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Abstract: In this study, we maneuvered a dual-band spectral imaging system to capture an iridal
image from a cosmetic-contact-lens-wearing subject. By using the independent component analysis
to separate individual spectral primitives, we successfully distinguished the natural iris texture from
the cosmetic contact lens (CCL) pattern, and restored the genuine iris patterns from the CCL-polluted
image. Based on a database containing 200 test image pairs from 20 CCL-wearing subjects as the proof
of concept, the recognition accuracy (False Rejection Rate: FRR) was improved from FRR = 10.52% to
FRR = 0.57% with the proposed ICA anti-spoofing scheme.
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1. Introduction

Iris recognition has drawn much attention because of its well-established framework, extremely high
accuracy, and computational efficiency [1–3]. Recently it is becoming even more popular and has
started to be deployed for national-scale applications [4,5]. Like other biometric identification,
iris recognition is subject to attempted forgery challenges. Intentionally or not, when people wear
cosmetic contact lenses (CCLs), whose circular pigment may fully or partially obscure the natural iris
texture, the recognition performance will be degraded accordingly.

Many efforts have been made to develop anti-spoofing techniques for iris recognition.
Generally speaking, spoofing techniques can be divided into (1) using a completely fake or printed
eye to fool the system; and (2) modifying the texture of a living iris using augmented material, which,
for most cases, in iris recognition involves wearing CCLs. Therefore, the anti-spoofing technique
can also be divided as: (1) liveness detection: to classify whether the eye under test is alive; (2) CCL
detection: to classify whether the eye under test is wearing CCL. For the case of liveness detection, if the
eye under test is classified as a fake eye, the iris recognition process simply stops and the system simply
rejects the current subject and waits for the next. For the case of CCL detection, when the system detects
that the subject wears a CCL, it will most likely require the user’s cooperation to take CCL off and then
performs recognition again. To our best understanding, currently there is no anti-spoofing technique
which claims to be able to perform iris recognition directly on the CCL-wearing subjects. In this paper,
we have therefore attempted to develop a hardware-software hybrid iris recognition system which
deals with CCL-based spoofing. Based on the assumption that the iris texture and CCL pattern are
statistically independent in the spectral domain, the proposed system, which combines a dual-band
camera (DBC) system with a source separation technique (Independent Component Analysis, ICA),
has the capability of separating the spectral component of the natural iris region from the CCLs’

Sensors 2018, 18, 795; doi:10.3390/s18030795 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-0475-3689
http://dx.doi.org/10.3390/s18030795
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 795 2 of 15

textures, followed by removing the CCL texture from the mixed images. As a consequence, there is no
need to ask the subject to take off CCL and the system is capable of performing iris recognition directly
based on the mixed images. Such a technique is not detection-based, but rather recognition-based,
which we consider as the major contribution of our work.

The remainder of this paper is organized as follows: in Section 2, we present a literature review to
give an overview of anti-spoofing technique for iris recognition. In Section 3, we describe our dual-band
camera (DBC) system with the corresponding ICA model. In order to discount the incidental variations
caused by CCLs from the natural iris images, we optimize the mixing matrix to ensure that two spectral
images have the largest independency in statistics. In Section 4, we introduce the algorithm to solve
the ambiguity issues of ICA, thus determine the mask pattern to remove the influence from the CCLs.
Some subtle considerations to examine the validity of ICA methodology on iris recognition are made.
Preliminary results in test are presented in Section 5 prior to the summary and conclusion in Section 6.

2. Iridal Texture Characteristics and Anti-Spoofing Technique Overview

2.1. Iridal Texture Characteristics

The iris is the flat and circular membrane behind the cornea of an eye. The main function of
the iris is to control the amount of luminous flux through the pupil. The pupil varies in size from 3
to 8 mm by manipulation of two pupillary muscles, namely the dilator and sphincter pupillae [6].
Generally, the iris of an adult spans approximately 12 mm in diameter and 0.5 mm in thickness. The iris
spectral reflection, also called albedo, is dependent on the composition of iridal pigments. Those of
most East Asians appear dark brown, where the albedo reflection in the visible spectrum is pretty low
(about 0.05–0.2) but rather high (about 0.4–0.5) under near infrared (NIR) illumination [7–9]. That is the
main reason why the illumination used for most iris recognition techniques falls in the NIR spectrum.
As shown in Figure 1, the natural iris texture from an East Asian subject is barely observable under
visible light (Figure 1a) but is more obvious under NIR (Figure 1c). When the same subject puts on a
CCL, compared with the natural iris, the pigments of the commercial CCL are conspicuous under both
visible and NIR illumination (Figure 1b,d). It is noted that the CCL pattern is partially overlaid on top
of the natural iris texture, thus the mixed images would substantially deteriorate the accuracy of any
iris recognition system under both visible and NIR illumination conditions.
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Figure 1. Images of same eye with and without CCL; (a,b) captured by color sensor and
(c,d) monochromatic sensor; (a,c) naked eye and (b,d) with CCL.

