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Abstract

Hereditary hyperuricemia may occur as part of a syndromic disorder or as an iso-

lated nonsyndromic disease, and over 20 causative genes have been identified.

Here, we report the use of whole genome sequencing (WGS) to establish a diagno-

sis in a family in which individuals were affected with gout, hyperuricemia associ-

ated with reduced fractional excretion of uric acid, chronic kidney disease (CKD),

and secondary hyperparathyroidism, that are consistent with familial juvenile hyp-

eruricemic nephropathy (FJHN). However, single gene testing had not detected

mutations in the uromodulin (UMOD) or renin (REN) genes, which cause approxi-

mately 30–90% of FJHN. WGS was therefore undertaken, and this identified a het-

erozygous c.226G>C (p.Gly76Arg) missense variant in the paired box gene 2 (PAX2)

gene, which co-segregated with renal tubulopathy in the family. PAX2 mutations

are associated with renal coloboma syndrome (RCS), which is characterized by

abnormalities in renal structure and function, and anomalies of the optic nerve.

Ophthalmological examination in two adult brothers affected with hyperuricemia,

gout, and CKD revealed the presence of optic disc pits, consistent with optic nerve

coloboma, thereby revising the diagnosis from FJHN to RCS. Thus, our results dem-

onstrate the utility of WGS analysis in establishing the correct diagnosis in disor-

ders with multiple etiologies.

K E YWORD S

ADTKD, CKD, optic disc pits, papillorenal syndrome, RCS

1 | INTRODUCTION

Hyperuricemia, which may lead to gout, occurs as an acquired or

inherited metabolic abnormality. Acquired hyperuricemia may be due

to: a diet high in purines (e.g., meats, fructose, and beer); drugs
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(e.g., thiazide diuretics, cytotoxic agents, and low dose aspirin);

obesity and metabolic syndrome as a consequence of insulin resis-

tance and the role of insulin reducing urinary urate excretion;

hypertension resulting in renal vasoconstriction and uric acid

retention; chronic kidney disease (CKD) and renal failure; and low

level lead and cadmium intoxication (Choi, Atkinson, Karlson,

Willett, & Curhan, 2004; Johnson et al., 2013; Lin, Ho, & Yu, 1999;

Messerli, Frohlich, Dreslinski, Suarez, & Aristimuno, 1980;

Quinones Galvan et al., 1995; Sharon & Schlesinger, 2016). Hered-

itary hyperuricemia may occur as an isolated nonsyndromic dis-

ease or as part of a syndromic disorder (Megaw, Lampe, Dhillon,

Yoshida, & Wright, 2013; Partington & Hennen, 1967; Sperling,

Sarapers, Eilam, & Devries, 1972). Genome wide association stud-

ies (GWAS) have reported associations between hyperuricemia

and approximately 30 loci (e.g., GLUT9, SLC2A9, ABCG2, SLC17A3,

SLC17A1, SLC22A11, SLC22A12, GCKR, LRRC16A, PDZK1,

R3HDM2-INHBC, RREB1, TRIM46, INHBB, SFMBT1, TMEM171,

VEGFA, BAZ1B, PRKAG2, STC1, HNF4G, A1CF, ATXN2, UBE2Q2,

IGF1R, NFAT5, MAF, HLF, ACVR1B–ACVRL1, and B3GNT4)

(Dehghan et al., 2008; Doring et al., 2008; Kolz et al., 2009;

Kottgen et al., 2013; Li et al., 2007; Vitart et al., 2008; Yang

et al., 2010), and approximately 20 syndromes associated with

hyperuricemia are listed on the Online Mendelial Inheritance in

Man (OMIM) database, and these include the Lesch–Nyhan syn-

drome (MIM 300322), phosphoribosylpyrophosphate synthetase

superactivity (MIM 300661), medullary cystic kidney disease

(MCKD; MIM 603860), and familial juvenile hyperuricemic

nephropathy (FJHN; MIM 162000).

