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Abstract

Background: RNA interference (RNAi) becomes an increasingly important and effective genetic tool to study the
function of target genes by suppressing specific genes of interest. This system approach helps identify signaling
pathways and cellular phase types by tracking intensity and/or morphological changes of cells. The traditional RNAi
screening scheme, in which one siRNA is designed to knockdown one specific mRNA target, needs a large library
of siRNAs and turns out to be time-consuming and expensive.

Results: In this paper, we propose a conceptual model, called compressed sensing RNAi (csRNAi), which employs a
unique combination of group of small interfering RNAs (siRNAs) to knockdown a much larger size of genes. This
strategy is based on the fact that one gene can be partially bound with several small interfering RNAs (siRNAs) and
conversely, one siRNA can bind to a few genes with distinct binding affinity. This model constructs a multi-to-multi
correspondence between siRNAs and their targets, with siRNAs much fewer than mRNA targets, compared with the
conventional scheme. Mathematically this problem involves an underdetermined system of equations (linear or
nonlinear), which is ill-posed in general. However, the recently developed compressed sensing (CS) theory can solve
this problem. We present a mathematical model to describe the csRNAi system based on both CS theory and
biological concerns. To build this model, we first search nucleotide motifs in a target gene set. Then we propose a
machine learning based method to find the effective siRNAs with novel features, such as image features and
speech features to describe an siRNA sequence. Numerical simulations show that we can reduce the siRNA library
to one third of that in the conventional scheme. In addition, the features to describe siRNAs outperform the
existing ones substantially.

Conclusions: This csRNAi system is very promising in saving both time and cost for large-scale RNAi screening
experiments which may benefit the biological research with respect to cellular processes and pathways.
Background
RNA interference (RNAi) is an RNA-dependent gene
silencing process that occurs in living cells and participates
in controlling gene activation and how active these genes
are [1]. The RNAi pathway is initiated by the enzyme
dicer, which cleaves long double-stranded RNA (dsRNA)
molecules (either endogenous or exogenous) into short
fragments of ~20 nucleotides [2-4]. These short double-
stranded fragments are called small interfering RNAs
(siRNAs), which are sequences comprised by a four-alphabet,
{A, U, G, C}. These letters tend to bind with one another
in complementary base pairs: A with U, G with C, and vice
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versa. After the cleavage, siRNAs are then unbounded into
two single strands, namely the passenger strand and the
guide strand. The passenger strand is then degraded while
the guide strand is involved in the formation of the so
called RNA-induced silencing complex (RISC) [5]. At last,
the siRNA attaches to its complementary target mRNA
molecule and induces cleavage of the mRNA, thus pre-
vents it from producing a protein [6]. This procedure is
also termed gene knockdown [7].
The selective and robust knockdown effect of RNAi

on gene expression makes it a significant research tool
that enables specific repression of interested genes [8].
RNAi is widely used for large-scale screening in which
particular genes in a certain cell line are silenced at a
systems level. This large scale approach is very helpful to
identify the causal components for a particular cellular
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process or an event such as cell division [9]. As a result,
plenty of work to design effective and specific siRNAs has
been provoked [10-14]. Among these, the most well known
ones were introduced by Huesken et al. and Reynolds et al.
Huesken et al. adopted an artificial neural network based
algorithm called BIOPREDsi to design a genome-wide
siRNA library [15]; and Reynolds et al. identified eight
characteristics (criteria) associated with siRNAs to design
siRNAs in a rational way [16]. The previous work advanced
the efficient identification and design of effective siRNAs
and consequently, improved the gene knockdown (or
RNAi) experimentation both in specificity and efficiency.
However, the largest gene knockdown experiments per-
formed so far have used multiple siRNAs per gene [9,17].
In a genome-wide screening, biologists are able to ob-

serve phenotypes with respect to affected cytoskeletal
organization and/or cell shape. Changes in intensity, cell
size and other morphological features can be quantified
to indicate the effectiveness of RNAi procedures and this
is well established [18]. The measurement on RNAi suc-
cess can always be modified to binary indictors which
equals one if RNAi works and zero otherwise. And these
procedures are fully automated [18]. Thus for an siRNA
screening, we can acquire a binary measurement from
the wells on the array. However, from a systems level,
the specified one-to-one relationship between siRNA
and target gene hinders a high-throughput screening
(HTS) of functional genes in a genome-wide scope.
To overcome this burden for designing a large scale

