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Abstract

Rising seawater temperature and ocean acidification threaten the survival of coral reefs.

The relationship between coral physiology and its microbiome may reveal why some corals

are more resilient to these global change conditions. Here, we conducted the first experi-

ment to simultaneously investigate changes in the coral microbiome and coral physiology in

response to the dual stress of elevated seawater temperature and ocean acidification

expected by the end of this century. Two species of corals, Acropora millepora containing

the thermally sensitive endosymbiont C21a and Turbinaria reniformis containing the ther-

mally tolerant endosymbiont Symbiodinium trenchi, were exposed to control (26.5˚C and

pCO2 of 364 μatm) and treatment (29.0˚C and pCO2 of 750 μatm) conditions for 24 days,

after which we measured the microbial community composition. These microbial findings

were interpreted within the context of previously published physiological measurements

from the exact same corals in this study (calcification, organic carbon flux, ratio of photosyn-

thesis to respiration, photosystem II maximal efficiency, total lipids, soluble animal protein,

soluble animal carbohydrates, soluble algal protein, soluble algal carbohydrate, biomass,

endosymbiotic algal density, and chlorophyll a). Overall, dually stressed A. millepora had

reduced microbial diversity, experienced large changes in microbial community composi-

tion, and experienced dramatic physiological declines in calcification, photosystem II maxi-

mal efficiency, and algal carbohydrates. In contrast, the dually stressed coral T. reniformis

experienced a stable and more diverse microbiome community with minimal physiological

decline, coupled with very high total energy reserves and particulate organic carbon release

rates. Thus, the microbiome changed and microbial diversity decreased in the physiologi-

cally sensitive coral with the thermally sensitive endosymbiotic algae but not in the physio-

logically tolerant coral with the thermally tolerant endosymbiont. Our results confirm recent

findings that temperature-stress tolerant corals have a more stable microbiome, and
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demonstrate for the first time that this is also the case under the dual stresses of ocean

warming and acidification. We propose that coral with a stable microbiome are also more

physiologically resilient and thus more likely to persist in the future, and shape the coral spe-

cies diversity of future reef ecosystems.

Introduction

Increased atmospheric carbon dioxide (CO2) is causing the oceans to warm and become more

acidic, thus resulting in lower seawater pH and carbonate mineral saturation state. At the cur-

rent rate of warming and ocean acidification, reefs are expected to experience significant

declines in coral abundance, coral diversity, and reef growth before the end of this century [1].

Despite this, some coral species appear to be more tolerant of these predicted conditions than

others [2–4]. The relationship between coral physiology and its microbiome may shed light on

why some corals are more resilient to global change conditions.

Elevated seawater temperature can lead to coral bleaching: a process whereby scleractinian

corals lose substantial numbers of their photosynthetic endosymbiotic dinoflagellates (Symbio-
dinium spp.), giving the colony a pale (hence bleached) appearance. Bleaching damages coral

health, slows or arrests growth, and can lead to mortality [1,5–7]. Factors associated with the

ability to tolerate and recover from bleaching include coral energy reserves (i.e., lipid, protein,

carbohydrates) [8–11], heterotrophic feeding capacity and/or plasticity [12–15], and endosym-

biont type shuffling [9,16]. Ocean acidification can also affect some corals. Decreases in seawa-

ter pH hamper coral calcification in some species [4,17–19], but not in others [3,4,20,21].

Additionally, ocean acidification can dramatically impact coral health in some cases [2,22],

while in other cases it has little or no negative effects on coral host physiology [4,19,23] and is

often coupled with a stimulating effect on the endosymbiotic algae [23–25]. However, corals

are increasingly exposed to the chronic dual stress of both rising temperature and ocean acidi-

fication simultaneously, and our understanding of how corals respond to the single stress of

elevated temperature or acidity do not inform us on how coral might respond to the dual

stress. At the current rate of atmospheric CO2 increase, the tropical oceans are conservatively

expected to warm by 1–2˚C and seawater pH to decrease by ~0.3 pH units over the course of

this century [26].

Coral physiological responses to elevated temperature stress tend to be more severe when

simultaneously exposed to reduced pH conditions in some species [2,4,23], but not in other

species [3,4,23,24]. Physiological traits associated with coral resilience to both temperature and

pH stress include high energy reserves, thermally tolerant endosymbiont types, and heterotro-

phic feeding on zooplankton or organic matter [4,23,27]. Thus, some species are more resilient

to stress conditions expected by the end of this century than others. However, we do not fully

understand what drives that resilience. Documented shifts, and lack of shifts, in the microbial

community composition of heat-stressed corals [28–32] suggest that the microbiome may be a

critical component of coral resilience. More importantly, the relationship between coral physi-

ology and its microbiome may shed light on why some corals are more affected by the dual

stress of elevated temperature and ocean acidification than others.

