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Abstract

Opto-thermocapillary flow-addressed bubble (OFB) microrobots are a potential tool for the 

efficient transportation of micro-objects. This microrobot system uses light patterns to generate 

thermal gradients within a liquid medium, creating thermocapillary forces that actuate the bubble 

microrobots. An interactive control system that includes scanning mirrors and a touchscreen 

interface was developed to address up to ten OFB microrobots. Using this system, the parallel and 

cooperative transportation of 20-μm-diameter polystyrene beads was demonstrated.
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Background

Microrobots, nontethered microstructures that can physically manipulate objects, are flexible 

tools for micro-transportation. Various types of microrobots have successfully transported 

objects such as microbeads [1–4], microgels [5], and single cells [4,5].

Microrobotic transportation has two advantages when compared to tools such as optical 

tweezers, optically induced dielectrophoresis (ODEP), and micromanipulators. First, 

microrobotic transportation does not rely on the optical properties or chemistry of the target 
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objects and the surrounding medium. In contrast, optical tweezers require a refractive index 

difference between the objects and medium [6]. The medium properties can also play a role 

in ODEP manipulation, as the electrical conductivity of the medium can affect the electric 

field gradients that create the dielectrophoretic force [7]. Secondly, although the most 

widely used micromanipulators can achieve high velocities during manipulation, their 

throughput is still limited [8], as this is a serial form of manipulation. Parallel operation of 

multiple micromanipulators is limited by the working space, due to the macroscale 

components of the micromanipulators. In contrast, the parallel transportation of microrobots 

has been demonstrated [1,9–15].

One method for achieving parallel microrobot actuation used frequency-selective 

microrobots that have mechanical responses at different resonant frequencies [1]. Time-

division-multiplexed control signals were sent to two magnetic microrobots to achieve 

simultaneous, independent locomotion. Other frequency-based addressing methods were 

applied to three magnetic stick–slip microrobots, independently addressed in parallel [10], 

and to helical microrobots to enable different swimming velocities [11]. Other methods of 

controlling multiple magnetic microrobots include having differing magnetization strengths 

[12] or temporarily disabling the magnetization of the microrobots [13]. Electrostatic 

actuation was another method used, where slight variations in microrobot dimensions 

enabled independent addressing [14,15].

However, to simultaneously actuate more microrobots independently by magnetic force or 

electrostatic force, more complicated control and fabrication methods will be necessary. It is 

difficult to generate localized magnetic fields at the microscale, so each microrobot has to be 

fabricated slightly differently in order to be addressed independently using the methods 

mentioned above.

It is straightforward to create multiple localized optical patterns by using optical elements 

such as micromirrors [16], spatial light modulators [17], or scanning mirrors [18]. Optical 

tweezers and OET take advantage of this capability to manipulate multiple targets at the 

same time [16,17]. This feature of optically addressed systems is also inherent in the opto-

thermocapillary flow-addressed bubble (OFB) microrobot system [19,20]. However, unlike 

ODEP and optical tweezers, the OFB microrobots are gas bubbles in a liquid medium. The 

actuation of the OFB microrobots is less dependent on the material property and does not 

require direct laser or electrical field penetration through target objects, limiting the potential 

for damage to the objects under manipulation.

The actuation of the OFB microrobot has been discussed thoroughly in previous 

publications [19,21]. In summary, a heated region is generated by the selective illumination 

of the absorbing substrate with a light source. The heated region creates a temperature 

gradient on the bubble surface, driving a toroidal thermocapillary flow that can be divided 

into two principal components of interest (Figure 1). The lateral component of the 

thermocapillary flow is parallel to the substrate and moves the bubble towards the center of 

the light pattern. The desired effect from this flow component is that the bubble will follow a 

moving light pattern and will be trapped by a stationary light pattern. Another 
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thermocapillary flow component, perpendicular to the substrate around the bubble 

perimeter, arises due to the temperature gradient along the vertical direction (z-direction).

