of preparedness and resilience of increasingly interconnected

economic systems.

It was soon evident that ending the global SARS-CoV-2 pandemic would have required implementation of multi-

ple population-wide strategies, including social distancing, testing, and contact tracing. Hence, many national govern-

ments in Europe and the rest of the world have imposed restrictive measures on mobility to slow the spread of the

virus, with varying degrees of intensity (Hale et al., 2020). Following the Asian example, Italy was one of the first

countries in Europe to impose a complete lockdown, on March 11, 2020, as the World Health Organization (WHO)

declared COVID-19 a pandemic. By the end of February, Italy was already the epicenter of the diffusion in Europe.

What are the conditions that made Italy more vulnerable to such disease?
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This study set out to provide empirical evidence on the local determinants of contagion in Italy by means

of spatial analysis. To this aim, we consider the 110 Italian provinces (NUTS-3 level) and information on

COVID-19 diffusion at different times from March to June 2020, coupled with environmental and socioeco-

nomic variables.

Early studies have highlighted that the pre-existing spatial organization of the economy matters in COVID-19

transmission (e.g., Ascani et al., 2020; Becchetti et al., 2020; Bourdin et al., 2020; Musolino & Rizzi, 2020). Hence,

any analysis on this issue should take into consideration various economic profiles as possible determinants of the

spread of the virus. Following the same perspective, we focus on the role of economic structure, but we also con-

sider demographic and environmental characteristics as contextual factors facilitating the proximate spread of the

virus. Moreover, a control variable relating to a population’s mobility behavior is included in the estimation models.

Our analysis confirms the high variation of the coronavirus infection across Italian provinces. This high heteroge-

neity is associated with several factors such as population aging, latitude, urban–rural divide, industrial clusters, and

firm size. Our findings are in line with broader results on the role of economic structure (e.g., Antonietti et al., 2020;

Ascani et al., 2020; Becchetti et al., 2020). In particular, the prominent role played by industrial districts in our analy-

sis is in line with the evidence provided by Ascani et al. (2020) in that they show that COVID-19 infection is mostly

associated with a local specialization in geographically concentrated manufacturing activities.

To face the unexpected spread of similar epidemics in the future, we are convinced that the first-best policy

response – in the absence of a specific vaccine – is massive and systematic screening and tracking + culture (use of

a mask, all) + quarantine and collaboration of the adequately informed and educated population. This is the preven-

tion system adopted by Taiwan and South Korea, which has proved extremely effective with negligible economic

damage. Although, when the first-best policy response is not feasible, as it was the case in Italy in early 2020, con-

tainment measures are the necessary and second-best policy response to consider.

Hence, the results provided by this study can contribute to the current debate on how to define mitigating mea-

sures and how to design their implementation. First, the positive relation between the north–south gradient and the

strength of COVID-19 infection points to the relevance of a well-known dichotomy in the Italian economic and

social conditions. This study could therefore be useful also for the design of containment policies addressing EU tar-

gets, such as Objective 1 regions of the Lisbon strategy, as southern Italy completely corresponded with Objective

1 regions. At the same time, our results indicate the need for locally differentiated containment policies based on a

comprehensive understanding of spatial conditions as far as the spreading of contagion is concerned. A system dif-

ferentiating administrative regions (NUTS-2 level) with a vast series of restrictions based on a set of multiple indica-

tors has been adopted in Italy since fall 2020. This system seems to be better adapted to recognize priorities in

containment actions based on the local diffusion of COVID-19, although criticism exists on the fact that administra-

tive regions, especially the largest in size (e.g., Lombardy) and those most differentiated in socioeconomic conditions

(e.g., Campania), are too heterogeneous as far as the spreading of virus is concerned. In this way, many provinces

and municipalities in affected regions where heavy restrictions were undertaken, can have zero or few contagions,

free hospitals, and no deaths from COVID-19. A refined spatial modulation of containment measures is thus neces-

sary, and this study suggests that provinces are sufficiently homogeneous contexts as far as territorial and socioeco-

nomic variability is concerned.

Finally, although some limitations in the available information on contagion still exist in Italy (probably dealing

with a basic underestimation of the real incidence of COVID-19),4 we are convinced that the use of a diachronic

analysis of (aggregated) contagion statistics at consecutive time points will provide an indirect contribution to more

reliable (and statistically robust) estimation of the evolution of COVID-19 pandemics in representative countries

such as Italy.