2.2. Iris Anti-Spoofing Technique Overview

Generally speaking, the anti-spoofing techniques for iris biometrics can be roughly divided into
two categories: liveness detection and CCL detection

2.2.1. Liveness Detection

Liveness detection is a preventative approach for sensor-level attacks in biometric systems in
which malicious users construct false replicas of legitimate biological characteristics, applying them
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directly to the sensors and declaring their corresponding identities. The major goal for the technique
of iris liveness detection is to determine whether the current eye under test is a true eye or not.
According to [10], the technique of liveness detection and tamper detection methods are considered
as presentation attack detection (PAD) methods which are used to detect spoofing attempts on the
biometric system [11–15]. PAD technique has becoming more and more important in recent years
as biometric authentication mechanism has been applied more on consumer electronic devices and
access control system for exclusive areas. Generally speaking, liveness detection technique can be
distinguished into hardware-based and software-based systems.

Hardware-Based Systems

Hardware-based systems make use of optoelectronic sensors that are additional to the biometric
systems to test whether the iris under inspection is alive or not [16–18]. The liveness detection is
mainly based on whether important physiological characteristics of eyeballs can be positively detected,
for example, tissues or blood vessels in the sclera.

Software-Based Systems

Software-based systems do not require auxiliary electrical or optical sensors to attach to the
biometric system [19–26]. It basically analyzes clues exhibited in the images that are captured by
the biometric system and uses algorithmic approach to perform binary classification (alive or not
alive). The detection process can be further divided into passive detection and active detection.
Passive detection is to observe whether the eyeballs exhibit the natural response, such as eye hippus
or natural oscillation of the pupil sizes. One of the early work stated in [27] suggested that “red-eye”
effect can be utilized as an effective clue to detect fake eyes. Another feasible solution is by analyzing
the frequency spectrum. As also mentioned in [27], printed iris images have intrinsic artifacts that can
be detected using 2D Fourier transform. The active detection is to observe whether the eyeballs react
as the way they should when external stimuli is applied, for example, asking the users to blink or look
in a specific direction.

2.2.2. Cosmetic Contact Lenses (CCL) Detection

Different from other biometric modalities, for iris recognition, malicious users can try to wear
CCL to forge iris textures in order to fool the system. Due to the transparency characteristics
of CCL, the captured images of the eye wearing CCL present patterns from both CCL and iris,
resulting in a mixed image pattern. In this way, the eye that wears CCL is still alive, but the pattern
of the iris may be changed or partially modified. Therefore, we consider this case different than
the case of liveness detection. We categorize such cases as “CCL detection”. For the case of CCL
detection, in literature, researchers addressed more on how to detect whether the subjects were wearing
CCL. Generally, the counter measure can be divided into two approaches. One is based on the
physiology-based detection [28–33]. The key point of this scenario lies in the dissimilarity of appearance
primitives between natural iris and CCLs due to their physiological features, such as pupil dynamics
under illumination modulation (temporal domain), three dimensional (3D) shape or glare reflection
position (spatial domain), or spectral reflection (spectral domain). The other approach comes with
the learning-based methodology through the pure software work [33–44]. Feature extraction with a
texture-based classifier was performed to automatically detect if the subject is wearing a CCL.