Coral-associated microbial communities are highly diverse, vary seasonally, and–with some

exceptions–are generally consistent within a coral species [33–38]. Elevated temperature stress

has been associated with significant shifts in coral microbial community composition in some

cases [28–30] that appear to return to pre-bleaching states following recovery [28]. Specific
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Operational Taxonomic Units (OTUs) associated with bacteria of the genus Vibrio, and other

OTUs from the bacterial classes γ-Proteobacteria, δ-Proteobacteria, and Acidobacteria, coin-

cide with bleaching in corals, suggesting that such taxa cause or facilitate coral bleaching, or

that they opportunistically increase in abundance in bleached corals when the coral’s health is

compromised [28,29,33,39–44]. Bourne et al. [28] hypothesized that the loss of endosymbiotic

algae during coral bleaching reduces the amount of reactive oxygen species–natural bacterial

inhibitors–thus allowing opportunistic bacteria to infect and/or proliferate. Conversely, Banin

et al. [33] proposed that bacterial pathology increases with temperature and causes bleaching,

which is consistent with studies showing that microbial pathogenesis is temperature-depen-

dent [39]. However, more recent work indicates that the microbiome may play a role in coral

resilience to heat stress. Reschef et al. [45] proposed that beneficial microbes increase in

stressed corals, conferring an immune-like response coined the “Coral Probiotic Hypothesis”

making corals tolerant of stressful conditions like bleaching. Santos et al. [43] suggested that

increases in nitrogen-fixing bacteria in bleached corals provide an alternative mechanism for

corals to acquire fixed nitrogen in the absence of abundant endosymbionts, thus helping corals

tolerate climate change stresses–though Pogoreutz et al. [46] found that increases in Diazo-

trophs and N-fixation are a stress response that exacerbates coral-algal symbiotic breakdown

and bleaching. Others have shown that thermally tolerant corals can also have stable microbial

communities under temperature stress or benefit from stable microbial communities that

resemble their non-bleached counterparts [31,32]. Therefore, the microbiome has the potential

to play a role in coral susceptibility, resistance, and recovery from stress events that could

make the difference between coral species resilience and persistence, or extinction.

Ocean acidification has also been shown to cause shifts in coral microbial community com-

position, though no patterns emerge from the existing literature. Decreases in seawater pH

result in increases, decreases, and no change in microbial diversity and relative abundances of

the dominant classes of microbes [30,47–50]. Microbially mediated nutrient cycling can also

be affected by ocean acidification by causing decreases in nitrogen fixation rates [51]. Clearly,

more research is needed to address the effects of ocean acidification on coral microbial com-

munities, particularly in combination with ocean warming.

Today, both rising temperatures and ocean acidification are occurring simultaneously.

Only one study to date has examined the combined effects of elevated temperature and ocean

acidification on the coral microbiome [30], and none have investigated the possible connec-

tion between the coral physiology and the microbiome under these dual stress conditions.

Webster et al. [30] found that the microbial community composition shifts in response to end-

of-century conditions were greater for the coral Acropora millepora than for the coral Seriato-
pora hystrix, and that dominant changes in bacterial phyla differed between the species. While

Vibrio seems to play a large role in coral responses to temperature stress [28,44], this tempera-

ture sensitivity is lost when combined with ocean acidification stress [30]. At the same time,

how changes in the coral microbiome are related to changes in coral physiology (animal host

and endosymbiotic algae) under both temperature and pH conditions expected by the end of

this century are completely unknown. Understanding this relationship may be key to uncover-

ing why some corals are more resilient than others to climate change (see reviews by [52–54]).

Here, we assessed the effects of the dual stresses of increased temperature and ocean acidifica-

tion (i.e., increased pCO2) expected later this century on coral microbial community composi-

tion. We interpreted the microbial findings within the context of previously published

physiological measurements from the exact same corals in this study (i.e., animal host and

endosymbiotic algae). This holobiont approach to understanding corals [37] can only increase

our understanding of why some corals are more resilient than others. We hypothesize that
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corals with a stable microbial community composition are physiologically more resilient to

combined ocean warming and acidification.

Materials and methods

Experimental design

This experiment was conducted at Reef Systems Coral Farm (New Albany, OH, USA) in sum-

mer 2011 in coarsely filtered (150 μm filters) artificial seawater and is described in detail in

Schoepf et al. [4]. Additional filtering of the seawater was deemed unnecessary as corals main-

tain microbial community compositions that are compositionally distinct from their sur-

rounding seawater [32,36,37,55]. Due to financial limitations, this study focused only on a

subset of these corals, which were analyzed for microbial community composition. A brief

description of the experimental methods that pertain only to this subset of corals is as follows.

Six colonies of the Pacific corals Acropora millepora and Turbinaria reniformis were col-

lected from northwest Fiji and transported to Reef Systems Coral Farm (New Albany, Ohio,

USA) which is a CITES permit holder. The coral colonies were maintained in a single large

recirculating tank for 2.5 months prior to the experiment, and were exposed to the same recir-

culating seawater and environmental conditions. We assumed that the opportunity for acquir-

ing any given bacteria was equal among all corals in the same way that it would have been had

the corals been freshly collected from the reef prior to the experiment. Since corals maintain

microbial community compositions that are compositionally distinct from the surrounding

seawater [32,36,37,55], any differences in the microbial community composition of the corals

after 2.5 months in the large tank was assumed to be due to species-specific differences in how

coral establish and maintain their microbiome.

Prior to starting the manipulative experiment, 6 control tanks and their shared recirculating

sump, and all 6 treatment tanks and their shared recirculating sump were filled with artificial

seawater that was made in a common bath and equally partitioned among all tanks and sumps.

Thus all seawater starting conditions in the experimental tanks, including the seawater micro-

bial community composition, were the same for all corals in this study and the only differences

between the treatment and control tanks during the experiment were the temperature and

pCO2 levels.