The epidemiological emergency phase have called into question the traditional spatial hierarchies. The territories

widely equipped with infrastructures and services and integrated on a global scale, which in ordinary conditions are

attractive for economic and residential activities, have emerged as particularly at risk because they are more exposed

to the spread of the contagion. On the other hand, in the context of social distancing, the peripheral areas that tend
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to be considered vulnerable have revealed the advantages of greater availability of space and more rarefied interper-

sonal contacts. Nonetheless, the pandemic has also made more evident than before how infrastructure – digital and

physical – is in short supply in more remote areas and should be a policy priority to foster economic development. In

fact, first evidence with Irish data suggests that more affluent, dense and highly populated, better educated, and bet-

ter broadband-provisioned towns have greater potential for social distancing and remote working (Crowley &

Doran, 2020). In the ‘new normal’, it is likely that housing choices will change in light of new spatial organization of

workplaces (teleworking), and new housing and leisure preferences. Accordingly, it will be interesting to understand,

in retrospect, whether and to what extent the emerging behaviors during the emergency period have translated into

permanent changes in territorial structures and whether these changes have had positive effects on the well-being

of local communities. More importantly, policymakers and practitioners should consider whether and how to adapt

regional policies and urban planning to these possible modifications in individual preferences.
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ENDNOTES
1 For the case of Vò Euganeo and the high frequency of asymptomatic SARS-CoV-2 infection, see Lavezzo et al., 2020.
2 As a starting point, we have preliminarily estimated a Poisson model. The variance of the dependent variable for the whole

sample is nearly 2,500 times larger than the mean. After the regression, we tested the Poisson goodness of fit (gof) of the

model (with the Stata poisgof command). Results are: LR χ2 (7) = 104,379.55; Prob > χ2 = 0.0000; Pearson goodness of

fit = 55,236.38; Prob > χ2 (94) = 0.0000. The large value for χ2 in the gof is another indicator that the Poisson distribution

is not a good choice. A highly significant (p < 0.05) test statistic from the gof indicates that the Poisson model is

inappropriate.
3 As for the classic LM tests proposed by Anselin (1988), the critical value to reject the null hypothesis of no spatially lagged

dependent variable, at 5% significance, amounts to 9.36, while the critical value to reject the null hypothesis of no spatially

autocorrelated error term amounts to 5.72. When using the robust LM tests proposed by Anselin et al. (1996), the

hypothesis of no spatially lagged dependent variable must still be rejected, though only at 10% significance, whereas the

hypothesis of no spatially autocorrelated error term can no longer be rejected; the robust LM test for the spatial lag

amounts to 3.72 and for the spatial error to 0.08. If both the conditions hold true, it indicates that the spatial lag model

(SAR) is more appropriate (Elhorst, 2014). Both tests are based on the residuals of the OLS model and are asymptotically

distributed as a χ2 distribution with one degree of freedom. The important difference is that the robust LM-error test

corrects for the presence of local spatial lag dependence. Similarly, the robust LM-lag statistic tests the null hypothesis of

no spatial correlation in the dependent variable, correcting for presence of local spatial error dependence. Nevertheless,

Elhorst (2014) also suggested that the initial approach of spatial econometrics with a central focus on the spatial lag model

(SAR) and the spatial error model (SEM), with one type of interaction effect, is too limited and that the focus should shift

to other models such as the spatial Durbin model (SDM). Unfortunately, in this case, the interaction effects among the

dependent variable on the one hand and interaction effects among the error terms on the other hand are only weakly

identified.
4 For evidence of a very high proportion of asymptomatic patients, see, among others, Bassi et al., 2021.
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APPENDIX A

TABLE A1 Correlation matrix among regressors

POP-65
Airline
networks

Metropolitan
area Latitude

Large
firms

Industrial
districts (IDs)

LQ
industry

POP-65 1

Airline networks 0.4809* 1

Metropolitan area 0.5149* 0.4167* 1

Latitude 0.0773 �0.0304 0.0311 1

Large firms 0.5019* 0.3701* 0.3725* 0.4435* 1

Industrial districts

(IDs)

0.3234 0.0958 0.1336 0.429* 0.2147* 1

LQ industry 0.0281 �0.1187 0.0271 0.6645* 0.2886* 0.5032* 1

*indicates significance at the 5% level.
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TABLE A2 Diagnostic tests for spatial dependence

March 9, 2020 March 31, 2020 April 30, 2020 June 15, 2020
(1) (2) (3) (4)

GLOBAL Moran MI �0.0118 0.0363 0.0699 0.077

p-Value 0.8504 0.001 0 0

GLOBAL Geary GC 1.0394 0.9387 0.9283 0.9274

p-Value 0.3509 0.1991 0.0611 0.0488

GLOBAL Getis-Ords GO 0.0083 �0.0257 �0.0494 �0.0544

p-Value 0.8504 0.001 0 0

Moran MI error test �0.5111 4.5951 8.1533 8.9125

p-Value 0.6093 0 0 0

LM error (Burridge) 0.3651 3.4683 12.8246 15.5856

p-Value 0.5457 0.0626 0.0003 0.0001

LM error (robust) 0.7835 2.9028 11.6832 14.3356

p-Value 0.3761 0.0884 0.0006 0.0002

LM lag (Anselin) 1.2553 4.0227 6.8305 6.5954

p-Value 0.2625 0.0449 0.009 0.0102

LM lag (robust) 1.6738 3.4572 5.6891 5.3453

p-Value 0.1958 0.063 0.0171 0.0208

LM SAC (LMLag+LMErr_R) 2.0389 6.9255 18.5138 20.9309

p-Value 0.3608 0.0313 0.0001 0

March 9, 2020

All North South
(1) (2) (3)