Physiology-Based Detection

For the physiology-based detection, Lee et al. [30] employed a NIR illuminator to inspect the
spots of different Purkinje images according to Gullstrand’s eye model. The Purkinje images contain
specular reflection points occurred at various layer boundaries: anterior cornea (first), posterior cornea
(second), anterior lens (third), and posterior lens (fourth). Each Purkinje image had its own specific
position for detection in a searching window. Likewise, Park et al. [31] detected the pupillary boundary
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change through the flash of illumination. The study evaluated the hippus movement (i.e., the ratio of
dilation to contraction of the pupil) and successfully circumvented the false iris of printed or artificial
eyes. However, since the circular band from the CCLs might fully occlude the pupillary boundary,
the feasibility of this method against the CCL-based forgery has not proved yet. Lee et al. [32] proposed
to measure the variation of the albedo ratio between the iris and the sclera under different illumination
wavelengths. This method was proved successful to tackle printed and artificial forgery with 750 nm
(visible) and 850 nm (NIR)-centered illumination. However, this method was unlikely to be applied in a
universal approach for various contact lens colors and races. Hughes et al. [33] used the stereo imaging
to distinguish the 3D shape between the natural iris and CCL. The natural iris region is relatively
planar. When users wore a CCL, the change of perceived curvature was used as a depth cue to decide
if a CCL was present. This work needed larger disparity for depth estimation, thereby unlikely to work
in a long-range recognition system. Also, the capture volume in object space where the eye can be
positioned for successful image was extremely small, thus requiring the user cooperation in operation.

Texture-Based Classifier

Daugman [34] pioneered a countermeasure against dot-matrix CCL forgery by using a 2D Fourier
transform. The 2D power spectrum of a CCL gave rise to four strong responses at high frequencies.
This method was validated merely for the CCLs those were utilized in the limited training set.
Furthermore, the detection of spatial frequency from the dot matrix pattern was limited when it
exceeded the Nyquist frequency of the sensor, or when images were moving blurred, out of focus,
or otherwise imperfect imagery condition. He et al. [35] devised a statistical texture analysis that
employed gray level co-occurrence matrices (GLCMs) [36] to extract the textural features, then classified
them through the popular support vector machine (SVM). The GLCMs recorded pairs of neighboring
pixels with specific values. The features were extracted according to the contrast and angular second
moment from the GLCMs; the mean and standard deviation were derived from the normalized iris
image. Four distinctive features were classified using SVM. This study provided a robust algorithm
for automatically detecting CCLs in iris images. The major problem lies in the requirement of heavy
computation and prior knowledge about CCL sample, therefore hinders its practical use in real time.
Wei et al. [37] characterized CCLs by using the texton model. The authors used the Gabor filter
to extract the features from a mixed iris image. The Gabor filter has favorable properties in both
orientation and spatial frequency. A total of 40 even Gabor filters produced a feature vector with
40 dimensions. By clustering these feature vectors with K means (K was set to 64), the mixed iris image
could be represented by an iris texton histogram. A classifier that exploited the distinctness of the
natural iris texture and CCL texton patterns was thus devised. Like the case in unique filter and SVM,
heavy computation is challenging for real-time operation. To speed up the computation, He et al. [23]
proposed using a local binary pattern (LBP) to extract features in the iris. The LBP was an effective
texture descriptor for creating an image histogram based on the image texture. The authors employed
a window for observing a local part of the image. For each pixel in the window, compared with
each of its eight neighbors, the value was set as 1 if the center pixel value was greater than the
neighbor’s value, and otherwise was set as 0. This operation produced an eight-digit binary number,
which normally was presented as a decimal. After each part of the region of interest in the image was
processed, its histogram could be computed and employed in the form of a vector feature. Using these
features, on the basis of GLCMs or LBPs, and with one or several trained classifiers (e.g., AdaBoost),
this method could distinguish whether the iris image contained a CCL [38]. More recent works based
on learning algorithm are underway [39–43]. However, a compromise must be reached between the
countermeasure capability and the computational complexity.

2.3. Summary of Iris Antispoofing Technologies

To sum up, iris anti-spoofing techniques can be roughly divided into liveness detection and CCL
detection, both with sub-categories. Figure 2 shows these research divisions.
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The literature survey in Sections 2.1 and 2.2 shows that there was no universal solution to counter
all counterfeiting attempts. Physiology-based detection is likely to handle most, but requires specific
equipment additional such as illumination (spectral), modulation (temporal), sensors (spatial, spectral),
and even more. On the other hand, a software solution with a robust classifier is relatively convenient
yet it is uncertain whether the classifier is applicable for new types of CCLs [44–46]. Similar conclusions
have been found in the field of fingerprint biometrics as well, as shown in [26–29].

In this study, we developed an iris imagery setup, which has capability to identify the subject
without the need of self-cooperation. Taking advantage of high entropy density from the natural iris
texture, we deduct the CCL occluded region from the natural iris pattern and leave the remainder
for the recognition. To distinguish the CCL pattern and natural iris texture, we exploit their spectral
distinctness and statistical independence in intensity, where the system involves two different spectral
channels to capture the mixed iris images with different CCL-to-iris reflectance ratios.