RNAi-based screening of functional genes with better effi-
ciency, we propose this conceptual model, the compressed
sensing RNAi (csRNAi), based on the fact that a target-
complementary siRNA can simultaneously target at other
mRNAs containing sequence segments that are partially
complementary to it [19]. The main idea is, unlike the trad-
itional scheme in which one siRNA knockdown only one
gene (by cleaving or repressing its transcribed mRNA), we
employ a unique combination of group identifier siRNAs
to knockdown a group of genes and we expect the number
of siRNAs to be much smaller than that of targeted genes.
In this model, the group identifier siRNA is a certain motif
locating at a certain group of genes. In mathematical lan-
guage, group identifier siRNAs constitute a basis which
spans a space containing a larger number of genes than the
number of instances in the basis. However, the off-target
effect (OTE) [20] which refers to the scenario that one
siRNA can knockdown more than one gene, is very un-
desirable for specific knockdown. Although one group
identifier is located at a collection of genes, which suggests
it can knockdown several genes, it is different from OTE in
that the group knockdown is specific and consequently
does not spread to other genes to be considered as OTE,
thanks to the limited locations as a unique combination of
the group identifier siRNAs.
From a signal processing prospective, the compressed
sensing (CS) is a technique for reconstructing a signal of
length n (generally very large) that is K-sparse from only
m (m « n) linear measurements of the signal, using the
prior knowledge that the original signal is sparse or
compressible. This means that there is some redundancy
in the most interesting signals. Here K-sparse means
there is at most K nonzero components in the vector of
a signal. This is consistent well with the group testing
scheme in that eventually few genes are effectively
knockdown in a real RNAi experiment. We will explain
the mathematical model of our csRNAi strategy and its
implementation in the section of Methods. Note again,
the cross-hybridization property of an siRNA with sev-
eral mRNA targets, not just one, is crucial for applying
CS principles.
In addition to proposing the csRNAi concept, we also

improve current siRNA design by introducing a much
larger and more conclusive feature space, as well as a
machine learning scheme. Concretely, we first perform
motif search within a group of genes, and consider these
motifs as candidate group identifiers; a classifier is then
built to identify the real group identifiers (true siRNAs)
from the candidates, by employing our proposed image
and speech features along with other traditional descrip-
tive traits. Furthermore, the position specific feature (PSF)
exaction strategy does not depend on any specific data set
and is able to detect both desired and undesired sequence
content, with detail documented in the Methods section
and the Additional file 1. The classifier identifies sequences
with larger probability to be siRNAs, which is a group
identifier as well. By comparing with existing rules and
methods [10,19,21], we observe better performance of our
siRNA prediction method.
In summary, we propose a novel compressed sensing

RNAi (csRNAi) cellular screening system, in both con-
ceptual and bench experiment level. We present a small-
scale csRNAi example served as a proof-of-concept, to
reveal how the RNAi experiments coordinates with the
prerequisites of the compressed sensing theory. We also
show by numerical simulations that about one third of
traditionally necessary siRNAs is sufficient to recon-
struct the original sparse signal, i.e., to identify the func-
tional genes accurately; and this compression ratio is
expected to be further improved in larger scale screening
in real experiments.

Methods
The compressed sensing RNAi (csRNAi) model
This csRNAi model (group knockdown strategy) is illu-
strated by Figure 1 in comparison with its traditional
counterpart. The upper left panel shows the conven-
tional (normal) RNAi screening, i.e., each spot in the
microarray has an RNA fragment that serves as a unique



Figure 1 Illustration of conventional and compressed sensing RNAi (csRNAi) screening along with the implementation of the csRNAi
scheme. For conventional RNAi screening, one siRNA is designed to respond to one target gene (upper left); for compressed sensing based RNAi
screening, one siRNA can bind to several target genes simultaneously and vise visa (upper right). In the implementation flowchart (lower panel),
the blue rectangles represent processing procedures and green ellipses stand for input and output. The readout of the RNAi experiment serves as
an input of the signal reconstruction step.
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identifier of only one target gene; while the upper right
panel refers to our proposed csRNAi scheme, in which the
same target gene group can be knockdown with an siRNA
pool of much smaller size. The lower panel depicts the im-
plementation flowchart of the csRNAi model, which
includes four progressive steps: sequence motif search, ef-
fective siRNA selection, compressed sensing (CS) matrix
design and signal reconstruction. Of note, the first three
steps can be conducted via in silico method, while the
fourth step (signal reconstruction) needs the RNAi profile
measurement as input. The next subsections provide more
details about the implementation.
We stress that the readout of each probe is a probabilis-

tic combination of interfering outcome of the siRNA with
its target genes. Here the probabilities reflect the strength
or effectiveness of the siRNA to knockdown associated
genes. Depending on particular applications, the readout
could be any measurable signal such as cell phenotype
change, fluorescence intensity shift or variation of mRNA
expression level that can be evaluated by a numerical
quantity. These measurements can be obtained via stand-
ard experiment methods. For a detailed description of a
bench experiment about the CS based microarray config-
uration and implementation, please refer to [22]. The real
challenge is, however, how to infer the knocked-out genes,
or interfering profile, from so few available observations
(readouts in the wells). And we claim that this is exactly
what the compressed sensing theory answers.

