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A B S T R A C T

Urban growth and land-use change are a few of many puzzling factors affecting our future cities. Creating a
precise simulation for future land change is a challenging process that requires temporal and spatial modeling.
Many recent studies developed and trained models to predict urban expansion patterns using Artificial Intelli-
gence (AI). This study aims to enhance the simulation capability of Cellular Automata Markov Chain (CA-MC)
model in predicting changes in land-use. This study integrates the Artificial Neural Network (ANN) into CA-MC to
incorporate several driving forces that highly impact land-use change. The research utilizes different socio-
economic, spatial, and environmental variables (slope, distance to road, distance to urban centers, distance to
commercial, density, elevation, and land fertility) to generate potential transition maps using ANN Data-driven
model. The generated maps are fed to CA-MC as additional inputs. We calibrated the original CA-MC and our
models for 2015 cross-comparing simulated maps and actual maps obtained for Irbid city, Jordan in 2015.
Validation of our model was assessed and compared to the CA-MC model using Kappa indices including the
agreement in terms of quantity and location. The results elucidated that our model with an accuracy of 90.04%
substantially outperforms CA-MC (86.29%) model. The improvement we obtained from integrating ANN with CA-
MC suggested that the influence imposed by the driving force was necessary to be taken into account for more
accurate prediction. In addition to the improved model prediction, the predicted maps of Irbid for the years 2021
and 2027 will guide local authorities in the development of management strategies that balance urban expansion
and protect agricultural regions. This will play a vital role in sustaining Jordan's food security.
1. Introduction

Urbanization has been expediting worldwide in recent decades,
threatening natural resources, and landscape character (Gharaibeh et al.,
2017). Urban growth is a complex process linked to many influential
factors that play a significant role in the temporal growth (Lavalle et al.,
2001). This triggered the need to understand urban growth patterns and
trends in order to consider the appropriate mitigation measures dealing
with and directing this growth (Aburas et al., 2016). Prediction of urban
growth trends became a fundamental constituent to ecosystem preser-
vation and sustainable development (Aburas et al., 2016). In urban
growth simulations, decisive factors and the chronology of urban growth
must be considered to understand the temporal and spatial relationship
accurately (Musa et al., 2016; Aburas et al., 2017). Thus, improving a
simulation model to take the driving forces into account is expected to
eh).
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enhance model prediction capabilities. This study aims to improve the
modeling of land-use change predictability using AI methods by incor-
porating driving forces. The results are expected to enhance planning
strategies and direct urban growth and future land-use change plans. This
is applied on a case study to simulate future land-use change for the fast
growing city of Irbid, Jordan.

There are several techniques to study urban growth and land-
use change, such as Remote Sensing (Arsanjani et al., 2013) and
Geographic Information System (GIS). Several models have been
developed to perform land-use change prediction and urban growth
expectations including, but not limited to, Cellular Automaton (CA)
(Syphard et al., 2005), CA-Markov (CA-MC) model (Memarian
et al., 2012), Logistic Regression (LR) (Hu and Lo, 2007), and
Artificial Neural Network (ANN) (Wang and Mountrakis, 2011)
(Table 1).
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Table 1. Applications of various models for simulating and predicting land-use change.

Model Author Strength Limitation

CA (Vaz et al., 2012)
(Yang et al., 2008)

Has an open structure that easily integrated with
knowledge-driven models.

Only dependent on spatial data.
Not appropriate to make a realistic simulation.

Sim-Wight (Bununu, 2017)
(Sangermano et al., 2010)

A suitable model for understanding the relationship
between the variables.

SLEUTH (Saxena and Jat, 2019)
(Nahavandya et al., 2017)

Helpful to assess the effect of different scenarios of
policies.

The simulation process restricted by fixed factors
that cannot incubate or change.

Support Vector
Machin (SVM)

(Karimi et al., 2019)
(Shafizadeh-Moghadam et al., 2017a)

Reliable for studying complex relations.
It is integrated with other models easily.

The model does not explain the weights of the
driving forces.

CA-Markov (Aburas et al., 2017)
(Jafari et al., 2016)
(Memarian et al., 2012)

Modeling spatiotemporal dynamic.
Good accuracy result.

The model does not address the driving forces of the
land change.

Land Transformation
Model (LTM)

(Pijanowski et al., 2002)
(Pijanowski et al., 2005)

High accurate results for predicting land change. The model Still needs more development to be easy
to use for researchers.

ANN (Megahed et al., 2015)
(Shafizadeh-Moghadam et al., 2017b)

Integrates with other models easily.
ANN can detect potential interdependencies
through the implied driving forces
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CA-based models for urban growth simulation are first employed in
the 1980s (Batty and Xie, 1994; Sant�e et al., 2010). CA model can
simulate urban growth depending on the presumption that future pat-
terns of urban growth are affected by past local interaction between
land-uses. Among the advantages of CA model are its flexibility and
simplicity. Additionally, CA model has the flexibility of being integrated
with other models (Aburas et al., 2016).

However, traditional CA is not appropriate to make a realistic simu-
lation for urban growth due to the limitations in the individual model
technique where it is only dependent on spatial data (Arsanjani et al.,
2013). Additionally, CA model is limited in implementing driving forces
for land-use change which is difficult for this model to process
(Mohammady et al., 2014). Consequently, it is recommended to modify
and integrate the traditional CA model with a quantitative and
spatio-temporal model such as Markov Chain (MC) model to achieve a
better result and to overcome these limitations (Couclelis, 1997; White
and Engelen, 2000; Aburas et al., 2017).

The Markov chain (MC) analysis is a stochastic modeling approach
that has been used widely in urban growth modeling (Halmy et al.,
2015). It works under the physics assumption that future state depends
only on the current state (Bell and Hinojosa, 1977). The MC method
monitors the temporal change in land-use type depending on transi-
tion matrices (Guan et al., 2011). In CA-MC combined model, MC
controls the temporal changes in land-use (Guan et al., 2011), while
the spatial changes are determined by a spatial filter of the CA model
(Nouri et al., 2014). Although the potential of CA-MC model has been
recognized by previous studies, the realistic simulation needs to take
into account the driving forces in terms of social, environmental, and
economic driving forces. For this reason, the CA-MC model maybe
integrated with other models to obtain a better understanding of
changing growth patterns and to improve the model's prediction
capability (Aburas et al., 2017).