We consider our approach as an extremely novel one, since it combines the advantage of additional
hardware (dual band camera system) and software (source separation algorithm). It does not rely on
physiological or textural feature detection. Moreover, its major goal is for “recognition”, not just CCL
“detection”. The final goal of the system is to perform iris recognition and achieve satisfactory results
even under the condition that the subjects are wearing CCL. Therefore, our method does not belong
to any sub-division of the existing method. The proposed method is a result from interdisciplinary
research and should belong to a new category.

3. Framework of Dual Band Camera System

This section reveals the mathematical framework of the proposed dual band camera (DBC) system,
which can be described by a 2 × 2 matrix. Based on the assumption that the natural iris texture and
CCL pattern are statistically independent in spectral imaging formation (i.e., mixing matrix is full
rank), we employed the independent component analysis (ICA) to estimate individual independent
component (IC) of the mixed image, corresponding to either natural iris or CCL pattern. Compared to
the natural iris, most CCLs have sharper histogram distribution due to its artificial pigments. We can
easily determine the CCL by checking the individual histogram distribution. We thus designed a
binary mask to remove CCL pattern from the mixed image, resulting in a CCL-free iris image for
recognition process afterward.

3.1. DBC Mixing Model

The imaging system is composed of a lens set and two sensors with distinct spectral filters (i.e.,
visible band-pass and NIR band-pass), as shown in Figure 3. Accompanying a wideband white
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illumination, the mixed image in each channel yi(x) is captured with different albedo (ρij) of natural
iris texture (siris(x)) and the CCL pattern (sCCL(x)), where x is the position index. Each channel yi(x) is
given by:

y1(x) = ρ11·siris(x) + ρ12·sCCL(x)
y2(x) = ρ21·siris(x) + ρ22·sCCL(x)

, (1)

y1 and y2 are mixed images captured by sensor 1 (visible) and sensor 2 (NIR), respectively. For notation
simplicity, we omit the position index (x) in the following context.
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Figure 3. (a) The optical layout, where BS: beam splitter, LP: low-pass filter, HP: high-pass filter,
the CCL-wearing subject was illuminated by a wideband white light source, two spectral channels (sensor 1
and sensor 2) thus retrieved different spectral imaging yi respectively; (b) real system implementation.

3.2. ICA Algorithm

In general, it is convenient to represent Equation (1) in the vector-matrix notation as:

y = As, (2)

where y =
[

y1 y2

]T
is the mixed image set; A = [ρ11 ρ12; ρ21 ρ22] is the mixing matrix,

and s =
[

siris sCCL

]T
is the source image set. The problem now becomes a classic blind source

separation problem [47]. We aim to estimate the unknown mixing matrix A and look for its inverse,
says W, to retrieve its original independent component ŝ:

ŝ = Wy, (3)

where W is called the demixing matrix. Since the demixing matrix W was estimated only using
information contained in the mixed signal y, such an ill-posed problem cannot be solved without
any prior information. As a result, an assumption was made that the natural iris texture siris and
CCL pattern sCCL have statistically independency. This naive assumption about independence is
fairly legitimate since there is no reason to expect a physical correlation between the image of natural
iris texture and artificial CCL pattern. Further examination will be made in later section. Given the
linearity and uniformity of the image formation model, where both iris and CCL have a property
of Lambertian reflectance, we can employ the ICA algorithm to separate two mixed images back to
its original.

In order to reduce the number of parameters to be estimated, a typical image pre-processing is
necessary. Firstly, the data set y was centralized, i.e., the mixed images have zero-mean. Then we
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transformed the data set y into a new basis so that the components of new data set ỹ are uncorrelated
with unity variances, so called whitening:

ỹ = Λ−1/2QTy, (4)

where Q and Λ are the eigenvector matrix and eigenvalue matrix of the covariance matrix yyT.
The advantage of the whitening process lies in that the new mixing matrix Ã becomes orthogonal:

ỹ = Λ−1/2QTAs = Ãs. (5)

As a consequence, the demixing matrix W for the whitened mixed image set (ỹ) becomes
orthogonal as well. The complexity in estimation of the demixing matrix W can be reduced from n2 to
n(n− 1)/2 degree of freedom; n = 2 in our case, the complexity was reduced from 4 to 1:[

ŝiris
ŝCCL

]
≡ ŝ = WTỹ. (6)