Each coral colony was divided into 12 fragments. A. millepora is a branching coral that con-

tains the thermally sensitive endosymbiont type Symbiodinium C21a, while T. reniformis is a

foliose coral that contains the thermally tolerant Symbiodinium trenchi (Symbiodinium type

reported in the companion paper by Hoadley et al., [23]). One fragment from each colony was

assigned to each of the six control tanks (26.5˚C and pCO2 of 364 μatm) and to each of the

treatment tanks (29.0˚C and pCO2 of 750 μatm), yielding a total sample size of 6 treatment

and 6 control fragments for each species (total n = 24). This sample size is the same or larger

than the sample sizes used in the vast majority of coral microbial studies (e.g., [28,30,32,44,55–

57]).

Seawater pCO2 was controlled by bubbling in pure CO2, CO2-free air, or ambient air in

each sump to achieve the desired pCO2. Temperature was also controlled in each sump with

submerged computer-controlled titanium heaters. At the beginning of the experiment, tem-

perature was raised gradually from 26.5˚C to 31.5˚C over the first 18 days to prevent heat

shock, then maintained at 31.5˚C for 6 additional days, for a total of 24 days with an average

temperature of 29˚C. pCO2 was raised gradually over the first 4 days to prevent pCO2 shock,

and maintained at 750 μatm for the remaining 18 days. Corals were grown in the tanks for 24

days on a 9:15 hour light:dark cycle (275 μmol quanta m-2 s-1) and fed every three days with

two-day old brine shrimp nauplii that were hatched in a separate single batch culture with new
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seawater. Coral were fed the brine shrimp in separate feeding containers, and returned to their

experimental tanks after one hour. The feeding container water and remaining brine shrimp

were discarded so as not to introduce brine shrimp into the recirculating system (see Schoepf

et al., [4] for more details). The control temperature of 26.5˚C represented the average summer

temperature in Fiji where the coral colonies were originally sourced, while the average elevated

temperature of 29.0˚C represented the upper limit of current Fiji summer temperatures, but is

still below the bleaching threshold at that location (www.ospo.noaa.gov/Products/ocean/

index.html), and representative of the increase in baseline temperatures expected by the end of

this century in tropical regions under the RCP 8.5 scenario [26]. The control and treatment

pCO2 levels represented present day conditions and those expected by mid-century under the

RCP 8.5 scenario and by 2100 under the RCP 6.0 scenario [26], respectively. Throughout the

study, temperature, salinity, pHNBS, and total alkalinity (TA) were measured daily according to

methods described in Schoepf et al. [4]. Daily pCO2, aragonite saturation state (Oarag), and pH

(reported on the pH total scale, pHT) were then calculated according to Schoepf et al. [4]. The

experiment ran for 24 days from 19 July– 12 August, 2011, then coral fragments were frozen at

-80˚C, and transported to the lab for analyses.

16S rRNA gene sequencing and OTU table construction

Whole coral tissue and associated mucus layer was airbrushed with milliQ water to produce a

slurry from the 24 frozen coral fragments and frozen at -80˚C. Coral slurries were centrifuged

and total genomic DNA was extracted using PowerSoil1 DNA Isolation kits according to the

manufacturer instructions (MoBio Laboratories, Inc., Carlsbad, CA, USA). DNA was eluted in

the provided buffer and quantified on a Qubit 2.0 instrument (Invitrogen, Carlsbad, CA,

USA). DNA samples were then sequenced at the Argonne National Laboratory using the Illu-

mina MiSeq platform. The V4 region of the 16S rRNA gene was targeted with the universal

primers 515F and 806R [58,59] that targeted both bacteria and archaea. The use of the 16S

rRNA gene is a standard in the field for identifying microbial community composition and

structure in the coral literature (e.g., [28,31,32,44,49,55,57]. Sequencing data was processed

using the QIIME platform [60]. Briefly, FASTQ forward and reverse files were joined and

libraries were split based on the barcodes. Sequence length control and end-trimming were

performed with default parameters, and the minimum quality score was set as 19. Additional

parameters included a minimum count of 10 for an OTU to be retained and presence in at

least 25% of the samples. OTUs were assigned based on the release 111 of the Silva ribosomal

database [61] and clustered at 97% similarity level. Chimeras were identified and removed

with usearch61 [62]. After the OTU table was generated, any OTUs matching mitochondria,

chloroplasts, or eukaryotes were removed from the biom table using filter_taxa_from_otu_ta-

ble.py and later summarize_taxa.py. Details on PCR, sequence processing, and command line

work are available in the S1 Methods of the Supporting Information.

Physiology measurements

Physiological measurements in this study were already reported in Schoepf et al. [4], Levas

et al. [27], and Hoadley et al. [23] along with details of each analysis. In brief, calcification

[from [4]] was measured by the buoyant weight method [63] during the study and standard-

ized to surface area to produce calcification rates for the first and second half of the experi-

ment. Only the latter calcification rate is used in this study as it is most relevant to the other

physiological and microbial data, which were all measured either during the last few days of

the experiment or at the end of the 24-day experiment. Particulate organic carbon (POC) flux

[from [27]], ratio of photosynthesis to respiration (P:R) [from [23]], and photosystem II

Coral physiology and microbiome dynamics under combined warming and ocean acidification
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maximal efficiency (Fv/Fm) [from [23]] were measured on living corals during the last four

days of the experiment. POC flux was calculated as the difference in blank-corrected POC con-

centration of the seawater in a sealed chamber containing a coral fragment and the initial sea-

water POC concentration, standardized to the incubation duration (1.5 hours) and fragment

surface area. POC was defined as the concentration of organic particles captured on a GF/F

(0.7 μm nominal pore size) and measured by combustion using a Costech Elemental Analyzer.