FJHN, which is a genetically heterogeneous disorder, is character-

ized by hyperuricemia, reduced fractional excretion of uric acid

(FEUA), gout, and progressive end stage renal disease (ESRD) associ-

ated with interstitial fibrosis. FJHN in approximately 25–85%, <5%,

<1%, and <5% of patients is associated with mutations of the UMOD,

renin (REN), protein transport protein SEC61 translocon subunit alpha

1 (SEC61A1), and hepatocyte nuclear factor 1 homeobox B (HNF-1β)

genes, respectively (Bleyer, Kidd, Zivna, & Kmoch, 2017; Clissold,

Hamilton, Hattersley, Ellard, & Bingham, 2015; Dahan et al., 2003;

Devuyst et al., 2019; Devuyst, Olinger, & Rampoldi, 2017; Kudo

et al., 2004; Piret et al., 2011; Simmonds, Cameron, Goldsmith, Fair-

banks, & Raman, 2006; Stacey et al., 2003; Stiburkova, Majewski, &

Hodanova, 2002; van der Made et al., 2015; Venkat-Raman, Gast,

Marinaki, & Fairbanks, 2016; Vylet'al et al., 2006; Williams

et al., 2009). A further FJHN locus has been mapped to chromosome

2p22.1–2p21.2, but its causative gene defect has yet to be identified

(Piret et al., 2011).

Here, we report a kindred considered to have FJHN on the basis

of hyperuricemia, gout, reduced FEUA, and CKD, but in whom

Sanger DNA sequence analysis had not detected mutations of

UMOD or REN, which account for approximately 30–90% of cases.

However, whole genome sequence (WGS) analysis unexpectedly

revealed that a mutation of the paired box 2 (PAX2) gene was the

likely cause of FJHN in this kindred, which prompted clinical

reassessment of the family.

2 | MATERIALS AND METHODS

2.1 | Editorial policies and ethical considerations

Informed consent and venous blood samples were obtained from

nine available members (comprising five affected and four unaf-

fected members) of the family with suspected FJHN, using proto-

cols approved by the Multicentre Research Ethics Committee

(UK) (MREC/02/2/93), and local ethics committees (Austria).

2.2 | Patients and clinical findings

The proband (Figure 1a, individual II.1), a 57-year-old man, presented

with hyperuricemia with reduced FEUA at 32 years of age, and later

developed CKD and secondary hyperparathyroidism (Table 1), consis-

tent with FJHN. Histological analysis of a single glomerulus from a

kidney biopsy taken at the age of 32 years was suggestive of glomeru-

lonephritis but was considered inconclusive as other glomerula were

not present among the biopsy sections to confirm this finding. Elec-

tron microscopy of the single glomerulus showed that it was abnormal

with segmental lobe collapse, basal membrane ruptures, and segmen-

tal sclerosis with numerous tubular–reticular structures. At 53 years

of age he had an elevated serum creatinine of 4.2 mg/dl [normal range

(NR) = 0.5–1.2 mg/dl], proteinuria of 2,500 mg/g creatinine

(NR <110 mg/g), albuminuria of 1,655 mg/g creatinine (NR <3 mg/g),

and a reduced FEUA of 4.5% (NR = 7.5 ± 1.8%). He was treated with

ramipril 5 mg/day, calcitriol 0.25 μg/day, cholecalciferol 12,000 IU/

week, allopurinol 100 mg/day, and bicarbonate 2,500 mg/day. Two

years later peritoneal dialysis was started due to end-stage kidney dis-

ease. The proband's brother (individual II.2) was also affected, and

presented at the age of 44 years with gout. Clinical evaluation rev-

ealed: renal insufficiency with elevated serum creatinine of 1.8 mg/dl;

recurrent attacks of gout, hyperuricemia and a reduced FEUA of

4.7%; and proteinuria and albuminuria of 740 and 323 mg/g creati-

nine, respectively (Table 1). He was treated with ramipril 5 mg and

allopurinol 150 mg/day. The proband's father (individual I.1) had

chronic renal failure, with serum creatinine of 1.3 mg/dl, and protein-

uria of 1,000 mg/g creatinine (Table 1). The proband's younger

brother (individual II.4) had mild albuminuria of 34 mg/g creatinine,

and his niece (individual III.3) had albuminuria of 689 mg/g creatinine

and proteinuria of 910 mg/g creatinine (Table 1). The albuminuria

observed in patients II.1, II.2, and III.3 was considerably higher than

that reported previously in other patients with FJHN (Eckardt

et al., 2015; Lee, Kim, Oh, Noh, & Lee, 2010). Mutational analysis of

the UMOD and REN genes using leukocyte DNA from the proband did

not detect any abnormalities.