ICA is a simple and effective method for separating two independent signals. This technique
begins with a pair of images taken through different spectral imagery channels. According to the
central limit theorem, the mixed images with multiple independent sources tend to have a Gaussian
distribution. On the other hand, the source image set, s, are relatively constrained to rarely Gaussian.
We can pursuit the basis of W to maximize the non-Gaussianity of WTỹ and thus find the source image
set ŝ iteratively. Here, we used a standard fixed point algorithm and negentropy (i.e., a statistical
measure of distance to Gaussian distribution) as the non-Gaussianity measure for the mixed image
set. Due to the independency of source images, we can estimate ŝiris and ŝCCL by maximizing
its negentropy:

J(ŝ) = H
(
ỹGauss

)
−H(ỹ) (7)

where J is the negentropy, H is the entropy operator, ỹGauss is a Gaussian distributed random vector that
has the same covariance matrix as ỹ does. According to information theory, a Gaussian distribution has
the largest entropy for a given variance. Therefore, Negentropy is always nonnegative. To maximize
the negentropy of ŝ, we used the gradient descent method subject to the condition ‖W‖ = 1. For more
details about the ICA theory in this section, interested readers can refer to [47]. While the maximum
negentropy was approached, the new basis of demixing matrix W can project the whitened mixed
images ỹ back to its most likely independent origin ŝ, as the estimated source image set involving CCL
and natural iris texture.

3.3. Restrictions and Ambiguities in ICA

At this point, the validity of ICA in the context of this work should be investigated. Firstly, we assumed
the surface properties of the CCLs and natural irises to be Lambertian. That means the intensity at
each point in the mixed image was a linear superposition from the source images xiris and xCCL
homogeneously. This assumption doesn’t fully stand but rational due to the reason that the reflective
scattering distribution from both random textures is fairly similar. As a consequence, the Lambertian
model was fairly close to the ground truth. Secondly, two source images xiris and xCCL were assumed
to have statistical independence. This assumption holds because there is no evidence showing that
there exists a strong correlation between the natural iris texture and the CCL pattern in manufacturing.
Thirdly, the histograms of individual source images must have non-Gaussian distributions. Since the
CCLs were patterned by a specific ink material, the histogram of CCL appears a narrow distribution,
far different from the Gaussian shape. But for the natural iris whose texture was attributed by richer
pigment compositions, the histogram involves more grey levels and was relatively broad. In this study,
both histograms were non-Gaussian after measurement. At last, the number of mixed images and
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source images should be equal, thereby avoid the problem to be underdetermined. This concern is
closely associated with the physics of spectral mixing. To account for the case that the mixing matrix is
non-square, we could employ a more generic version of ICA that allows for degenerate (or redundant)
spectral channels. But for the purpose of proof of concept, we reinforced the independency through
the spectral design of two distinct filters in this study.

Numerous studies have disclosed that ICA suffers from two inherent ambiguities in the recovery
of source image sets. The first one lies in the scaling ambiguity, where we cannot determine the
variances of the estimated source images ŝ. The mixing model in Equation (5) can be rewritten as:

ỹ = ∑
i

(
1
αi

ρi

)
(αisi), (8)

where the scalar multiplier αi in one of the source image patterns is cancelled out through division
by the corresponding column ρi of A. Each factor in the element of αisi represents identical image
patterns, but each is scaled by αi. This indicates that the energy (histogram) of the image is shifted.
The scaling ambiguity would lead the estimated intensity of source images different with the ground
truth. In fact, for the iris recognition, we always employ post histogram specification to enhance the
image contrast and counter the brightness inconstancy from the illumination. Fortunately, the intensity
disparity doesn’t affect the accuracy for the purpose of iris recognition.

The second ambiguity is the order ambiguity, where it is unlikely to determine the order of the
source images ŝ. To show this point, Equation (5) can be rewritten as Equation (9):

ỹ = (ÃP−1)(Ps), (9)

where P is the permutation matrix. The factors in the element of Ps represent the same image pattern
set, but in a different order. This indicates that the order of two estimated source images (x̂iris, x̂CCL) is
ambiguous. This issue can be overcome by analyzing individual histogram, detailed procedure will be
disclosed in Section 4.2.