Sequence motif search
Nucleotide sequence motifs simultaneously located at
several genes are usually of biological significance [23].
These shared patterns therefore have the potential to act
as binding sites of siRNAs, and we will confirm its role
as an siRNA by further operation in next section. We
search sequence motifs using the online-accessible soft-
ware MEME (Multiple EM for Motif Elicitation), which
is one of the most widely used tools for identifying motif
signals in DNA and protein sequences [24]. Although
RNA interference is mediated by 21- and 22-nucleotide
RNAs [4], biochemical studies reported that guide-
strand position 1 and the nucleotides at the 3’ overhang
(position 20 and 21) have little, if any, contribution to
the specificity of target recognition. Furthermore, mis-
matches near the 5’and 3’ends can be tolerated provided
other positions remain unchanged [19,25]. Hence we
only search for motifs with length of 19bp to be consist-
ent with the public available siRNA data and to acceler-
ate the procedure.
Figure 2 shows an example motif identified by MEME,

along with a summary of the motif occurrences of its
involved target genes. Here E-value is the statistical



Figure 2 An example motif searched by the software MEME. The top panel illustrates an example motif by a summary line and the
occurencs of the motif in 9 target genes sorted by p-value. The rectangular red box shows the maximum consensus sequence (MCS, see text) of
the motif. The lower panel summarizes all motif occurrences of each involved target gene.
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significance of the motif. Specifically, E-value is an esti-
mation of the expected number of motifs with the given
log likelihood ratio (llr) or higher, and with the same width
and number of occurrences, that one would find in a simi-
larly sized set of random sequences. Therefore the motifs
searched by MEME bear significant potential to be group
identifier siRNA candidates. A multilevel consensus se-
quence shows the most conserved letter(s) at each motif
position. We choose the top level as the candidate siRNA
and term it as maximum consensus sequence (MCS) for
short. Consequently, the MCS is a consensus sequence
with each nucleotide appearing the most frequently at that
position of all occurrences. Note that the MCS may fail to
be exactly complementary to some target genes, but as we
have mentioned above, it is the situation we need, since
one siRNA is expected to be base pair to several genes
simultaneously, with distinct degrees of specificity. Finally,
if motif search is based on mRNAs, each motif should be
translated into its complementary sequence to be an
siRNA that targets the mRNA from which the motif was
found. In this work, we search motifs from a dataset of
cDNAs with respect to human lung cancer and hence it is
unnecessary to perform this transformation.

Effective siRNA selection
In the previous part, we identified several MCSs as candi-
dates of group identifiers. To be a valid group identifier, a
sequence should not only be a shared motif, but also an
effective siRNA. Therefore, prediction of high confident
siRNAs is a crucial part of the proposed csRNAi system.
Instead of randomly picking some sequences and verifying
them biologically, which suffers low efficiency and high
cost, biologists and bioinformatics researchers seek for an
accurate prediction method of siRNAs. We propose a ma-
chine learning based method, which introduces novel fea-
tures in addition to the current popular prediction rules
and features. These novel descriptors include 1) image fea-
tures, in which we convert a gene sequence into an image
and 2) speech features in which we consider that each
element in the siRNA sequence is not entirely independ-
ent but with some semantic relevance. We also improve
the existing position specific features (PSF) [11] to enable
our method to adapt to more general scenarios. Our strat-
egy to extract PSF features is flexible in the sense that it
derives distinct rules according to different training inputs.
Moreover, the proposed method considers both desired
and undesired nucleotide content for a specific sequence
position. Widely used features such as thermodynamic
(TD) features, N-Gram and N-GSK (general string kernel)
features [21] and some coding features are studied indi-
vidually and grouped altogether. We also focus on the 2
base-pair (bp) patterns to extract the sequence position
specified feature (SPSF) and position coding (PC) features.
The data used in this study is from Huesken et al. 2005,
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which contains 2431 siRNAs as well as their interference
activities. The interference activity is an indicator of the ef-
fectiveness of the siRNA. We build three data sets with
different cut-off values of interference activities. Details
about the data and how we extract the mentioned features
for a given sequences are provided in Additional file 1.
The following paragraphs in this subsection emphasize the
novelty and advantage of these proposed features.
We first describe how an alphabetic sequence can be