2.3 | WGS and variant confirmation

Leukocyte DNA was used for WGS (Supporting Information

Methods), utilizing DNA from two affected individuals [individuals II.1
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and II.2 (Table 1 and Figure 1)]. Variants were confirmed by DNA

Sanger sequence analysis using PCR products that were generated

using PAX2 forward (50-AGT AGG AAA GGG CTC GAG GTG GT-30)

and reverse (50-GGA GAA GCC TGG CAG GGA ATA-30) primers (Life

Technologies), the BigDye Terminator v3.1 Cycle Sequencing Kit (Life

Technologies) and an automated detection system (ABI3730

F IGURE 1 Legend on next page.
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Automated capillary sequencer; Applied Biosystems). Further valida-

tion was performed by BsrFαI (New England Biolabs) restriction endo-

nuclease (RE) digestion of PCR products according to the

manufacturer's guidelines.

3 | RESULTS

WGS analysis of leukocyte DNA from two affected individuals

(Figure 1a, II.1 and II.2) confirmed the absence of UMOD and REN

abnormalities, and also an absence of abnormalities within the

SEC61A1 and HNF-1β genes that have been reported to be associated

with FJHN. Futhermore, copy number variants (CNVs) were not iden-

tified in these four genes, and an examination of all rare (allele fre-

quency <3%) variants in these genes also did not reveal any

deleterious alleles to be shared by the two affected brothers, II.1 and

II.2 (Table S1). CNVs in three other genes (LINC01060, NRG3, and

PMM2) were found (Table S2), but were not further investigated as

they were highly unlikely to be causative of the phenotypic abnormali-

ties. However, WGS analysis identified a heterozygous G-to-C

TABLE 1 Clinical details of affected and unaffected members of the kindred with chronic kidney disease (CKD)

Individual

I.1 II.1 II.2 II.3 II.4 III.1 III.2 III.3 III.4

Chronic kidney diseasea G3aA3 G5D G3bA3 − G2A2 − − G2A3 −

Serum creatinine (mg/dl) (NR 0.5–1.2 mg/dl) 1.3 4.2 1.8 0.83 1.05 0.63 1.05 0.92 0.86

Estimated glomerular filtration rate
(NR >90 ml/min/1.73 m2)

48 15 44 80 84 122 97 86 95

Proteinuria (mg/g creatinine) (NR <110 mg/g) 1,000 2,500 740 − 100 − − 910 −

Albuminuria (mg/g creatinine) (NR <3 mg/g) − 1,655 323 <3 34 <3 <3 689 <3

Secondary hyperparathyroidism − + − − − − − − −

Hyperuricemia − + + − − − − − −

Gout − + + − − − − − −

FEUA (%) (NR 7.5 ± 1.8%) − 4.5 4.7 − 7.7 − − − −

PAX2 mutation (p.Gly76Arg) + + + − + − − + −

Ocular abnormality NT Bilateral Unilateral − Unilateral NT NT Unilateral NT

Current age 93 57 53 56 30 31 29 29 27

Age of onset Unknownb 32 (gout) 44(gout) − −
c,d

− − −
c

−

Note: + = present; − = absent/not reported; NT = not tested. Individuals II.3, III.1, III.2, and III.4, who had normal renal function and absence of the PAX2
p.Gly76Arg mutation and are unaffected, are shown in italics, while individuals that are not in italics are affected. Estimated glomerular filtration rate was
calculated using the chronic kidney disease epidemiology collaboration (CKD-EPI) formula.
Abbreviation: FEUA, fractional excretion of uric acid.
aCKD stages according to the Kidney Disease: Improving Global Outcomes (KDIGO) classification (Kidney International Supplements Volume 3, Issue
12,013, KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease).
bSuffers from dementia so age of onset unknown.
cAsymptomatic mutation carrier.
dMild hearing loss reported.