OFB microrobots have transported microbeads [21], cell-laden hydrogels [19,20], and single 

cells [21,22]. Although possible, the parallel and independent addressing of more than five 

OFB microrobots has not been demonstrated. In this paper, multiple OFB microrobots were 

addressed by an interactive control system with a scanning mirror. Up to ten OFB 

microrobots are addressed and configured. In addition, four OFB microrobots were used to 

simultaneously pattern microbeads in hydrogel prepolymer. Microbeads were also handled 

by four OFB microrobots to demonstrate its cooperative working ability.

Methods

The optical setup of the OFB microrobot is depicted in Figure 2. A 980-nm laser (Laserlands 

980MD-0.4 W-BL, Laserlands, Wuhan, China) was focused to a spot width of 4.4 μm by a 

0.42-N.A. ×20 objective lens (Mitutoyo, Takatsuku, Kawasaki, Japan) onto the absorbing 

substrate. Unlike previous setups for single OFB microrobots [19,21], a dual-axis scanning 

mirror system (Newport GVSM002, Newport Corporation, Irvine, CA, USA) is integrated 

into the light path to direct the laser to different locations on the substrate.

The OFB microrobot actuation takes place on an absorbing substrate. The absorbing layer 

on the substrate is made of a layer of indium tin oxide (ITO) that is 100 nm in thickness, 

topped with a layer of 1-μm-thick amorphous silicon (α-Si). This absorbing layer is able to 

convert light energy into heat. The ITO layer also serves as an adhesion layer for the α-Si.

The control system of the OFB microrobot is made of two subsystems: pattern generation 

and scanning mirror control (Figure 3a). The pattern generation subsystem uses a 

touchscreen computer (Samsung Series 7, Samsung Electronics, Suwon, South Korea) as the 

interface to the system operator. An interactive control application was written using the 

simple multi-touch (SMT) library of the Processing programming tool [23]. The application 

created for the OFB microrobot control system has the ability to create, reposition, and 

remove light patterns within a set workspace, according to the touch input of the operator. 

These light patterns control the movement of the microrobots and appear on the touchscreen 

as white circles on a black background (Figure 3b). The touchscreen display was aligned 

with a live-view camera feed from the microscope, enabling the operator to simultaneously 

control the light sources while receiving instant visual feedback. The display on the 

touchscreen was duplicated on a second monitor, which is captured by a webcam (Logitech 

C170, Logitech International S.A., Lausanne, Switzerland) attached to the scanning mirror 

control subsystem.

The centerpiece of the scanning mirror control system is a custom script that uses the 

MATLAB Image Acquisition Toolbox to determine the positions of the light patterns on the 

second computer monitor. The x and y positions of the light patterns are recorded using units 

of pixels, which are converted to analog voltages by the MATLAB script. Subsequently, the 

script uses the MATLAB Data Acquisition Toolbox to queue the analog voltages into a data 

acquisition unit (DAQ; National Instruments USB-3653, National Instruments Corporation, 
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Austin, TX, USA). The DAQ outputs the voltages to the control circuits of the scanning 

mirror system, thereby controlling the position of the mirrors. Thus, the scanning mirrors are 

adjusted to the correct angles to redirect the laser to the corresponding position on the 

substrate.

The scanning mirror finishes scanning through all the points of the light patterns in 0.05 s 

per cycle of the control script, independent of how many points there are in the cycle. 

Bubbles can be generated immediately in the liquid medium by the laser illumination, and 

longer illumination durations lead to larger bubble sizes [21]. To control the bubble size, the 

heat generation at each location can be further controlled by pulsing the laser at various 

frequencies and duty cycles. This is controlled by a TTL signal provided by a function 

generator (Agilent 33220A, Agilent Technologies, Santa Clara, CA, USA). In the 

experiments presented here, the laser pulse frequency was 400 Hz, and the laser pulse width 

was 100 μs. This resulted in bubbles with diameters ranging from 7 to 10 μm, with an 

average diameter of 8 μm. The bubbles do not collapse during the experiments, as the laser 

pulse rate is rapid enough to maintain the bubble. However, if the laser is switched off, the 

bubble will collapse within 2 s due to the Laplace pressure. Under these actuation 

conditions, the OFB microrobots can move up to 500 μm/s.