4. Design of Dual Band Camera System

4.1. Filter Design via Spectral Response

The dual band camera (DBC) system was equipped by two distinct spectral filters to create full
rank conditions. In addition to well-conditioned, we have to ensure both channels have a sufficient
amount of energy. The optimization of the mixing matrix was crucial for the success of ICA. To comply
with the matrix-vector notation y = As for the spectral analysis, we split the source image into two
terms: one is the object pattern, s, which is wavelength independent. The other is the corresponding
albedo, Ri(λ), which is a function of wavelength as well as other experimental parameters such
as source luminance L(λ), sensitivity of the sensor S(λ) and the transmission of the filter Fj(λ),
respectively. The wavelength dependent terms integrated over the entire spectrum would be lumped
into the entries (ρij) of the mixing matrix A = [ρ11 ρ12; ρ21 ρ22] as:

ρij =
1000

∑
λ=400

Fj(λ)·S(λ)·L(λ)·Ri(λ), (10)

where index i corresponds to an object and j represents the selective filter. Note that except for the object
pattern s, all the parameters are dependent on the wavelength. The mixed image response was attained
by integration over the entire spectral response of all the devices. In this study, we maximize the
separation between two mixed images s via optimization of the mixing matrix A via filter design Fj(λ)

only, whereas all other wavelength-dependent terms were kept equal in both channels. Figure 4a,b
shows the normalized luminance and statistical average over the tested subjects in this work. We
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can observe that the albedo of the (East Asian) subject’s iris and CCL under test are very similar,
led to a challenge for ICA process. We employed two distinct filters characterized by the cutoff
wavelength, as shown in Figure 4c. Here we denoted y1 as the first mixed image with low-pass filter
(LP filter, cutoff wavelength λLP) and y2 as the second mixed image with high-pass filter (HP filter,
cutoff wavelength λHP). The mixing matrix A is well-conditioned (full rank). Since the purpose is
to make mixed image set y having the possibly largest independency for ICA, we aimed to find the
adequate basis of the mixing matrix A through the filter design. The span angle of basis for row
space of A was calculated through different cutoff wavelength pairs (λLP, λHP). Here we adopted
det(A)/ ‖ A2‖ as the merit to evaluate the span angle, where the determinant of A describes the
independency and the L2 norm of A represents how much energy it holds.

As shown in Figure 4d, the maximal angle occurred at point A (λLP = 808 nm, λHP = 879 nm)
with 7.7◦ in global search. However, no crossed transmission window would result in strong energy
loss, thus degrades the signal to noise ratio of the captured image. As a result, we set a regulation that
the total transmission energy should be over 50%. The energy regulation, attributed by the L2 norm of
A, was expressed as the right bottom rectangle of Figure 4d. To tradeoff the maximal independency
and energy constrain, we selected the operational condition (λLP = 850 nm, λHP = 800 nm) with span
angle 2.8◦, as shown in the point B.
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Figure 4. (a) The spectra of illumination; (b) the albedo of iris and CCL; and (c) the transmittance of two
designed filters. The λLP and λHP, cutoff wavelength of each filter, were used as the design parameter;
(d) The span angle space with respect to cutoff wavelength pairs. Orange rectangle represents the
energy constrain. Although point A (λLP = 808 nm, λHP = 879 nm) has largest span angle between
two spectral components, but no crossed transmission window led to string energy loss. As a result,
the point B (λLP = 850 nm, λHP = 800 nm) was selected as the operation point, allowing a transmission
window around 800–850 nm in NIR.

The captured iris images (y1, y2) are revealed in upper row of Figure 5, respectively. A series of
image processing steps was conducted for iris recognition. Firstly, the iris images were segmented by
determining the centers and radii of the pupillary and limbic boundaries. Then the iris images were
normalized by transforming the coordinates from Cartesian to polar, as shown in the lower row.
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Figure 5. Iris images captured through the LP filter (y1) and HP filter (y2), respectively. At the current
step, both mixed images are the combination of two source image, xiris and xCCL, with different ratio.
The upper row is in Cartesian domain; and the lower row is in polar domain.

4.2. Mask Generation

Before conducting ICA to separate the textures on the basis of two estimated components, we must
remove the specular points which do not satisfy the linearity mixing and lead to errors. We used a
simple mask to remove the specular points shown in green mark of Figure 6a. Then, ICA algorithm in
Section 3 was applied to estimate two ICs (ŝ), as shown in Figure 6b.

As mentioned in Section 3.3, the ICA algorithm has two ambiguities to tackle. The first ambiguity
is the scale uncertainty. The scale uncertainty includes the energy uncertainty (the range of the
grayscale could be any value) and sign convention uncertainty (either positive or negative value can be
true texture), leading to the challenge in threshold. The second ambiguity is the order of two estimated
solutions. We cannot confirm either to be iris or CCL pattern. To ease the problem, the ambiguity issue
can be solved by finding the CCL pattern only. As long as CCL pattern was determined, the natural
iris texture can be attained accordingly.