When POC fluxes are positive, corals are releasing organic matter into the water, typically in

the form of mucus. When POC fluxes are negative, coral are taking up POC as a source of

fixed carbon [27]. Maximum net photosynthetic rate (P) and light acclimated dark respiration

(R) were measured from the change in oxygen concentration of each coral fragment in a respi-

rometry chamber and standardized to surface area. The ratio of P:R was calculated from the

ratio of gross P (net P + R) to R. Dark acclimated quantum yield of photosystem II (Fv/Fm),

was measured in the light by pulse amplitude modulation fluorometry (Diving PAM, Waltz,

Germany). Fv/Fm is generally viewed as a proxy for coral heat sensitivity [64].

In the laboratory, the following physiological analyses were performed on all frozen coral

fragments collected on the last day of the experiment and reported by Schoepf et al. [4]: total

lipids, animal host soluble protein, animal host soluble carbohydrates, total biomass, endosym-

biotic algal density, chlorophyll a, and total surface area. The following physiological variables

were performed on the same frozen fragments and reported by Hoadley et al. [23]: soluble

algal protein, and soluble algal carbohydrates.

In brief, total lipids, animal host soluble protein and animal host soluble carbohydrates

were quantified from ground whole coral subsamples and standardized to ash-free dry weight.

Lipids were extracted in a 2:1 chloroform:methanol solution, washed in 0.88% KCl, extracted

and washed again in 100% chloroform and 0.88% KCl, respectively. For the animal host solu-

ble protein and carbohydrate analyses, the animal fraction was separated from the endosymbi-

otic algae via sonication and centrifugation. Protein was extracted using the bicinchoninic

method [65] with bovine serum albumin as a standard (Pierce BCA Protein Assay Kit). Carbo-

hydrates were quantified using the phenol-sulfuric acid method with glucose as a standard

[66]. Biomass was determined as the difference between the dry and burned weight of a

ground coral subsample and standardized to surface area. Coral surface area was determined

using the single wax dipping method [67,68] for the branching A. millepora and the aluminium

foil method [69] for the plating T. reniformis.
Endosymbiotic algal density, chlorophyll a, soluble protein, and soluble carbohydrates were

determined on airbrushed coral slurry where the algae were then separated from the coral host

via centrifugation, and standardized to surface area. The number of algal cells were counted on

six replicate subsamples using a hemocytometer and a Nikon microphot-FXA epifluorescent

microscope. Chlorophyll a was extracted from another subsample in methanol and quantified

spectrophotometrically according to Porra et al. [70]. Soluble algal protein and carbohydrates

were determined using the same methods as above for the animal host.

Statistical analyses

The data were analyzed using non-parametric multivariate techniques to determine if the

microbial community composition and structure varied among coral species and treatments.

As rare OTUs can sometimes play an interesting role in microbial ecology [65], we included

all sequences in the analyses. The OTU table was used as the input for microbial community

analyses in PRIMER E v. 1.0.6 (Quest Research Limited, Auckland, New Zealand). The

sequence data was evaluated at three levels: Phylum, Class, and OTU. These levels of analyses

were done to facilitate comparisons with other publications. At the phylum level (Level 2 table

Coral physiology and microbiome dynamics under combined warming and ocean acidification
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from Qiime), the sum of the abundances of all OTUs within each phylum was square root-

transformed prior to construction of a Bray-Curtis resemblance matrix. The same was per-

formed at the Class (Level 4) level. Analysis of Similarity (ANOSIM) was used to test for the

effect of species and treatment on the microbial community composition at the phylum and

class levels. Similarity Percentage (SIMPER) analyses were conducted to determine the degree

of dissimilarity in microbial communities between coral species, between control and treat-

ment corals within a species, and to determine which phyla or classes were responsible for the

largest portion of those dissimilarities. The same analyses were then conducted using all of the

individual OTU sequence abundances. In addition, the Shannon Diversity Index at the OTU

level was computed for each species and treatment. A univariate two-way analysis of variance

(ANOVA) was used to test the effects of species and treatment on the Shannon Diversity

Index, where the data was first tested for normality using the Shapiro-Wilk’s test and homoge-

neity of variance was assessed with plots of expected vs. residual values. A posteriori Slice tests

(i.e., tests of simple effects, Winer [71]) were used to determine if treatment corals differed

from controls within each species.

The physiological measurements were analyzed using non-parametric techniques to

determine if corals differed physiologically between species and treatments. Since these data

are a subset of those from Schoepf et al. [4], Hoadley et al. [23], and Levas et al. [27], and

presented together for the first time, new statistical analyses were necessary using only the

data from the samples in this study. Univariate Kruskal-Wallis tests were conducted on

each individual variable to determine if they differed between control and treatment corals

of each species. A Euclidean distance-based resemblance matrix was then constructed using

normalized data. ANOSIM was used to test for the effect of species and treatment on the

overall coral physiology. SIMPER analyses were conducted to determine which physiologi-

cal variable(s) were responsible for the largest portion of the differences detected in the

ANOSIM. These multi-variate analyses of the physiological data are unique to the current

study.

Non-parametric multidimensional scaling (NMDS) analyses were performed to graphically

represent relationships between the microbial abundance variability and the coral physiology

variability between species and treatments in multidimensional space. The two sets of data

(microbial and coral physiology) were then compared to determine if microbial community

composition and structure co-varied with coral physiology using two strategies: 1) vectors

were added to NMDS plots (Pearson correlations > 0.1) to show the direction and magnitude

of the influence of each physiological variable to the distribution of the microbial-based data

points in 2D NMDS space, and 2) Spearman correlations were performed to compare the

physiology-based NMDS distribution pattern to the microbial-based NMDS distribution pat-

tern (BEST test).