F IGURE 1 (a) Pedigree of affected proband (individual II.1, indicated with an arrow), with four affected relatives (individuals I.1, II.2, II.4, and
III.3) and four unaffected relatives (individuals II.3, III.1, III.2, and III.4). Males: square; females: circle. Open symbols: unaffected; filled top left
quadrant: kidney disease; filled top right quadrant: hyperuricemia; filled bottom left quadrant: secondary hyperparathyroidism; and filled bottom
right quadrant: proteinuria and/or albuminuria. *optic nerve pathology; §no optic nerve pathology; ?optic nerve pathology status unknown.
(b) DNA sequence analysis showing c.226G>C (highlighted) within exon 3 of PAX2. The DNA sequence chromatograms show that the affected
proband (individual II.1), his affected father (individual I.1), affected brothers (individuals II.2 and II.4), and affected niece (individual III.3), are
heterozygous G/C, while the unaffected relatives (individuals II.3, III.1, III.2, and III.4) are all homozygous G/G. (c) The PAX2 c.226G>C mutation is
predicted to lead to a missense substitution of Gly, encoded by GGC, to Arg, encoded by CGC, at codon 76 and result in the loss of a BsrFαI RE
site (R/CCGG/Y). Restriction maps show that the BsrFαI digest would result in four products for the wild-type (WT), and three products for the
mutant (m). RE digest of PAX2 exon 3 PCR products demonstrating that the affected individuals I.1, II.1, II.2, II.4, and III.3 are heterozygous for
WT (346, 288, 124, and 29 bp [not shown]), and m (346, 288, and 153 bp) alleles, and unaffected relatives II.3, III.1, III.2, and III.4 are homozygous
for WT alleles. S, size marker. (d) Multiple protein sequence alignment of PAX2 residues comprising a paired domain involved in DNA binding.
Conserved residues are shown in gray, and wild-type Gly76 (G76) and mutant Arg76 (R76) are shown in red. (e) Ophthalmological examination of
proband II.1 showing dysplastic optic nerve (indicated by a dotted yellow line) in the right eye and an optic disc pit (indicated by a dotted yellow
line) in the left eye
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transversion at nucleotide c.226 in exon 3 of PAX2 (NM_003987.3)

that was confirmed by DNA Sanger sequence analysis (Figure 1b).

This G-to-C transversion (GGC to CGC), which predicts a missense

substitution (p.Gly76Arg) of the PAX2 protein led to the loss of a

BsrFαI RE site (Figure 1c). Analysis of the nine available family mem-

bers (5 affected and 4 unaffected members) by DNA Sanger sequenc-

ing (Figure 1b) and RE digestion (Figure 1c) revealed co-segregation of

the c.226G>C variant and FJHN phenotype. Thus, the heterozygous

PAX2 c.226G>C variant was present in the five affected individuals

(I.1, II.1, II.2, II.4, and III.3), but not in the four unaffected individuals

(II.3, III.1, III.2, and III.4) that were homozygous for the wild-type

c.226G (Figure 1b,c). Moreover, this PAX2 c.226G>C variant was

absent from the greater than 125,000 exomes and greater than

15,000 genomes contained within the Genome Aggregation Database

(gnomAD v2.1.1) database (Karczewski et al., 2020). Analysis of p.

Gly76Arg using SIFT (http://sift.jcvi.org/), Mutation Taster (http:

www.mutationtaster.org/), and PolyPhen-2 (http://genetics.bwh.

harvard.edu/pph2/) predicted the variant to be “Deleterious,” “Dis-

ease Causing,” and “Probably Damaging,” respectively. Gly76, which is

located in the paired domain of PAX2, lies within a stretch of evolu-

tionarily highly conserved residues (Figure 1d), and this further sup-

ports the pathogenicity of the p.Gly76Arg variant. In addition, a

different missense mutation at this same residue (p.Gly76Ser) has

been reported in patients with renal coloboma syndrome (RCS), and

these combined observations help support that the p.Gly76Arg identi-

fied in this family (Figure 1a–c) is also a disease-causing variant. RCS,

which is also known as papillorenal syndrome (PAPRS) (MIM 120330)