To improve CA-MC model, a few studies have combined socioeco-
nomic and environmental data for urban growth simulation (Guan et al.,
2011). Aburas et al. (2017) integrated Analytical Hierarchy Process
(AHP) and Frequency Ratio (FR) based on the CA-MC model for simu-
lating urban growth model. Other studies integrate experts' opinions or
Multi Criteria Evaluation (MCE) with CA-MC model to improve its pre-
diction capabilities. However, due to the complexity of studying land
change, these methods have limitations that include insufficient knowl-
edge about the area of interest, subjectivity in weighting the variables,
and reliability of the results (Park et al., 2011). Furthermore, due to the
complexity of land change, it seems doubtful that experts have suffi-
ciently detailed understanding of the process of land change to apply
AHP and MCE effectively (Shafizadeh-Moghadam et al., 2017b). Another
weakness of MCA is its ability to simulate change in a linear fashion.
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Consequently, it assumes linear trends among the spatial-temporal pro-
cess. Therefore, there is a need to create and implement models that do
not face these limitations and rather introduce a better understating of
land change process and more accurate results depending on Artificial
Intelligence (AI) (Shafizadeh-Moghadam et al., 2017b).

Artificial Neural Network (ANN) is one of the most powerful models
that depend on artificial intelligence. It can be defined simply as nodes or
neurons that are managed in multiple layers (Mohammady et al., 2014).
The order of neurons in layers and the connection patterns within these
layers is called Architecture (Maithani, 2010). ANN can capture the
non-linear relationships between factors and deal with complex patterns
such as urban growth and changes in land-use with great efficiency.
Moreover, its provision of non-linearities and its ability to deal with
missing or fuzzy data as well (Aburas et al., 2019).

ANN networks train by a process of learning from correcting errors
where the preferred results must be known; that process is called Back-
Propagation (BP) algorithm (Zhou, 1999). The BP algorithm randomly
selects premier weights and then calculates the variance between the
expected and calculated output results. After that, the weights are
modified according to a generalized delta rule (Rumelhart et al., 1985).
The model repeats this process of feeding single and BP until achieving
the desired results (Pijanowski et al., 2002).

For simulation purposes, ANN model identifies changes in land-use
and other patterns using data that illustrate the behavioral dynamics of
land-use phenomenon (Mohammady et al., 2014). Therefore, it can
detect potential interdependencies through implied driving forces (Sha-
fizadeh-Moghadam et al., 2017a). Moreover, the significance of using
ANN model is that the model illustrates the effects of each driving factor
used in the simulation operation and specifies which factors affect the
land change more to give a clear understanding of the land change
process (Park et al., 2011).

Considering the potentials of the three models (CA, MC, and ANN),
this research aims to enhance the ability of the CA-MC model by inte-
grating it with ANN model. It will improve its predictive power by
incorporating the driving forces and comparing the accuracy results of
the ANN-CA-MC model with models that depended on experts' opinions
in previous studies.

1.1. Driving forces of land-use change

The main drivers of land-use change that are employed in simulation
models mainly include slope, distance to roads and urban centers, and
land fertility (Park et al., 2011; Guan et al., 2011; Memarian et al., 2012;
Arsanjani et al., 2013; Musa et al., 2016; Aburas et al., 2017; Shafiza-
deh-Moghadam et al., 2017a,b). The following is a brief discussion of
these drivers of land-use change.
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The gentler a land slope is, the easier it is to have land-use changes
(Jin et al., 2015; Şatir, 2016; Zhang et al., 2019). This is regardless of the
type of change. Changing land-uses from agricultural to urban or vice
versa are more likely to happen with lower land slopes (Gharaibeh et al.,
2020).

High population density is becoming an attraction for further urban
growth especially in developing countries with rural-urban migrations or
countries with refugees (Liu and Yamauchi, 2014; Zhang et al., 2019;
Zhou et al., 2020). There is a tendency to live among the matching social
and ethnic groups. In addition, people try to associate with the areas that
belong to their relative for social inclusion purposes. In other areas, high
population densities act as repellants for new coming wealthy residents.
Therefore, regardless of its impact on attracting or repelling urban
growth, it is an important factor in land-use change.

Land fertility (soil fertility) is always attractive for more agricultural
expansions. However, many countries are facing soil fertility degradation
which impacts land-use change (El-Seedy and Saeed, 2019; Prishchepov
et al., 2020). However, with the absence of firm urban and environ-
mental policies, such valuable lands may be lost to urban changes
(Prishchepov et al., 2020). This issue is of extreme importance in the case
study of this research paper. Many of the fertile valuable lands are now
within the city limits and policies of preservation of agricultural and
fertile lands are not enforced (Gharaibeh et al., 2020).

Distance to main road is a major land-use driver (Zhang et al.,
2019). Accessibility has been an encouraging factor of land-use change. It
is attracting more urban uses and in some cases agricultural or industrial
uses (Farah et al., 2019). It is a driver of investment. With the absence of
strict policies, lands turn quickly to urban uses along the main roads
creating linear towns and cities and linking urban areas (Prishchepov
et al., 2020). This factor is negatively impacting landscape character as
well (Gharaibeh et al., 2017).

Distance to commercial is also a driving force for urban land
changes (Simwanda et al., 2020; Zhang et al., 2019). In some cases, this
variable is the second strongest driver of land-use change (Simwanda
et al., 2020). People like to live close to commercial services and it is one
of the critical requirements of sustainable living environments. In addi-
tion, commercial land-uses are usually associated with better trans-
portation systems making lands adjacent to commercial uses more
accessible in general. Therefore, it is expected that commercial uses will
attract change of adjacent uses (Gharaibeh et al., 2019).

Distance to urban center can be a very strong driver of change
where the closer the land to urban centers the easier it is for land to
change to urban uses. This variable is also linked to transportation and
commercial uses in general (Zhang et al., 2019). In our case study, this
variable together with the radial nature of the city plan are also expected
to impact the urban land-uses. Even when the plan is not radial, urban
centers are strong drivers of land change (Gharaibeh et al., 2019).