The Kruskal-Wallis tests were performed using SAS software version 9.2. All other analyses

were generated using the software package Primer V6 [72,73]. Where appropriate, p< 0.05

was considered significant.

Since the coral fragments in the control and treatment tanks were all from the same parent

colonies (i.e., one fragment from each colony and species in each tank), changes in the micro-

biome were due to treatment effects and not due to genetic differences between colonies. Over-

all, the experimental design allowed us to detect changes in the coral microbial community

composition due to treatment effects, independent of starting microbial community composi-

tion and inter-colony variability. Thus, any observed differences in the coral microbial com-

munity composition in the experiment were due to innate differences between species and

treatment effects alone.

Coral physiology and microbiome dynamics under combined warming and ocean acidification

PLOS ONE | https://doi.org/10.1371/journal.pone.0191156 January 16, 2018 7 / 22

https://doi.org/10.1371/journal.pone.0191156


Results

All corals survived the experiment, though their physical appearance varied by species and

treatment. Half of the treatment A. millepora were pale at the end of the study and all other

fragments retained a healthy brown (for control A. millepora) or mustard yellow (for both con-

trol and treatment T. reniformis) color (Fig 1). The average seawater temperature, pHT, pCO2,

total alkalinity, and Oarag for the control and treatment tanks are given in Table 1.

Fig 1. Photographs of representative coral fragments at the end of the experiment. A. millepora and T. reniformis after 24 days in the experiment under

control (26.5˚C and pCO2 of 364 μatm) (left side) and treatment (29.0˚C and pCO2 of 750 μatm) (right side) conditions. The treatment A. millepora fragment

typifies the paling that was observed in half of the fragments in this group. Photos by V Schoepf.

https://doi.org/10.1371/journal.pone.0191156.g001
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Microbial community composition

Overall, there were 831 OTUs across all coral fragments spanning 48 Phyla: 565 for A. mille-
pora and 650 for T. reniformis (S1 Table). In addition, 388 OTUs were shared by both coral

species, 175 were unique to A. millepora, 263 were unique to T. reniformis. We observed that

sequences affiliated with members of the Proteobacteria (primarily Alphaproteobacteria and

Gammaproteobacteria classes) and Firmicutes Phyla were the most abundant in treatment

and controls of both coral species, with sequences matching Actinobacteria, Bacteroidetes, and

Acidobacteria Phyla being the next most abundant and typically present in both species and

treatments (Fig 2A). However, ANOSIM revealed that at the Phylum level, bacterial communi-

ties on average did not significantly differ between species, or between treatment and controls

of either species (ANOSIMs Global R -0.036, p = 0.66) (Fig 2B).

Significant differences in the coral microbial communities were found at the Class and

OTU levels between the species, and between treatment and controls of A. millepora, but not

between treatment and control T. reniformis according to ANOSIM analyses (Table 2, S1 Fig).

At the OTU level, the microbial community composition of treatment and control A. millepora
and T. reniformis were 77% and 59% dissimilar, respectively (S2 Table). In A. millepora, this

dramatic dissimilarity was due to increases in OTUs associated with Sphingomonas, Pseudomo-
nas, and Halanaerobium, the virtual appearance of Rhodococcus fascians, and decreases in 16S

rRNA gene sequence associated with the Rhodobacteraceae in treatment corals compared to

the controls (Fig 3, S2 Table). The virtual disappearance of Pseudovibrio was due to a single

coral fragment (Fig 3, S2 Table). At the same time, the Shannon Diversity Index decreased sig-

nificantly from an average of 3.21 in control to 1.98 in treatment A. millepora (S3 Table).

Though variability among treatment and control A. millepora fragments was high (Fig 3A),

several overarching patterns emerged in this coral species. Treatment conditions resulted in

relative abundance increases in sequences affiliated with Sphingomonas (observed in 5 of the 6

fragments), Pseudomonas (observed in 4 of the 6 fragments), Halenaerobium (observed in 5 of

6 fragments) and R. fascians (observed in all 6 fragments) coupled with decreases in a 16S

rRNA gene sequence associated with the Rhodobacteraceae (observed in 4 of 6 fragments) (Fig

3A, S1 Table). On average, this resulted in -9 to +100-fold changes in these OTUs (Fig 3B).

Microbial OTU diversity did not significantly differ between control and treatment T. renifor-
mis (average Shannon Diversity Index of 3.4 vs 2.9, respectively) nor between species (S3

Table).

Coral physiology

Calcification, Fv/Fm, and algal carbohydrate concentration significantly declined by 136%,

23%, and 32%, respectively, while animal host protein concentration increased by 51% in

Table 1. Average conditions (± 1standard error) for the control and treatment tanks.

Control Treatment

Temperature (˚C) 26.45 ± 0.01 28.93 ± 0.02

pHT 8.07 ± 0.01 7.81 ± 0.01

pCO2 (μatm) 364 ± 10 750 ± 26

TA (μmol kg-1) 2269 ± 11 2305 ± 9

Ωarag 3.69 ± 0.07 2.52 ± 0.06

pHT = pH reported on the total scale, TA = total alkalinity, Ωarag = aragonite saturation state.