(Devriendt et al., 1998), is characterized by renal and ocular anomalies

that include renal hypodysplasia and insufficiency progressing to

ESRD, and optic nerve coloboma. RCS has been reported to be associ-

ated with hyperuricemia and gout in two unrelated families (Deng

et al., 2019; Megaw et al., 2013) and the finding of the PAX2

Gly76Arg mutation in the family with FJHN (Figure 1a–c) prompted

an ophthalmological examination of the proband (II.1). This revealed

the presence of a dysplastic papilla with temporal inferior pallor in the

right eye and of an optic disc pit in the left eye (Figure 1e), consistent

with optic nerve coloboma in both eyes. Subsequent ophthalmological

examinations of the affected brothers (II.2 and II.4) and niece (III.3)

revealed the presence of unilateral optic nerve colobomas only, in all

of them. Other ocular abnormalities were not identified in any of

these four affected individuals (II.1, II.2, II.4, and III.3), and ophthalmo-

logical examination of the unaffected sister (II.3) also revealed no

abnormalities. The findings in the four affected individuals (II.1, II.2,

II.4, and III.3) are consistent with a diagnosis of RCS, which has been

reported to be also associated with anomalies of the central nervous

system (CNS), intellectual disability, hearing loss, joint laxity, and ele-

vations of pancreatic amylase; and these individuals were therefore

further assessed for such manifestations. This revealed that none of

the individuals had: clinical signs of CNS anomalies, and magnetic res-

onance imaging (MRI) of the brain in individuals II.1 and II.2, has rev-

ealed the occurrence of only of an empty sella turcica in individual

II.1; intellectual disability; hearing loss, except individual II.4 who is

reported to have mild hearing loss but has declined formal hearing

tests; joint laxity; a history of pancreatitis; or elevated pancreatic amy-

lase, which has been assessed in only individual II.1.

4 | DISCUSSION

Our study reports a kindred affected with CKD, reduced FEUA, hyper-

uricemia, and gout, which were consistent with a diagnosis of FJHN.

However, the kindred did not have UMOD, REN, SEC61A1, or HNF-1β

gene mutations, which collectively are associated with approximately

30–90% of FJHN cases, but instead had a missense mutation

(p.Gly76Arg) of PAX2, whose abnormalities are more commonly asso-

ciated with RCS. Indeed, ophthalmic examination, prompted after the

identification of the PAX2 mutation by WGS, identified optic nerve

abnormalities consistent with RCS, in all four affected family members

that were available for ophthalmic assessments (Figure 1a–e).

RCS is characterized by abnormalities in renal structure and func-

tion in greater than 90% of patients, ophthalmological anomalies in

greater than 75% of patients, and hearing loss in less than 10% of

patients (Bower et al., 2012). The most common renal findings are

renal hypodysplasia, vesicoureteral reflux (VUR), renal cysts, and

multicystic dysplastic kidneys, which occur in 65%, !15%, <10%, and

!5% of patients, respectively. Renal failure is reported in approxi-

mately 15% of cases, while CKD stage 5 requiring a kidney transplant

is common and has a range of onset from birth to greater than

75 years of age (Bower et al., 2012). The ophthalmoscopic findings

include optic nerve coloboma, optic disc dysplasia, excavation of the

optic disc or optic disc “pits,” morning glory anomaly, and hypoplastic

optic discs, which occur in !50%, >10%, <10%, !5%, and <5% of

patients, respectively (Bower et al., 2012). Retinal, macular, and lens

abnormalities have also been reported in some patients (Bower

et al., 2012). PAX2 is expressed in other tissues (e.g., cerebellum,

hypothalamus otic vesicle, genitourinary tract, and pancreas), and

additional features of RCS include CNS anomalies, intellectual disabil-

ity and elevated pancreatic amylase (Bower et al., 2012).