In many case studies, elevation variation can be a considerable driver
of change (Zhang et al., 2019; Simwanda et al., 2020). This is especially
true in places with rugged terrain and land-use variations.

The following section includes the methodology which contains the
preparations for the study comprising the dataset and pre-processing of
data, accuracy assessment, land classification, case study data sources,
the integrative model (ANN-CA-MC) explaining each part of the inte-
gration alone and explaining them combined, and themodel validation at
the end of this section. The results section includes CA-MC simulation
results, CA-MC based ANN simulation results, and model validation. The
discussion section presents the model comparison, model characteristics,
and the case study assessment.

2. Methodology

2.1. Study area

This study is applied to the city of Irbid to test the model and accu-
racy. Irbid city is located at 32� N and 35.51� E Northern Jordan adjacent
3

to the Syrian borders. The city has 24 districts and it covers about 324
km2. Irbid is witnessing an increase in the population and urban growth
over the past nine years due to the regional instability and the flow of
Syrian refugees (Al-Kofahi et al., 2018, 2019). Due to the lack of re-
strictions and the absence of preserved land, many periphery villages are
absorbed within Irbid city agglomeration. These are also included within
the parameters of this study as well (Figure 1). In the future urban growth
and land use change, it is additionally important for this case study to
preserve agricultural land located in Irbid Governorate which together
constitutes 15.6% of the national agricultural land and produces more
than 30% of the food in the country (DOS, 2017).

2.2. Dataset and pre-processing

In this study, land classification followed first-level Anderson land-
use/land cover classification (Wang and Hofe, 2008). We employ three
land-use categories: urban land, undeveloped land, and agricultural land
(Table 2). Our study is limited to consider these categories because other
types of land-use such as rangeland, forest land, water, wetland, tundra,
and perennial snow or ice, are not present by nature in the study area.

We used maps of the study area of the years: 2003, 2009, and 2015
due to the data availability of the study area maps for these years
(Figure 2). The map of 2009 is acquired from Landsat-7 images;
Enhanced Thematic Mapper (ETMþ) sensor with a spatial resolution of
30 m. It is obtained from the Landsat archive at https://earthexplorer
.usgs.gov. The identification number for the scenes is
LE71740382009086ASN00. ENVI version 5.3—which is a software for
processing and analyzing geospatial imagery—is employed to prepare
the study area images. A shapefile of the study area is used to select the
area from the satellite scene. Then a supervised classification method in
ENVI software is used to classify land-use type. This study is using the
band combinations order 3-4-1 of the satellite scene. Then, thirty testing
samples were chosen for each land class where the Maximum Likelihood
classification is applied to classify the satellite image. Finally, we applied
a set of smoothening and aggregation operations to smooth class
boundaries and combine small or isolated pixel areas in the image. This
method is also applied by Bhatti et al. (2019) in his study of land cover
change assessment based on satellite data.

Aiming to improve the accuracy, the output classification results are
reviewed visually many times and then updated by adding more training
sets. Different levels of smoothening and aggregation are also applied.
The used smoothing and aggregation method was the one in ENVI 5.3
software. Smoothing and aggregation are post-classification algorithms
that smooth class boundaries and combine small or isolated pixel areas.
The process starts by specifying the smooth kernel odd size of 3. Thus the
3 � 3 square kernel center pixel takes the value corresponding to the
majority class values in the kernel. Then an aggregate size of 9 � 9 pixels
is selected. Any region with kernel sizes equal to or less than 9 � 9 are
aggregated to the adjacent larger region. The output results (raster image
for the land cover classes) are exported to GIS for accurately assessing
and preparing the land cover map.

The other classified maps for 2003 and 2015 are excerpted from
Al-Kofahi et al. (2018). They also followed the same process to classify
land-uses which are reported with an overall land cover classification
accuracy of 88% and 87% respectively.

2.2.1. Accuracy assessment
Ninety sample points were randomly distributed over the classified

study area images using GIS. True color high-resolution images were
used for accuracy assessment and building the confusion matrices. Each
point location was examined based on the polygon that it was dropped in
and was compared with the reference image to know if either it was
classified correctly or not. Kappa coefficient (Congalton and Green, 2009;
Clevers, 2009), Overall Accuracies, and User and Producer accuracies
were calculated based on the confusion matrix (Congalton, 1991; Lali-
berte et al., 2004). The results showed that the Overall Accuracy for

https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov


Figure 1. The study area of Irbid city located in Northern Jordan.

Table 2. Land-use classification categories based on Anderson land-use/land
cover classification (Wang and Hofe, 2008).

Symbol Land type Included Areas

1 Undeveloped (Barren land) Undeveloped Lands that are not built-up,
uncultivated, and abandoned bare land.

2 Agricultural Land Crops, orchards, and cultivated lands.

3 Urban or built-up land Built-up area and street network

A. Gharaibeh et al. Heliyon 6 (2020) e05092
classification was 87.78% (Table 3). The confusion matrix calculated
Kappa coefficient of 81.63% for this table.

This research employed land cover for Irbid city in three different
years; 2003 and 2015 which were generated by Al-Kofahi et al. (2018);
and 2009 which was generated by the researchers. The three maps
(Figure 2) were prepared to be used in the next stage. Based on statistics
done at the Department of Statistics in Jordan, the governorate popula-
tion grew from 928,292 in 2003, to 1,064,400 in 2007, and well into 1,
770,158 inhabitants in 2015 (DOS, 2004, 2009; and 2015).

Previous studies identified the significant factors that determine the
potential urban growth and land-use changes (Park et al., 2011; Guan
et al., 2011; Memarian et al., 2012; Arsanjani et al., 2013; Musa et al.,
2016; Aburas et al., 2017; Shafizadeh-Moghadam et al., 2017a,b). These
studies were dependent on the experienced opinions and reviews of
previous studies. However, the main factors used in urban growth
simulation models included slope, distance to roads and urban centers,
and land fertility (Park et al., 2011; Guan et al., 2011; Memarian et al.,
4

2012; Arsanjani et al., 2013; Musa et al., 2016; Aburas et al., 2017;
Shafizadeh-Moghadam et al., 2017a,b; Gharaibeh et al., 2020). In order
to improve the prediction process, some studies recommended consid-
ering factors such as population density as the driving force for urban
growth and land change (Shafizadeh-Moghadam et al., 2017a,b). In this
study, researchers addressed all the factors above that were defined and
recommended by most simulation studies.