Modified from Schoepf et al. [4].

https://doi.org/10.1371/journal.pone.0191156.t001
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treatment compared to control A. millepora (Fig 4A, S4 Table). In T. reniformis, the endosym-

biotic algal protein was four-fold higher and algal carbohydrate concentrations were 34%

lower in the treatment compared to control corals (Fig 4B, S4 Table). No other significant dif-

ferences were detected between treatment and control corals of either species (S4 Table). It is

Fig 2. Microbial relative abundances by phylum. (A) Acropora millepora (Am) and Turbinaria reniformis (Tr) under control (26.5˚C and

pCO2 of 364 μatm) and treatment (29.0˚C and pCO2 of 750 μatm) conditions for each sample (1–6). (B) Average microbial relative

abundances by Phylum.

https://doi.org/10.1371/journal.pone.0191156.g002

Coral physiology and microbiome dynamics under combined warming and ocean acidification

PLOS ONE | https://doi.org/10.1371/journal.pone.0191156 January 16, 2018 10 / 22

https://doi.org/10.1371/journal.pone.0191156.g002
https://doi.org/10.1371/journal.pone.0191156


worth noting that host protein concentrations as well as the total energy reserves (i.e., lipid,

protein, and carbohydrates) in treatment T. reniformis were 100% and 13% greater than in

treatment A. millepora, respectively (Fig 4). When all of the physiology data were evaluated as

a whole, significant overall differences between coral species, and between treatments within

species, were found (Table 3). Animal host protein and endosymbiotic algal carbohydrates

contributed the most, and algal cell density and P:R the least, to the overall physiological differ-

ences between the two coral species (S5 Table).

Coral microbiome and physiology

NMDS analyses of the microbial OTU relative abundance data revealed clear separation of the

coral microbial communities between the coral species, and between treatment and controls of

A. millepora, but not between treatment and control T. reniformis (Fig 5, Table 2). Of the phys-

iological variables, host protein and Fv/Fm best described the overall microbiology NMDS pat-

tern of the corals (BEST, spearman correlation R = 0.344, p = 0.26), though the results were

not statistically significant. Nevertheless, the host protein vector appears to define an axis that

best describes differences in the microbial communities between the species whereas the Fv/Fm

vector appear to define an axis separating the microbial communities of treatment and control

corals (Fig 5). BEST analysis was also conducted on A. millepora alone as it expressed signifi-

cantly different microbial communities between treatment and control fragments. However,

the model was not significant and no physiological variables described the overall microbiol-

ogy NMDS pattern within A. millepora (Global R = 0.21, p = 0.95).

Discussion

When corals are exposed to stress such as increased temperature or decreases in seawater pH,

the coral microbial community often undergoes compositional changes

Table 2. One-way ANOSIMs of microbial community composition with pairwise tests of each coral

species and treatment combination at the a) Class and b) OTU level.

Pairwise tests of groups R statistic P-value

a) Class level

Am Control vs. Am Treatment 0.296 0.028

Am Control vs. Tr Control 0.254 0.043

Am Control vs. Tr Treatment 0.433 0.002

Am Treatment vs. Tr Control 0.356 0.013

Am Treatment vs. Tr Treatment 0.230 0.002

Tr Control vs. Tr Treatment 0.039 0.284

b) OTU level

Am Control vs. Am Treatment 0.220 0.048

Am Control vs. Tr Control 0.263 0.037

Am Control vs. Tr Treatment 0.394 0.009

Am Treatment vs. Tr Control 0.426 0.011

Am Treatment vs. Tr Treatment 0.302 0.004

Tr Control vs. Tr Treatment 0.059 0.234

The overall model at the Class and OTU levels were significant (Global R = 0.256, p<0.01, 999 permutations

and R = 0.257, p<0.02, 999 permutations, respectively). Bolded p-values are significant. Am = Acropora

millepora, Tr = Turbinaria reniformis, Control = 26.5˚C and pCO2 of 364 μatm, Treatment = 29.0˚C and pCO2

of 750 μatm.

https://doi.org/10.1371/journal.pone.0191156.t002
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Fig 3. Relative abundance of the nine OTUs contributing the most to the dissimilarity between treatment and control corals

as determined by SIMPER analysis. (A) Results for Acropora millepora (Am) and Turbinaria reniformis (Tr) under control (26.5˚C and

pCO2 of 364 μatm) and treatment (29.0˚C and pCO2 of 750 μatm) conditions for (A) each sample and (B) on average per treatment and

species. Average relative abundance details in S2 Table. Dissimilarity analyses details by SIMPER are in S2 Table. ANOSIM results in

Table 2 correspond to panel (B). Note that the proportionate contributions of the OTUs here do not sum to 1 because only the nine

OTUs contributing the most to the dissimilarities are shown. Sphingomonas, Ruegeria, Pseudovibrio, Methylobacterium, and

Rhodobacteraceae belong to the class Alphaproteobacteria. Pseudomonas, Acinetobacter, and Coxiella belong to the class

Gammaproteobacteria. Rhodococcus fascians belongs to the phylum Actinobacteria, Halanaerobium and Staphylococcus to

Firmicutes, and Percinobacter to Bacteroidetes.

https://doi.org/10.1371/journal.pone.0191156.g003
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[28,29,40,44,48,49,55,74,75]. The current study is the first to simultaneously examine the coral

microbial community composition, coral host physiology, and endosymbiotic algal physiology

associated with the dual stress of increased seawater temperature and lower pH. When com-

paring the two coral species here, we find that T. reniformis with its thermally tolerant endo-

symbiont Symbiodinium trenchi has a stable microbial community composition and is only

slightly affected physiologically when exposed to conditions expected by the end of this cen-

tury for 24 days, whereas A. millepora with its more thermally sensitive endosymbiont type

C21a suffers both a decline in microbial diversity and a shift in its microbial community com-

position combined with a more dramatic physiological decline under the same stressful

conditions.