A frameshift deletion of PAX2 in a family with optic nerve colo-

bomas, renal hypoplasia and VUR (Sanyanusin et al., 1995) represents

the first reported single gene defect causation of congenital anomalies

of the kidney and urinary tract (CAKUT). Subsequently, larger patient

cohort studies confirmed PAX2 mutations as an important cause of

syndromic CAKUT and the establishment of RCS as a separate disease

entity (Madariaga et al., 2013; Rossanti et al., 2020; Thomas

et al., 2011; Weber et al., 2006). PAX2 is a member of the paired box

(PAX) family of transcriptional regulatory genes with nine members

described in humans. The majority of PAX2 pathogenic mutations are

located in the paired domain (comprising a conserved 128 amino acid

region) that has DNA binding properties encoded by exons 2–4

(Bower et al., 2012; Eccles et al., 2002). However, evidence from an

international consortium of three laboratories collecting data on PAX2

mutations in RCS patients reported that there are no clear genotype/

phenotype correlations, and variable types of PAX2 mutation (mis-

sense, frameshifts, splice sites, and deletions) located across 10 of the

12 PAX2 exons can lead to similar phenotypes, while the same

STEVENSON ET AL. 5



mutation within members of the same family can have variable pene-

trance and manifestations of RCS (Bower et al., 2012). This large

intrafamily variability in RCS suggests that factors other than PAX2

may play a role in clinical penetrance (Bower et al., 2012). PAX2 muta-

tions are found in approximately 50% of RCS/PAPRS, thereby

suggesting that other abnormalities of genes may be involved in the

etiology of this disorder (Dureau et al., 2001; Okumura et al., 2015).

The presence of optic disc pits and dysplastic papilla in the family

reported here (Figure 1a,e) is a distinguishing feature confirming RCS

from FJHN given that CKD is common to both. This family also has

reduced FEUA, hyperuricemia and gout that are commonly found in

FJHN. Such occurrence of RCS with hyperuricemia and gout, has been

previously reported in only two unrelated families (Megaw et al., 2013).

One family, which had a PAX2 frameshift mutation [c.567_568dup (p.

Ile190ArgfsX85)] in exon 5, consisted of five affected males from three

generations; all the five affected males suffered from hyperuricemia

and/or gout and the proband also suffered from diabetes mellitus and

cryptorchidism, which have not previously been associated with RCS

(Megaw et al., 2013). In the other family, a de novo heterozygous C-to-T

transition (c.418C>T) in exon 4 of PAX2 that would result in a missense

Arg140Trp mutation was identified in a 14.8 year old girl who presented

with hyperuricemic gout, in association with renal disease and ophthal-

mic abnormalities consistent with RCS (Deng et al., 2019). These reports

together with our findings of a PAX2 c.226G>C transversion in exon

3 that resulted in a missense Gly76Arg mutation in a kindred with hyper-

uricemic nephropathy and features of RCS (Figure 1a–c), suggest that

the association of gout with RCS may not be rare.

The identification of a PAX2 mutation in the family (Figure 1a–c)

reported in this study and the subsequent revision of the diagnosis

from FJHN to RCS will have important implications for improved

patient care, both in terms of treatments for the features already

manifested, and also for longer term monitoring of other RCS associ-

ated phenotypes that may develop in the future. Thus, the patients

and their unaffected relatives in the family (Figure 1a–c) have been

informed of the results from the genetic testing, and those having the

mutation have been provided with details about the clinical manifesta-

tions and management of RCS, which includes: the likelihood of devel-

oping kidney failure and the necessity of having regular hospital

appointments for assessments of renal function; the mode of inheri-

tance; and the risks for their children inheriting the mutation and

developing RCS. Equally important, the confirmation of the absence

of the mutation in the unaffected family members (II.3, III.1, III.2, and

III.4) will also alleviate concerns for these individuals over non-

penetrance of the disease and reduce the burden of monitoring since

they are at greatly reduced risk of developing kidney disease.

WGS, which enables the detection of all classes of genetic change

including SNV, CNV, translocations, and variants in noncoding regions

that may confer a pathogenic effect, has become increasingly afford-

able in recent years and provides a method to aid diagnosis of com-

plex diseases with genetic etiologies. Thus, we have demonstrated

that WGS can improve diagnosis of inherited forms of hyperuricemia

and kidney disease, which can be challenging to achieve by pathologi-

cal and biochemical analysis alone.
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