4.3. Overcoming the Scaling Ambiguity

Generally, the pixel values of two estimated source images are continuous. To discretize the
CCL texture in template comparison, we used binary thresholding to solve the problem of the energy
uncertainty. The binary thresholding transforms the greyscale patterns from the image into a binary
mask. Ideally, the estimated pigment pattern would have full grayscale value, and zero for otherwise.
In this work the threshold level was set at 0.5 to extract the pigment pattern accordingly. Figure 6c
shows two binary masks, where the white region presented the estimated components whose greyscale
was higher than threshold value 0.5. In the following we created two complementary masks to tackle
the problem of sign convention uncertainty, as shown in Figure 6d. The white region represents the
estimated components whose greyscale was lower than threshold value 0.5. The distinct clues of the
CCL and iris texture was easily appeared through the binary mask.

4.4. Overcoming the Order Ambiguity

To further inspect the distinctness between natural iris and CCL, the negentropy (as the
non-Gaussianity measure) was used again. The albedo of CCLs is contributed to by the artificial
pigments, whose histogram in spectral image tends to have a sharply peaked distribution. In contrast,
the histogram of natural iris images appeared more likely Gaussian whereas the albedo widely varied
among the iridal region with different ratio of natural pigment components (such as eumelanin and
pheomelanin). Therefore, we used the negentropy to distinguish the order of estimated source images
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between CCL and natural images. The features after masking appeared more observable, as shown in
the Figure 6e. We colored the estimated CCL and iris regions by red and blue marks, respectively.
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Figure 6. (a) The normalized images with specular points being removed; (b) Two estimated ICs
through the ICA; (c) the binary masking of the ICs; (d) the complementary masks from the ICs; (e) the
inference two masks on the mixed image. The red and blue marks denote the inference of CCL pattern
and iris texture, respectively. The green mark denotes the specular mask. It is noted that red mask
had higher negentropy (as the Non-Gaussianity measure) in histogram analysis, thus esteemed as the
CCL pattern.

Figure 7a colored two masks in Cartesian coordinate for feature visualization. The mask in red
displayed an annular dot pattern at the outer boundary around the iridal region. The texture of this
estimated component (esteemed CCL) were in close agreement with the ground truth CCL picture
in Figure 7b. The mask in blue displayed a sunflower shape, which was the remaining part of the
iris texture.
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were visualized for the comparison purpose, where the annular dot pattern at the outer boundary were
in close agreement with (b) ground truth CCL picture.

5. Proof-of-Concept Testing

5.1. Setup and Database

The camera system was equipped with a NIKKOR-W lens (Nikon, Tokyo, Japan) with focal
length 210 mm and F-number 5.6. A one-inch 50/50 non-polarizing beam splitter (BS014, Thorlabs,
Austin, TX, USA) splits the optical path into two branches. Two designed spectral filters were
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placed of the two sides of the beam splitter, where the LP filter with 850-nm cutoff wavelength
(#64-670 EO Optics, Barrington, NJ, USA) and HP filter with 800-nm cutoff wavelength (EO Optics
#64-705). The optical system came with two CMOS image sensors (MV1-D2080-160-CL-12, Photonfocus,
Lachen, Switzerland), acquired images up to a resolution of 2080 × 2080. The working distance was
set to 2 m.

We collected iridal data from ten East Asian people as the proof-of-concept dataset. Each person
has two irises; therefore, there were totally 20 iris classes. For each class, ten images were captured
for enrollment, and another ten image pairs were captured in both spectral channels. A total of
200 enrollment images and 200 test image pairs were acquired. The subjects wore a type of contact
lenses from TICON, where the CCL pattern was formed by a circular band comprising random dots.

5.2. Iris Recognition Algorithm

Iris recognition algorithm has been developed for more than a decade. In this work, we mainly
adopt the iris recognition algorithm proposed by Daugman, which is one of the earliest and most cited
works in this field [1]. Generally, the whole iris recognition process consists of the following stages:
iris image acquisition, iris segmentation, iris normalization, feature extraction and feature matching.
The iris image acquisition process is to capture iris images using optimized optical devices. The iris
segmentation process finds the inner and outer boundaries of the iris region. The normalization process
transformed the iris image from Cartesian coordinates to polar coordinates. Iris image normalization
can prevent performance degradation caused by the tilting of the subject’s head or off-axis gazing.
For feature extraction, in our approach, a one-dimensional Log-Gabor filter was applied to extract
prominent features as an iris code. The features were thus quantized into binary codes according to
their quadrant information on the complex plane.