The coral microbiomes of A. millepora and T. reniformis were dominated by members of

the phylum Proteobacteria (Fig 2), which is a pattern found in most coral microbial communi-

ties (e.g., [30,48,55,76]). However, when exposed to the dual stress of increased temperature

and lower pH, we found no significant change in the phylum-level microbial community com-

position of A. millepora (Fig 2B) whereas Webster et al. [30] did. This could be due to the dif-

ferent experimental conditions of both studies. Namely, Webster et al. [30] corals were

collected two weeks before the experiment, maintained at 28˚C or 31˚C during the experi-

ment, and were kept in 1μm filtered seawater and starved of any heterotrophic food source. In

the current study, the corals were collected three months prior to the experiment, maintained

at 26.5˚C or 29˚C in 150 μm filtered seawater, and fed Artemia nauplii twice a week.

At the OTU level, the microbial community composition changed and diversity decreased

for A. millepora, but not T. reniformis, when exposed to the dual stress treatment (Table 2, S3

Table). In the field of ecology, the insurance hypothesis states that microbial diversity stabilizes

microbial community function [77]. Therefore, the loss of diversity observed in dually stressed

A. millepora may indicate a destabilized microbial community function. However, increases in

coral microbial diversity in response to sewage and sedimentation stress have also been inter-

preted to mean microbial community destabilization [78]. Here, we find that the large shifts in

Fig 4. Average (± 1SE) physiological variables. Results given for (A) Acropora millepora and (B) Turbinaria

reniformis. Measurement units for each variable in brackets along the x-axis. Left-hand y-axis scale

corresponds to the first 9 variables and the right-hand y-axis scale corresponds to the last three variables

(separated by a dashed line). Black bars = control coral (26.5˚C and pCO2 of 364 μatm), white

bars = treatment coral (29.0˚C and pCO2 of 750 μatm), carbs = carbohydrates, POC = particulate organic

carbon flux, * = significant difference between control and treatment averages for a given variable by Kruskal-

Wallis test (details in S3 Table). Data from Schoepf et al. [4], Hoadley et al. [23], and Levas et al. [27].

https://doi.org/10.1371/journal.pone.0191156.g004

Table 3. One-way ANOSIM of coral physiology with pairwise tests of each species and treatment

combination.

Pairwise tests of groups R statistic P-value

Am Control vs. Am Treatment 0.265 0.015

Am Control vs. Tr Control 0.515 0.002

Am Control vs. Tr Treatment 0.537 0.002

Am Treatment vs. Tr Control 0.807 0.002

Am Treatment vs. Tr Treatment 0.754 0.002

Tr Control vs. Tr Treatment 0.178 0.024

The overall model was significant (Global R = 0.509, p<0.001, with 999 permutations). Bolded p-values are

significant. Am = Acropora millepora, Tr = Turbinaria reniformis, Control = 26.5˚C and pCO2 of 364 μatm,

Treatment = 29.0˚C and pCO2 of 750 μatm.

https://doi.org/10.1371/journal.pone.0191156.t003
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OTUs most responsible for the differences between treatment and control A. millepora corals

do suggest an association between the microbiome and decreased coral health, which suggests

destabilized microbial function (Fig 3). Specifically, the large increases in OTU relative abun-

dance of Sphingomonas and Pseudomonas (Fig 3B) may be an indication of declining coral

health as Sphingomonas-like bacteria and P. aeruginosa are associated with coral disease

[44,79]. The large declines in Rhodobacteraceae could indicate a decrease in nitrogen-fixing

ability [43,51,80]. Lastly, the known plant pathogen Rhodococcus fascians dramatically

increased in all six A. millepora fragments (Fig 3A). Though we have no direct evidence that

any of the bacterial shifts in A. millepora led to specific diseases or health decline, none of these

OTU shifts suggest an acclimation response that could be conferring a probiotic [45] or pro-

tective effect in response to the dual stress of elevated temperature and ocean acidification.

Alternatively, these large OTU shifts may indicate a restructuring of the microbial community

in order to facilitate adaptation to the dual-stress conditions [31]. The maintenance of diversity

and the microbial community stability observed in T. reniformis might have been because this

species was already pre-adapted to the dual stress conditions, as has been demonstrated for

Fig 5. NMDS ordination using microbial OTU community composition from all 24 coral fragments. Gray vector overlay shows the proportional

influence of each physiology variable to the NMDS plot distribution. Am = Acropora millepora (circles), Tr = Turbinaria reniformis (open squares), Control

(blue) = 26.5˚C and pCO2 of 364 μatm, Treatment (black) = 29.0˚C and pCO2 of 750 μatm. Calc = calcification rate during the last two weeks of the study,

a_cells = endosymbiotic algal cell density, Chla = chlorophyll a concentration, carbs = carbohydrate concentration, lipid = total lipid concentration,

protein = soluble protein concentration, POC = particulate organic carbon flux, h = animal host, a = endosymbiotic algae.

https://doi.org/10.1371/journal.pone.0191156.g005
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some populations of Acropora hyacinthus from American Samoa [31]. However, it is unlikely

that the microbial community of T. reniformis was already pre-adapted to the dual stress of ele-

vated temperature and pCO2 while A. millepora was not, since both sets of coral colonies were

collected from the same site with the same temperature and pH history. Additional studies in

other coral species from other regions are needed to further evaluate these findings.