Most of the data are obtained from Greater Irbid Municipality (GIM)
(main road network, population density, land fertility (MoA, 1993; MoA,
1995), urban centers, land elevation (obtained from Digital Elevation
Model (DEM)), commercial centers, slope (Table 4). The distances to
main roads, urban centers, and commercial centers are calculated using
Euclidean distance function in TerrSet 18.21 software (Figures 3 and 4).
Euclidean distance is the straight-line distance between two points.
Euclidean distance is used to calculate the closest and farthest on the
maps. By this method, the model recognizes the area and calculates the
influence of each factor on the land-use change based on distance.
2.3. ANN-CA-Markov model

ANN facilitates the automatic calibration of the CA-MC model and
assists the incorporation of a variety of driving forces in the model
(Figure 5). The sections hereafter explain each model (CA, MC, and ANN)
separately. Then an assessment of this process of the modified model and
its capabilities is applied based on the methodological flowchart
(Figure 5).



Figure 2. Irbid city land cover maps in 2003, 2015 (Al-Kofahi et al., 2018), and 2009 by the authors.

Table 3. Confusion matrix for land cover classification result for Irbid 2009.

Reference Data

Class Urban Agriculture Undeveloped Row Total User's Accuracy

Classified Data Urban 29 2 3 34 85.29

Agriculture 2 26 2 30 86.67

Undeveloped 1 1 24 26 92.31

Column Total 32 29 29 90 88.09

Producer's Accuracy 90.63 89.66 82.76 87.78
(Overall accuracy)
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Table 4. Data and data sources used in the analysis.

Data Source Image Date

Landsat-7 (ETMþ) USGS website
https://earthexplorer.usgs.gov/

2009

Land cover maps (Al-Kofahi et al., 2018) 2003, 2015

Digital Elevation Model SRTM 30m resolution Greater Irbid Municipality 2012

Road Network Greater Irbid Municipality 2015

Land Fertility Greater Irbid Municipality and Ministry of Agriculture, Jordan 2015; based on 1993–1995 MoA soil fertility projects

Topographic Map Greater Irbid Municipality 2012

Population Density Greater Irbid Municipality 2015

Urban and Commercial Centers Greater Irbid Municipality 2015
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2.3.1. Cellular Automata
Cellular Automata (CA) is a spatial modeling technique that has been

widely used in the simulation of urban systems. CA popularity comes
from its ability to model the proximity, which is considered as an
essential spatial element that reflects the dynamics of land-use changes.
CA assumes that a region has a higher tendency to change to a land-use
category if the neighboring regions belong to that category (Memarian
et al., 2012) (Figure 6). The basic principle of CA is that the past urban
development pattern affects future development through the local in-
teractions which collectively constitute the global urban growth patterns
(Sant�e et al., 2010).

In CA, the area is divided into a grid of cells. Each cell is equivalent to
a pixel on the area map. The cellular state represents one of the land-use
categories. The state of the cell in the next step depends on the cell's
current state as well as the current states of the surrounding cells (the cell
neighborhood) according to a set of transition rules. Von Neumann and
Moore neighborhood types are the two most commonly employed in CA
(Memarian et al., 2012). This study utilizes 5-by-5 Moore neighborhood
filter to construct the transition rules to be used for predicting future
land-use changes.
2.3.2. Markov Chain model and CA-Markov
Markov Chain (MC) is a stochastic process that describes a sequence

of events in which the future event depends only on the current events
and previous events without the need to consider the whole event his-
tory. The ability to express the temporal changes from a one-time period
to another makes MC an appropriate tool for modeling land-use changes,
thus form a basis to predict future changes.

MC model describes the possible transformation between different
land-uses via a transition probability matrix. Each entry in the matrix
represents the probability of changing a pixel state from one land-use to
another. At least two different maps for the same area for two distinct
timestamps are needed to learn the probability of transition between these
two time periods. In this study, researchers used maps of the greater city
of Irbid for the years 2003 and 2009. The transition matrix was generated
using TerrSet.

However, this MC model is not able to produce model changes in
spatial dimensions, i.e., it doesn't account for the influence of the
neighboring cells. Consequently, MC per se has been rarely utilized to
study urbanization and land-use change (Arsanjani et al., 2013). Driven
by combining the strengths of CA and MC, CA-MC approach has been
proposed to integrate both in a unified framework (Guan et al., 2011;
Arsanjani et al., 2013; Shafizadeh-Moghadam and Helbich, 2013; Aburas
et al., 2017). CA-MC is a strong approach that considers both spatial and
temporal changes (Singh et al., 2015; Hamad et al., 2018). In addition,
CA-MC has an open structure that facilitates incorporating a variety of
external socio-economic and environmental factors that influence the
urbanization processes, that is the transition rules of CA can be designed
in many ways to account for these factors (Sant�e et al., 2010). The
combination of both CA and MC makes the prediction stronger, but not
sufficient.
6

2.3.3. Artificial Neural Network
Artificial Neural Network (ANN) is a machine learning technique that

is used to model complex patterns and behavior. This study employs ANN
to create potential transition maps-based on using historical data. These
maps capture the effect of various environmental and socio-economic
factors on land-use change. Several advantages make ANN stronger
than the methods that have been previously used to incorporate the
driving forces in simulating urban growth. First, it can efficiently model
the complex system in which the relationship between the interacting
variables is non-linear. Second, no prior knowledge of the data gener-
ating process or data distribution is needed to implement and train ANN
(Anantwar and Shelke, 2012). Third, to some extent, it can cope with
noisy, redundant, and inaccurate data (Guan et al., 2005). In the end, it
does not ask for expert choice weighting and rather depends on adjust-
able coefficients that can be trained to reduce the error. Besides, and as a
result of implementing this method, the researchers will be able to see the
hierarchy of influential factors on land-use change.