The current control system requires two computers, one running the Processing program for 

the pattern generation subsystem and one running the MATLAB script for the scanning 

mirror control subsystem, as well as an extra monitor. It is currently nontrivial to create 

MATLAB scripts that will support touchscreen input, so this hardware workaround was 

implemented to take advantage of the image processing of MATLAB and the multi-touch 

library of Processing. This control system can be easily replicated by any research group in 

the microrobotic or micromanipulation research areas.

Results and discussion

Control of multiple OFB microrobots

Using the interactive microrobot control system described in the previous section, ten bubble 

microrobots were configured into different patterns, including the letters ‘UH’ and arrays 

that may be useful in cell patterning [24] (Figure 4). This experiment and all of the 

following use an aqueous solution that contains 1% agarose prepolymer (type IX, ultra-low 

gelling temperature). Agarose is a naturally extracted biomatrix that can support cell growth 

[25], which aligns with the ultimate goal of using this microrobot system to assemble cells.

Transportation by multiple OFB microrobots

Multiple OFB microrobots can increase the throughput of the micro-transportation. This was 

demonstrated by assembling a 4 × 4 matrix of 20-μm-diameter polystyrene beads using a 

column of four OFB microrobots (Figure 5). To assemble each column of beads, the four 

microrobots first pulled four beads close to each microrobot, so that each microrobot was 

transporting a single bead. Then, the four microrobots moved to the patterning sites with the 

beads following behind them (Figure 5a). Finally, the laser was turned off, terminating the 

thermocapillary flow and releasing the beads from the microrobots. The process was then 

repeated three more times, completing the 4 × 4 matrix. The entire assembly process was 
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completed in only 2.5 min, less than half the time needed by a single OFB to build the 3 × 3 

cell matrix in the same medium (approximately 6 min) [21].

Moreover, cooperative transportation of micro-objects was also performed. This 

demonstrates that parallel control of individual microrobots can enable the cooperative use 

of microrobots to accomplish tasks. Four OFB microrobots were used to perform a 

cooperative ‘hand-off’ routine, where microbeads were passed between the micro-robots 

(Figure 6). Two 20-μm beads were first respectively exchanged between the microrobots 

labeled A and C and the microrobots labeled B and D (Figure 6a,b,c). The two beads were 

then brought to the center of the screen (Figure 6d) and exchanged between microrobots B 

and C (Figure 6e). At last, as shown in Figure 6f, the beads were brought by the OFB 

microrobots to the position diagonally opposite to their locations shown in Figure 6c. This 

experiment demonstrates that multiple microrobots adjacent to a micro-object do not 

interfere with the manipulation of the object.

Conclusions

An interactive control system for the OFB microrobot was demonstrated by performing 

parallel and cooperative assembly of microbeads. This system has the potential to be scaled 

up even further, increasing the throughput and utility of the OFB microrobotic system.

Although the interactive control system performed well in the experiments described here, 

the system can be further simplified. The need for the webcam and extra monitor can be 

eliminated by directly outputting a signal with the light pattern location information from the 

pattern generation computer to the scanning mirror control computer. A single computer can 

also accomplish the functionality of the two computers in the current setup, if the MATLAB 

script is configured to accept input from the touchscreen of its host computer. Moreover, the 

live camera view of the OFB workspace can also be displayed directly on the touchscreen to 

make it easier for the operator to co-locate the target objects and the microrobots, similar to 

the control systems in [26,27].