Two iridal codes can be matched using a bit-wise XOR operation, which obtains the Hamming
Distance (HD) between the two irises. Small HD indicates that the two irises were more likely belong
to the same class (i.e., it is a case of authentic comparison). On the other hand, higher HD indicated a
statistically independent relationship between the two irises, implying the two irises belong to different
classes (i.e., it is a case of impostor comparison). An appropriate threshold value of HD was set to
determine the acceptance or rejection of the iris image. In our experiments, four quantitative merits
were used to examine the system performance, including: false acceptance rate (FAR), false rejection
rate (FRR), equal error rate (EER) and sensitivity index (SI), respectively.

5.3. Baseline Testing

With a total of 200 enrollment images and 200 test naked eye image as the baseline test, the recognition
system had performance as SI = 8.82, FRR = 0% when FAR was set to 0.1%, and the EER was 0%,
as shown in Figure 8a. For a recognition system with high accuracy, the two distributions should
have a minimal or no overlapping region. The results indicated that our system was as accurate
and robust as those presented in the Iris Challenge Evaluation (ICE) 2006, an iris recognition grand
challenge that employed a data set comprising 29,056 right iris and 30,502 left iris images; the three
highest-performing systems in the ICE 2006 had FRR ranges of roughly 1–2.5% when the FAR was set
to 0.1%, according to [48].

When the subjects wore CCLs, both FRR (10.52%) and EER (1.94%) increased dramatically in
comparison with the naked eye, as shown in Figure 8b. Since the CCL patterns in the test have no
correlation with natural iris texture, the authentic distribution was shifted rightward and overlapped
with the retained imposter distribution, thus deteriorating the recognition accuracy. Such results were
used as the baseline to examine the effect of proposed ICA algorithm.

5.4. Results of ICA-Based Recognition against CCL Spoofing

After conducting ICA and masking process for CCL-wearing subjects, the authentic and impostor
HD distribution was separated farther (Figure 8c), with moderate FRR (0.57%) and EER (0.26%).
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Compared with the baseline (without ICA), yielding an 18.5× reduction in terms of FRR. The leftward
shifting authentic distribution manifested the success of proposed ICA algorithm that the CCL pattern
was mostly removed and discounted in the iris recognition. No surprise that it is unlikely to have the
comparable performance with the naked eye, because the CCL masking would reduce the entropy
density in natural iris. Additional noise arose from PCA also contaminated the ground truth data in a
small amount. Certainly, when the spectral distinctness between the CCL and natural iris increases,
the ICA-based scheme to separate the CCL and natural iris texture was expected to be more effective.
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Figure 8. Experimental HD histogram for the authentic (blue) and impostor (red) distribution with
200 enrollments and 200 test images as the proof of concept, where (a) naked eye (b) CCLs and (c) CCLs
with the ICA, respectively.

6. Conclusions

In this work, a dual-band camera system was proposed to tackle CCL-based spoofing attempts
in iris recognition systems. Based on the statistical independency and spectral distinctness between
the natural iris texture and CCL, we successfully removed CCL patterns from the natural iris textures
by applying the ICA algorithm with high-order statistical moments estimation. The concept was
preliminarily proved that the FRR was significantly reduced down to 18.5× compared with an ICA-free
recognition system.

The novelty of proposed scheme is that it does not require prior knowledge about various types
of CCL, thus has potential to tackle new types of CCL. At its current status, the mixing matrix was
constrained to be well-conditioned, which corresponds to the equal dimension between the source
image (CCL and iris) and mixed image (two spectral channels). As long as the mixing matrix is full
rank, the separation of natural iris and CCL can be effectively separated through the ICA algorithm.
For our application at conceptual level, we restricted ourselves to the case of just two mixed images
since the experiment was mainly focused on the single color type CCLs. When people wore CCLs that
have more than one color, the multiple ICs with specific color would lead to maximal negentropy via
some linear combination of the primitives. Insufficient channels with ICA for multiple color type CCL
are worthy of further investigation, as is spectral analysis differences between irises of different races’
and CCLs with artificial pigments. Given the simplicity of calculation and versatility of the proposed
setup, our scenario is expected to be helpful for resolving underlying spoofing issues.
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