This study employs a two-layer feedforward neural network. In
addition to the input layer, the network has one hidden layer and an
output layer. The input is a one-dimensional vector of size “m” that
indicate the values of “m” environmental and socio-economic variables.
The hidden layer is composed of “n” hidden nodes, each node is a neuron
that uses a non-linear activation function to obtain a nonlinear mapping
from inputs to outputs.

The output layer has one node to compute the probability that the
land-use of a data point (a pixel on the map) will change to the type “t”.
Since we are dealing with three land-uses, we formulated three binary
classification problems, thus, we trained three networks. The networks
classified each data point into urban or non-urban, agricultural or non-
agricultural and undeveloped or developed land-use, respectively.

The architecture of the ANN utilized in this work is shown in Figure 7.
The lines represent weighted connections between the nodes in a layer
and the subsequent layer. The ANN is trained using the Backpropagation
algorithm (BP) to learn these weights using supervised learning, i.e.,
using already classified data points (Rumelhart et al., 1985). BP
randomly chooses initial weights. Then the input representation of data
points that are previously classified flow through the network. The input
representation was multiplied by the weights and non-linear differen-
tiable activation functions are applied. The output of the network and the
actual class of the point were used to calculate the error. The error
summarizes a set of data points that are misclassified. The error is
backpropagated through the network in a backward direction to adjust
the weights of the neural network. The weights were updated according
to a learning rate using a (gradient descent)-based optimization function
(Karayiannis, 1999). This process iteratively performs until the error
stabilizes at a low level.

The training data is a set of points (pixels) that are randomly
selected from the maps of 2003. Each pixel is represented by a vector
that is composed of the values of the seven driving factors considered
in this study (slope, population density, land fertility, distance to
road, distance to commercial, distance to the urban center, and
elevation). In addition, each pixel is assigned to a land-use type

https://en.wikipedia.org/wiki/Moore_neighborhood
https://earthexplorer.usgs.gov/


Figure 3. Factors used in ANN model (A) elevation (B) slope (C) land fertility (D) population density.
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obtained from the corresponding map of 2009. The points are used to
train three ANNs; one for each land-use and its complements. For
example, one ANN is trained to decide whether each pixel in the map
of 2009 is going to be turned into Urban or non-Urban, and so on).
The probability maps are used as potential transition maps to improve
CA-MC. Land Change Modeler (LCM) function in TerrSet software is
7

used to train the ANN and generate the potential transition map.
Training the ANNs involved tuning a set of hyperparameters such as
the number of hidden nodes and the learning rate. TerrSet applies an
automatic method to choose the best values of the hyperparameters
that produce the best performance on a hold-out data among a
randomly selected set of values.



Figure 4. More Factors used in ANN model (E) distance to road (F) distance to urban centers (G) distance to commercial.
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By combining the transition rules of CA, the transition matrix of MC
model, and the potential maps that are produced by the ANN, our
approach ANN-CA-MC considers both spatial and temporal dynamics of
the urban growth as well as incorporating the impact of the driving
forces.
8

2.4. Models validation

land-use map of 2015 was used in model validation. The two models
CA-MC and ANN-CA-MC will be validated by measuring their accuracy
and comparing the results. Satisfactory validity is usually associated with



Figure 5. Flowchart of the study methodology.

Figure 6. CA modeling for land-use change in a neighborhood (Yang et al., 2016).
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values greater than 75% (Mitsova et al., 2011) or 80% (Eastman, 2006,
2012). The validation function on TerrSet software is employed using the
real knownmap of 2015 to calculate Kappa indices. The validationmodel
determines the agreement and disagreement between the simulated and
the reference (existing) maps. Quantity disagreement occurs when cells
quantity of a category of the simulation map is different from the same
category in the reference map. Location disagreement happens when a
cell's location of a category of the simulation map is different from the
same category in the reference map. This methodology was calculated
9

based on an approach that was developed by Pontius and Millones
(2011). Moreover, crossing and comparing with the real map method
was used to calculate Kappa coefficient using the confusion matrix.

3. Results

Since the aim of this research is to improve predictive models of
simulation, it will focus on the methods specifically, then review the
results of the prediction. The results will explain CA-MC model



Figure 7. Multilayer neural network architecture.

Table 6. Markov transition area in square kilometers matrix of the period from
2003-2009.

Cells in Expected to transit to

Class 1 Class 2 Class 3

Class 1 94.990 28.203 10.182

Class 2 28.303 84.153 28.334

Class 3 20.273 32.25 62.338
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simulation process, CA-MC based on ANN simulation, validation of the
models, and predicted land-use change for 2021 and 2027.
3.1. CA-MC model simulation

The calibration of CA-MC model for 2003–2008 to predict the year of
2015. The results of the transition probability matrix illustrate the like-
lihood of the land-use type prospective to change to other land-use types
(Table 5). In the table, class 1, class 2, and class 3 presented undeveloped
land, agricultural land, and urban land-use, respectively. For example,
Class 2 (agricultural land) is prone to change to Class 3 (urban land-use)
by 20.12% (Table 5) and this corresponds with a prospective area change
of about 28.334 km2 (Table 6). The area matrix also registers the pixels
prone to change from land-use/cover to another within the designated
period of time (Table 6).

The conditional likelihood images present the prospective of each
land-use class found at each pixel within the time period (Figure 6). The
CA-MC simulation model showed the projected map for the study area
(Figure 7). The map illustrated the three classes where urban areas and
undeveloped land increased by 33.6 km2 (3.52%) and 22.94 km2 (3.84%)
respectively, while the agricultural land lost about 56.55 km2 (5.91%)
(Figure 8). The final map is illustrated in Figure 9.
3.2. CA-MC based on ANN simulation

The ANN model showed the gains and losses between 2003 and 2009
for each land-use type. The analysis illustrated that the urban area (class
3) gained 2.49% while agricultural land (class 2) lost about 4.20%. In
addition, undeveloped land (class 1) gained about 1.70% of the total area
(Figure 10). When ANN was implemented to model transition maps for
the undeveloped land class, there were two maps as a result; the first was
Table 5. Markov transition probability matrix of the period from 2003 to 2009.