GLOBAL Moran MI �0.0118 �0.0144 �0.046

p-Value 0.8504 0.9652 0.47

GLOBAL Geary GC 1.0394 0.9761 0.8904

p-Value 0.3509 0.6014 0.0824

GLOBAL Getis-Ords GO 0.0083 0.0094 0.0134

p-Value 0.8504 0.9652 0.47

Moran MI error test �0.5111 �0.2305 �4.2912

p-Value 0.6093 0.8177 0.0000

LM error (Burridge) 0.3651 0.2556 0.9755

p-Value 0.5457 0.6131 0.3233

LM error (robust) 0.7835 0.9449 1.7617

p-Value 0.3761 0.331 0.1844

LM lag (Anselin) 1.2553 1.815 0.1035

p-Value 0.2625 0.1779 0.7477

LM lag (robust) 1.6738 2.5042 0.8897

p-Value 0.1958 0.1135 0.3456

LM SAC (LMLag+LMErr_R) 2.0389 2.7599 1.8652

p-Value 0.3608 0.2516 0.3935
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TABLE A4 Elasticity: Total, direct, and indirect effects – Different spatial models for north and south Italy, March
9, 2020

(a) Model: SAR

North Italy South Italy

Total Direct Indirect Total Direct Indirect

POP-65 1.091 0.9019 0.1892 0.3465 0.2621 0.0844

Airline networks 0.0125 0.0104 0.0022 0.0207 0.0156 0.005

Metropolitan area 0.0236 0.0195 0.0041 0.0852 0.0645 0.0208

Latitude 3.7428 3.0939 0.6489 8.8285 6.6776 2.1509

Industrial districts (IDs) 0.1231 0.1018 0.0213 �0.0371 �0.028 �0.009

LQ industry �0.0562 �0.0464 �0.0097 �0.4415 �0.334 �0.1076

Large firms 0.0536 0.0443 0.0093 0.0129 0.0097 0.0031

(b) Model: SDM

North Italy South Italy

Total Direct Indirect Total Direct Indirect

POP-65 0.4151 1.0391 �0.624 �0.0642 �0.1169 0.0527

Airline networks 0.03 0.0751 �0.0451 �0.0357 �0.0651 0.0294

Metropolitan area �0.0047 �0.0119 0.0071 0.1457 0.2654 �0.1197

Latitude 1.8194 4.5546 �2.7353 5.6695 10.3287 �4.6593

Industrial districts (IDs) 0.1327 0.3323 �0.1995 �0.0594 �0.1082 0.0488

LQ industry �0.1291 �0.3231 0.1941 �0.0269 �0.049 0.0221

Large firms 0.1559 0.3902 �0.2343 �0.1638 �0.2984 0.1346

W � POP-65 �16.1031 �40.3126 24.2095 �1.6185 �2.9486 1.3301

W � airlines 0.1902 0.4763 �0.286 �0.6375 �1.1614 0.5239

W � metro 0.0395 0.0989 �0.0594 1.0271 1.8713 �0.8441

W � latitude 15.655 39.1909 �23.5359 0.2576 0.4693 �0.2117

W � IDs 0.0783 0.196 �0.1177 �0.6495 �1.1833 0.5338

W � LQ industry �0.4301 �1.0768 0.6467 5.711 10.4044 �4.6934

W � Large firms 2.3452 5.871 �3.5258 �2.3614 �4.3021 1.9407

(c) Model: SAC

North Italy South Italy

Total Direct Indirect Total Direct Indirect

POP-65 0.9625 1.0439 �0.0815 0.3598 0.3849 �0.0251

Airline networks 0.0122 0.0132 �0.001 0.0172 0.0183 �0.0012

Metropolitan area 0.0269 0.0291 �0.0023 0.0876 0.0937 �0.0061

Latitude 4.1149 4.4632 �0.3483 9.9322 10.6261 �0.6939

Industrial districts (IDs) 0.1229 0.1333 �0.0104 �0.0383 �0.041 0.0027

LQ industry �0.0485 �0.0526 0.0041 �0.4212 �0.4506 0.0294

Large firms 0.063 0.0683 �0.0053 0.0042 0.0045 �0.0003
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F IGURE A1 Geography of significant determinants of COVID-19 cases
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