More importantly, the combined microbial and physiological changes in A. millepora indi-

cate that this species was broadly compromised under treatment conditions. Major compo-

nents of the holobiont–the animal host, endosymbiotic alga, and the microbiome–all

deteriorated under treatment conditions. In addition to the decline in microbial diversity and

shifts in microbial community composition (Fig 3), decreases in calcification, Fv/Fm, and algal

carbohydrate energy reserves in A. millepora indicate that both the host and algal physiological

functions were compromised under treatment conditions (Fig 4A). In contrast, the T. renifor-
mis holobiont was less affected with no negative impacts on the coral host physiology, a decline

only in the algal carbohydrates, and no significant changes in the microbiome community or

diversity (Fig 4B, Table 2, S3 Table). Though overall physiology was significantly different

between treatment and controls for both species, the degree of separation between the two

groups was greater for A. millepora than for T. reniformis (Table 3). In addition, treatment T.

reniformis had double the host protein concentrations and slightly greater total energy reserves

(i.e., lipid, protein, and carbohydrates) compared to treatment A. millepora (Fig 4). High

energy reserves have been shown to be a key component to coral resilience in the face of tem-

perature stress [8,9]. Interestingly, host animal protein was one of two variables that explained

the highest amount of variation in microbial community composition (Fig 5) and overall phys-

iological differences between the two species (S5 Table). In addition, T. reniformis releases

almost twice as much organic matter (probably as mucus) as A. millepora under control and

treatment conditions (Fig 4) [27], which could provide a stable medium for cultivating its

microbiome since bacterial growth is dramatically enhanced on coral mucus [81,82]. This

could be advantageous as microbial community composition stability has been linked to coral

health in some cases [31,32,81]. It is also possible that T. reniformis has greater heterotrophic

capacity and/or plasticity under dual stress conditions than does A. millepora. Previous work

has shown that corals that are either heterotrophically plastic or have high heterotrophic

capacity recover more quickly from temperature stress [12,14]. Heterotrophic plasticity or

high capacity under the dual stress of elevated temperature and pCO2 could potentially under-

lie some of the holobiont resilience observed here in T. reniformis, though further research is

needed to test this hypothesis. Finally, T. reniformis hosted a thermally tolerant endosymbiont

type Symbiodinium trenchi and maintained Fv/Fm under dual stress, whereas A. millepora
hosted the more sensitive endosymbiont C21a and Fv/Fm rates dropped (Fig 4). While endo-

symbiont type does play a role in thermal sensitivity, T. reniformis also has a much thicker tis-

sue layer than A. millepora, which would provide greater photoprotection to its S. trenchi
endosymbionts when under stress [23]. At this time, it is not clear what the link between endo-

symbiont type and microbial community composition shifts (or stability) under a dual temper-

ature and acidity stress is. What does emerge from this study is that the physiological traits of

T. reniformis, combined with a thermally tolerant Symbiodinium type and stable microbiome

together appear to make it more tolerant to warmer and more acidic seawater conditions than

A. millepora.

Summary

Overall, we show that the bacterial microbiome changed in the physiologically sensitive coral

A. millepora but not in the physiologically more tolerant coral T. reniformis in response to
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conditions of elevated temperature and OA expected later this century. These findings are con-

sistent with previous physiological work on the coral host and endosymbiotic algae of these

species demonstrating the more resilient nature of the T. reniformis holobiont compared to the

A. millepora holobiont [4,23,27]. These findings support the hypothesis that coral with a stable

and diverse microbiome are also physiologically more resilient to the dual stress of elevated

temperature and OA. Furthermore, our findings suggest that the animal host may play a role

in determining the microbial community composition and diversity, and that multiple traits

across the holobiont (i.e., host energy reserves, mucus production, Symbiodinium type, micro-

biome stability) appear to be involved in coral sensitivity or resilience to changes in seawater

conditions expected on reefs later this century. We hypothesize that coral holobiont deteriora-

tion in the face of climate change may be in part triggered by a combination of the animal

host’s protein and mucus influence on the microbiome and the Symbiodinium type. Further

research is needed to determine if shifts in the coral holobiont physiology and/or Symbiodi-
nium type cause shifts in the microbiome or vice versa, or if the two are independent of each

other. Since some coral diseases and bleaching are known to be caused by bacteria

[39,44,83,84], it is unlikely that the microbiome community changes in response to environ-

mental stress are independent of the coral physiology. We further suggest that large organic

matter release rates (typically in the form of mucus) may be important for supporting stable

and presumably healthier microbial symbionts for corals. Our results are consistent with

recent findings that some temperature-stress tolerant corals have a stable microbiome or bene-

fit from stable microbial communities that resemble their non-bleached counterparts [31,32],

and demonstrate for the first time that this also appears to be the case under the dual stresses

of ocean warming and acidification. Additional studies with different coral species are needed

to fully test this hypothesis. Model projections of coral persistence over the next century might

need to consider not just coral host and endosymbiotic algae physiological responses to stress,

but the combined responses of the coral host, endosymbiotic algae, and microbiome.
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Writing – original draft: Andréa G. Grottoli.
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