Cells in Expected to transit to

Class 1 Class 2 Class 3

Class 1 0.7122 0.2115 0.0763

Class 2 0.2010 0.5977 0.2012

Class 3 0.2362 0.0376 0.7262
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for prospect areas that have the potential to become agricultural land,
and the other was for undeveloped land that has the potential to become
an urban area.

The accuracy rate for this model is 84.98% and based on Eastman
(2006) any accuracy rate should be at least 80% to accept the training
result (Eastman, 2006, 2012) (Table 7). The skill statistic varies from -1
to 1 where skill of 1 means perfect forecasting, while a skill of -1 means
worse than chance. The skill measure in this study achieved 0.6997
(69.97%) (Table 7). The analysis shows that applying appropriate vari-
ables is affecting the model learning accuracy, and by 84% model ac-
curacy is means that the driver forces helps the model to predict more
accurately.

3.2.1. Forcing a single independent variable to be constant
We trained the model using all the variables, then determined which

variable was the most influential and which one was the least influential.
This is done so that var. 1 through 7 are: 1. distance to main roads, 2.
slope, 3. distance to urban center, 4. distance to commercial, 5. Land
fertility, 6. population density, and 7. elevation. To give an example,
Table 8 shows the transition from undeveloped land to agricultural land.
In this example test, variable 2 (slope) was the most affecting variable for
the transition from undeveloped land to agriculture while variable 1
(distance to main road) was the least influential (Table 8).

The model then tested every possible pair of variables to figure out
which pair had the least effect on the skill when held constant. It
continued in this fashion, progressively holding another variable con-
stant until only one variable was left. The results showed the accuracy
and skill measure for every variable constant process (Table 9).

3.2.2. Backwards stepwise constant forcing
The backward stepwise analysis worked by removing a chosen vari-

able each time and testing the model because sometimes the skill of the
model slightly increased as some of the variables were removed. There-
fore, there is no need to further remove any of the variables (Table 10).
After ANN training model was finished, the model created a transition
map that showed the potential areas for agriculture (Figure 11).

Finally, this step was applied to the other three classes (Figure 12).
The CA-MC model based on the ANN created the projection map for the
study area in 2015 (Figure 13). The map featured the three classes where
the researcher used this map in the validation stage to test the accuracy of
the new modified model.

The process resulted with most effective driving forces as well. It
showed that population density, slope, distance to commercial centers
and land fertitlity are the most effective factors in the land change pro-
cess (Table 11).
3.3. Validation of the models

The result of the validated CA-MC map shows that the Kappastander
was 86.29% which is an acceptable result for a simulation model
(Pontius, 2000), when the Kappano was 89.25%. Therefore Kappalocation
was 91.13%. On the other hand, the validation of CA-MC-ANN model
map for 2015 showed that the Kappastander was excellent at 90.04%
while the Kappano and the Kappalocation were 92.19% and 93.11%
respectively. Figure 14 presents the successes and errors of the simu-
lation. The result of the validation illustrated that the integration of



Figure 8. Markov conditional probability of being (A) class 1 (B) class 2 (C) class 3 in 2015.
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ANN with the CA-MC model had successfully improved the model in
terms of accuracy.

In addition, the kappa coefficient was calculated in order to compare
the accuracy of this model to earlier studies' results. Google Earth maps
from 2015 were used to assess the discrepancy in the projected map,
Figure 9. Projected land-use ma

11
which was recorded in the confusion matrix. The kappa coefficient,
overall accuracy, and user and producer accuracy were calculated using
the confusion matrix (Table 12). The results showed that overall accuracy
for the projected map was 94.44%when the calculated Kappa coefficient
was 94.00% (Table 11).
p of 2015 using CA-Markov.



Figure 10. The gains and losses of lands between 2003 and 2009 by percentage
of area.

Table 8. The results of forcing a single independent variable to be constant.
Testing the transition from undeveloped land to agricultural land.

Model Accuracy (%) Skill measure Influence order

With all variables 84.98 þ0.6997 N/A

Var. 1 constant 85.02 þ0.7005 7 (least influential)

Var. 2 constant 75.75 þ0.5150 1 (most influential)

Var. 3 constant 85.00 þ0.7001 6

Var. 4 constant 79.64 þ0.5929 3

Var. 5 constant 78.02 þ0.5605 2

Var. 6 constant 84.96 þ0.6993 4

Var. 7 constant 84.98 þ0.6997 5

Table 9. The results of forcing all independent variables except one to be
constant.

Model Accuracy (%) Skill measure

With all variables 84.98 þ0.6997

All constant but var. 1 56.26 þ0.1252

All constant but var. 2 73.52 þ0.4704

All constant but var. 3 44.40 -0.1119

All constant but var. 4 67.60 þ0.3519

All constant but var. 5 78.65 þ0.5730

All constant but var. 6 48.88 -0.0224

All constant but var. 7 49.71 -0.0057

Table 10. Backwards stepwise constant forcing.

Model Variables included Accuracy (%) Skill measure

With all variables All variables 84.98 0.6997

Step 1: var.[1] constant [2,3,4,5,6,7] 85.02 0.7005

Step 2: var.[1,7] constant [2,3,4,5,6] 85.02 0.7005

Step 3: var.[1,7,6] constant [2,3,4,5] 84.93 0.6987

Step 4: var.[1,7,6,3] constant [2,4,5] 84.60 0.6920

Step 5: var.[1,7,6,3,4] constant [2,5] 83.43 0.6685

Step 6: var.[1,7,6,3,4,2] constant [5] 78.65 0.5730

Table 7. Parameters and performance of the model.

Input layer neurons 7

Hidden layer neurons 7

Output layer neurons 2

Requested samples per class 10,000

Final learning rate 0.0003

Momentum factor 0.5

Sigmoid constant 1

Acceptable RMS 0.01

Iterations 10,000

Training RMS 0.3242

Testing RMS 0.3275

Accuracy rate 84.98%

Skill measure þ0.6997
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3.4. Predicted land-use change for 2021 and 2027

The modified CA-MC model based on ANN was then calibrated to
predict urban growth and land change for the study area in 2021 and
2027. The researchers predicted future maps based on the assumption
that the pattern of land change will follow a similar pattern to that of the
past and it will be affected by the same factors at the same level
(Figure 15).