It can be approximated that increasing the number of microrobots will linearly reduce the 

completion time of microassembly tasks until a saturation point is reached. Beyond this 

saturation point, the microrobot density will limit the amount of parallel micromanipulation 

that can occur. The maximum number of 10-μm-diameter OFB microrobots that 

theoretically can be generated in the field of view used here (600 μm by 450 μm) is 2,700 

microrobots. However, the current system does not approach that limit, so the linear 

relationship can be used to estimate the impact on task completion time.

The maximum number of microrobots is limited in the current control system by the ability 

of the human operator to track multiple objects. In these experiments, a maximum of ten 

microrobots can be controlled by a single operator. In order to scale this system to control a 

much larger number of microrobots in parallel, automated controls have to be developed. An 

automated control system can build upon algorithms developed for path planning and 

macroscale robotic swarm research [28]. In addition to increasing the throughput of 

microassembly tasks, multiple microrobots can enable certain manipulation tasks, such as 
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studying temporal dynamics of micro-object interactions. In this case, it may be necessary to 

have several objects moving at various velocities and trajectories relative to one another, 

which can be achieved by using multiple microrobots.

The micro-object used in the experiments above is a 20-μm polystyrene bead, which is near 

in size to many biological micro-objects, such as cells. Thus, the results here are expected to 

be transferrable to these biological micro-objects. As one example, patterning of single 

mammalian cells into different patterns can benefit research in tissue engineering [29]. 

When manipulating biological materials, temperature is a concern, as objects such as cells 

can die at temperatures above the physiological temperature of 37°C. In this system, the 

maximum temperature is localized to the very center of the laser spot and quickly decreases 

to a temperature that is safe for cells: the temperature is less than 30.5°C at a distance of 3.5 

μm from the center of the laser spot [21]. As the bubble radii in these experiments are 

approximately 5 μm, this ensures that cells are manipulated at a safe temperature.
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Figure 1. Side view of substrate and liquid medium containing OFB microrobots, showing the 
opto-thermal actuation mechanism
The bubble is stably trapped above the localized hot spot by the temperature gradient created 

by the laser, and a toroidal thermocapillary flow is formed.
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Figure 2. The optical setup of the interactive OFB microrobot system
The cross section of the substrate and working solution (marked by dotted circle) is shown 

in Figure 1.
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Figure 3. Interactive control system and interface
(a) The interactive control system of OFB microrobot, showing the two subsystems: pattern 

generation and scanning mirror control. (b) The interactive control interface. The positions 

of the four OFB microrobots visible in the camera view of the working space were 

controlled by the four white spots on the touchscreen.
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Figure 4. Ten OFB microrobots were sequentially configured into different patterns (a–f) using 
the interactive control system
The time stamp format is minutes: seconds.
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Figure 5. Matrix assembly
A 4 × 4 matrix of 20-μm-diameter polystyrene beads in 1% agarose solution was assembled 

by column of four OFB microrobots. The time stamp format is minutes: seconds. (a) Start of 

assembly. A magnified photo of an OFB microrobot with a bead is shown in the inset. (b) 
The leftmost column of the matrix has been assembled, and the four OFB microrobots are 

transporting the second column of microbeads. (c) Two columns of the matrix have been 

assembled, and the third column is undergoing transportation. (d) The assembled 4 × 4 

matrix of beads.
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Figure 6. Two 20-μm-diameter beads were passed between four independently controlled OFB 
microrobots
The four OFB microrobots are marked as A, B, C, and D. The two 20-μm beads are marked 

by 1 and 2. The time stamp format is minutes: seconds. (a–c) OFB microrobot A transferred 

the no. 1 bead to microrobot C; at the same time, microrobot D transferred the no. 2 bead to 

microrobot B. (d) The beads are transported to the center of the field of view. (e) The beads 

were exchanged between microrobots B and C. (f) The OFB microrobots then transported 

the exchanged beads to the side opposite their starting locations in (d).
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