The predicted map for 2027 illustrated that urban areas would in-
crease from 57.1 km2 in 2003 to 144.7 km2 in 2027 showing an area
increase of 87.6 km2. On the other hand, the agricultural land would
decrease by 74.7 km2 when undeveloped land would also decrease by
12.8 km2 when comparing 2003 with the predicted 2027 (Table 13). The
future forecasting for Irbid land change showed that agricultural land
will lose about 23.07% of its area compared to 2003. On the other hand,
the total urban area in 2027 is expected to change by 27.03% compared
to 2003 changing its percentage from 17.63% to an overwhelming
44.66% (Figure 16).

4. Discussion

The purpose of this research is to develop the AI models that simulate
land-use change, namely, CA and MC models. This research integrates
these models with ANN to improve the future land-use change prediction
accuracy, incorporate more driving forces to aid in achieving more
meaningful prediction, and compare the accuracy results of the ANN-CA-
MC model with other models that depend on experts' opinions attained
from previous case studies such as AHP. It is expected that this will help
to overcome the shortcomings of the individual models by incorporating
them in a hybrid model that has better potential for predicting land-use
change. The following sections will compare the models, explain their
characteristics, and discuss the case study findings.
4.1. Models comparison

Shafizadeh-Moghadam et al. (2017b) applied ANN, Weight of Evi-
dence (WOE), and Fuzzy Multi-Criteria Evaluation models to predict
future land-use where they achieved an accuracy of 85%, 75%, and 73%,
respectively. Additionally, Maithani (2010) implemented a Logistic
Regression Model and achieved an accuracy of 81%. In a more recent
study done on Addis Ababa using CA-MC model, the overall accuracy
showed 86%, 87%, and 87% for the years 2005, 2011, and 2015,
respectively (Mohamed andWorku, 2020). However, in our research, the
employment of ANN with CA-MC model resulted in higher overall ac-
curacy (90.04%).

Shafizadeh-Moghadam and Helbich (2013) used CA-Markov model,
with MCE to cover up the limitations of implementing driver forces of the
original model and reported an accuracy level of 83%. Aburas et al.
(2017) utilized the CA-MCmodel based on AHP and FR to simulate urban
growth in Seremban, Malaysia. Their models succeeded in terms of
addressing the most important factors that govern urban growth in the
city and achieved 88.1% and 88.2% accuracy levels, respectively. How-
ever they incorporated subjective weighting of variables making the



Figure 11. Potential area for transition from undeveloped to agricultural lands.

Figure 12. Potential transition area to (A) undeveloped land (B) agriculture land (C) urban area.
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Figure 13. Projected land-use map for 2015 using CA-MC Model based on ANN.

Table 11. The influence of driving forces on land-use change.

Model Influence order

Population Density 1 (most influential)

Slope 2

Distance to Commercials centers 3

Land fertility 4

Distance to Urban Centers 5

Distance to Main Roads 6

Elevation 7 (least influential)
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results hard to reproduce when using other experts to weigh the driving
forces (Park et al., 2011). Furthermore, due to the complexity of land
change, it seems doubtful that experts have a sufficiently detailed un-
derstanding of the process of land change to apply AHP and MCE effec-
tively (Cannemi et al., 2014; Shafizadeh-Moghadam et al., 2017b).

Therefore, despite the extensive efforts to minimize errors, there
appear to be shortcomings resulting from subjective methods of
14
weighting the variables such as the one used in AHP. There are model
limitations which, cannot incorporate nonlinear and qualitative vari-
ables, too. ANN substituted both shortcomings.

In more detail, applying AHP and MCE to develop the traditional CA-
Markov model is successful in covering up the limitation of addressing
the driving forces. These methods are flexible and can be easily inte-
grated with the model and enable the researcher to use different opinions
and achieve the ultimate goal more efficiently. However, a questionnaire
survey is needed in such studies to calculate driving forces weights which
are usually very subjective since AHP depends on subjective expert
opinions. There is a limitation that when using AHP the results might not
be repeatable, especially if the experts are changed each time (Cannemi
et al., 2014; Labib, 2019).

These methods also show limitations where there is insufficient
knowledge about the area of interest or when they fail in covering all
aspects and variables affecting land-use change. Although adding more
variables is preferable as it is expected to reduce errors, some of the data
may not be accessible all the time.

On the other hand, ANN acts independently regardless of the statis-
tical data distribution, or the lack of statistics for specific variables (Zhou



Figure 14. Component of agreement and disagreement for CA-MC model based
on ANN.
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et al., 2017). It has been reported that with little dataset training for the
ANN model, accurate test results are possible (Lee et al., 2004; Paola and
Schowengerdt, 2007; Park et al., 2011). The results of this study support
ANN capability for training even with limited temporal inputs and
Table 12. Confusion matrix for projected map 2015.

Reference Data

Class Urban Agriculture

Classified Data Urban 27 0

Agriculture 0 33

Undeveloped 2 0

Column Total 29 33

Producer's Accuracy 93.10 100.00

Figure 15. Projected land-use
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driving forces. In contrast with other methods, ANN allows for the
detection of potential interdependencies. This is done through implied
driving forces that are subject to adaptation in each significant case study
(Shafizadeh-Moghadam et al., 2017b).

Adding ANN to the CA-MC model can internally compute weights in
the hidden layers by incorporating nonlinear and qualitative variables.
The integration of CA-MC with ANN allows the model to capture the
different variables and dynamics behind land transformations, which
significantly improves the CA-MC model's prediction capability. Thus,
ANN can be considered an unbiased tool that is appropriate to assign
weights that are derived with minimum prediction errors. As a result, it is
fair to say that ANN approach reduces inaccuracy as well as the possi-
bility of expert bias.

4.2. Model characteristics

In summary, CA model was useful in spatial change modeling, MC
model enabled the modeling of temporal change, while ANN reduced the
prediction error and incorporated the driving forces with the weights that
achieved the most accurate optimization process. As a result, this
research (ANN-CA-MC) enabled higher accuracy levels where its accu-
racy reached 90.04% while other models failed to reach this level of
accuracy and had less reliability because it depended on expert choices. It
Undeveloped Row Total User's Accuracy

1 28 96.43

2 35 94.29

25 27 92.59

28 90 94.44

89.29 94.44 (Overall Accuracy)

map for 2021 and 2027.



Table 13. Land change areas; actual and predicted.

Undeveloped land km2 Agriculture land km2 Urban area km2 Total area km2

2003 106.4 160.4 57.1 324

2009 120.1 126.7 77.1 324

2015 104.1 123.5 96.4 324

2021* 98.7 104.5 120.7 324

2027* 93.6 85.7 144.7 324

* Predicted areas.

Figure 16. Land area change from 2003 to the predicted year 2027. Grey:
undeveloped land, Green: agricultural land, Yellow: urban land.
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is worth mentioning that the improvement in the ANN-CA-MC model
performance is not restricted to the output accuracy, but also exceeds that
to the incorporation of driving forces during the prediction process.

Using such a model ensures accurate estimates for predicted land-use
losses and land-use gains in each land-use in terms of percentage, area,
and location (Table 13, Figures 15 and 16). It also enabled the compar-
ison between driving forces to show which is more effective on the
change in each scenario. Where the model illustrates that population
density, slope, distance to commercial centers, and land fertility are
respectively the most effective driving forces in the land change process
in the case of Irbid city. This model is flexible and tolerates the incor-
poration of other future socioeconomic factors such as land value and
population income. Adding more or less driving forces is usually site-
specific or case sensitive. Our model is made so that the most impor-
tant variables are incorporated.

This case study only had three types of land-uses. However, other case
studies may have more variations in the land-uses such as preserved
lands, water bodies, and other limiting land-uses which will surely enrich
the model. These limitations are based on the available case study
characteristics but they are not shortcomings of the research. When
applying this model to other case studies, it will be an easy task to add
more land-use types to the research model. It is expected that any future
study will need to customize the model to benefit the most from its
capability to predict land-use change. This model is made general to
serve as a template that suites other cases around the world. Finally, this
study will help planners to predict land-use change more precisely and
also give them a more detailed understanding of the land-transformation
process.
4.3. Case study assessment

Based on the land-use change predictions for 2027 in the city of Irbid,
agricultural lands will decrease by 46.6% changing its overall area from
49.52% in 2003 to 26.45% in 2027 (- 74.7 km2) (Table 13, Figure 16).
The urban sprawl is quickly eating up agricultural land, however, it is still
doubtful that the population will grow to fill up the expected urban land
area growth by 153.4% (þ87.6 km2) (Table 13, Figure 16). Based on the
model, the selected driving forces successfully contributed to the pre-
dictability capacity of future land-uses since the accuracy level is greater
16
than 90%. The results highlight the major forces contributing to change
especially population density, slope, distance to commercial centers, and
Land fertility.

Population density is an impacting factor that cannot be ignored
especially in this case facing many slowly incoming migrations such as
many places around the globe (Liu and Yamauchi, 2014; Zhang et al.,
2019; Zhou et al., 2020). However, the relationship between population
projections and real estate growth is an issue that is worth investigating.
The model is showing substantial urban growth which may impact the
land-use balance.

Both gentle slopes and moderate ones can be attractive to land-use
change (Jin et al., 2015; Şatir, 2016; Zhang et al., 2019; Gharaibeh
et al., 2020). The slope maps show gentle terrains in the western and
southern parts of the city of Irbid. In these areas, building is becoming
more appealing to some in order to have a good view of the plains to-
wards the east. In addition, places with low percentages of slope are
easier to grow into and therefore, it is experiencing vast changes from
agricultural land-uses to urban land-uses. Especially with the absence of
inforced policies, this is growing out of hand in the city and the predicted
future is no better than the current conditions (Gharaibeh et al., 2020).
This is an alarming status for the future comprehensive plans of the city
of Irbid.

Agricultural lands will be jeopardized and policies have to focus on
limiting these expected land-use changes (Prishchepov et al., 2020). The
concentration on ecological and agricultural protection policies should
be given a priority in the city to limit the spatial changes leading to urban
sprawl. The unplanned loss of agricultural and fertile lands will cause soil
degradation as experienced in many parts of the world (El-Seedy and
Saeed, 2019; Prishchepov et al., 2020). Food security is a major issue in
the city of Irbid since these agricultural lands are the wheat fields that
feed the nation (Gharaibeh et al., 2020).

Judging from the maps, areas adjacent to the main road network were
more prone to change to urban areas. This result is also shared by pre-
vious research that focused on this variable as a driver of change (Farah
et al., 2019; Zhang et al., 2019). This issue is also linked to distance to
commercial land-use since this type of land-use is habitually located on
the main road network (Simwanda et al., 2020; Zhang et al., 2019). With
loose urban policies, this may lead to creating linearly expanding and
connected cities and towns (Prishchepov et al., 2020). This is also jeop-
ardizing the landscape character especially traveling from one place to
another (Gharaibeh et al., 2017). Future agricultural land will be masked
by the linear urban areas located on the main roads blocking the trav-
elars' view. The easy terrain with mainly flat land may have contributed
to this ease of horizontal expansion as well as changes (Jin et al., 2015;
Şatir, 2016; Zhang et al., 2019).

5. Conclusion

This study improved the capability of CA-MCmodel in simulation and
prediction of land transformation. The performance of the model
improved after integrating it with ANN model. The integrated approach
was implemented to cover up the limitation of the original CA-MC model
which is not utilizing the factors that drive the process of land change. On
the other hand, ANN model can detect potential interdependencies
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through the implied driving forces, which made it an ideal choice for this
integration. A wide range of data and the most driving forces can be
utilized in integrating ANNwith original CA-MC. Based on the validation
model, the original CA-MC and ANN-CA-MC models achieved 86.29%
and 90.04% respectively. The ANN-CA-MC model improved the original
model in terms of performance with no detectable limitations and more
accurate results. ANN-CA-MC was calibrated to simulate urban growth
for the years 2021 and 2027 in Irbid. Finally, ANN-CA-MC model will
help planners and decision-makers to predict urban growth and give
them a more detailed understanding of how the extent and pattern of the
land-use change process takes place. It will surely support the efforts by
authorities to sustain food security by protecting fertile lands and agri-
cultural fields.
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