treated as an image and what types of features can be
employed to depict a gene sequence as an image. If the
gene sequence is represented by a binary indicator
sequence, this will transform the one-dimensional gene
into a two-dimensional image. For example, the sequence
AAGCCGCTAA of length 10 can be expressed as a 10-
by-4 binary indicator matrix (BIM) with the rows repre-
senting A, G, T and C sequentially, as illustrated in
Figure 3.
If considered as an image, the binary indicator matrix of

an siRNA behaves as random noise because of sparsity.
However, if we can transform the BIM into formats con-
taining some shape information, it may be helpful to ex-
tract features like texture and moment features. Inspired
by cell image processing, we prefer that the transformed
BIM possesses rounded shape similar to the cells. There-
fore, we separate a round disk into N slides with N spokes
with equal angle, where N is the length of sequence, and
put a four character length code on each slide. Then we fit
the disk into a 9-by-9 matrix centered at pixel (5, 5) where
each element stands for a pixel. Figure 3 shows an
example of sequence image, more detail please refer to
Additional file 1.
By representing each sequence as an image, we follow

the similar strategy in cell image classification to extract
features [26]. These image features include Gabor wave-
let feature, Haralick co-occurrence texture feature and
Zernike moment feature. To summarize, we extract 132
features in this part, as explained in the Additional file 1.
Genomic sequences are comprised by an alphabet with

four characters, A, G, T (U for RNA) and C. In speech sig-
nal processing and recognition, the human voice is con-
verted to machine-readable signals, for example, a binary
code for a string of a certain alphabet. We intend to
Figure 3 Image representation of a genetic sequence. a). BIM represen
representation of a positive training sample in data set 2; c). BIM (top) and
set 2.
understand the genomic sequence with well-established
speech recognition technique based on the facts that 1)
both of speech signal and siRNA, more generally, DNAs
or RNA sequences show a wave signature and 2) if digita-
lized by some coding methods, gene sequences can be
considered as signals and processed with signal processing
tools, especially in the transformed domain; 3) speech rec-
ognition techniques are useful because the linear predic-
tion property exists in some positions of a gene sequence.
The alphabetic sequences of the siRNAs are digitalized

by the coding book: the code for A is 1000, for G is
0100, for T is 0010 and for C is 0001. Therefore, a 19
bp-length siRNA sequence can be signified by a binary
digit sequence (Additional file 1). Among various speech
recognition feature groups, linear prediction coefficients
(LPC), mel-frequency cepstrum coefficients (MFCCs)
and wavelet features have been proved to be the most
successful features for speech recognition [27]. Linear
prediction is based on the auto-regression model to de-
termine a set of parameters or predictor coefficients that
minimize the mean square errors between the actual
and predicted signals. Although widely used, however,
LPC is limited by the nature of linearity. MFCCs are ap-
plied in speech/speaker recognition and increasingly in
music information retrieval [28]. The perceptual linear
predictive (PLP) analysis considers psychophysics of hear-
ing together with linear prediction method. The linear
prediction method can be improved by adding the critical-
band spectral resolution, the equal-loudness curve, and
the intensity-loudness power law, finally approximated by
an autoregressive all-pole model. It suppresses the slowly
varying component in each frequency channel and enables
the estimate to be less sensitive to slow variation noise in
the short-term spectrum. In our implementation, the total
number of features in this part is 199, as listed in Table 1.
The Additional file 1 provide detailed explanation about
the derivation of these features and parameter settings.
We obtain a large feature space of dimension 1424 which

is quite likely to be over-fitted. To solve this issue, we per-
form feature selection algorithm called SVM-RFE (support
vector machine-recursive feature elimination) on each fea-
ture group, and also on the combined feature space. By this
method we substantially shrink the dimension of the
tation of AAGCCGCTAA; b). BIM (top) and image (bottom)
image (bottom) representation of a negative training sample in data



Table 1 A summary of all the features originally extracted

Feature class Feature description # Feature class Feature description #

Position Specific
Feature (PSF)

Important position content selected
according to P-value

20 Sequence Position
Specific Feature (SPSF)

Important sequence position content
selected by P-value

16

N-Gram Feature
(N-Gram)

N-length sequence gram features:
occurrence of the subsequence

336 N-GSK Feature (N-GSK) N-length sequence GSK features:
occurrence of the subsequence

336

Thermodynamic
Feature [29]

Gibbs free energy calculated from
Identical Nearest Neighbors model

21 Image Feature (Image) Texture and moments features
extracted from coded sequence

364

Position
Composition Feature
(PC)

A coding method without statistical
process

132 Speech Feature (Speech) MFCC, LPC, PLP extracted from the
sequence

199
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feature space (Table 2, see also Additional file 1: Table
S14-Additional file 1: Table S15) while improve the cross-
validation (CV) accuracy significantly (Additional file 1:
Figure S5).
Eventually the classifier consists of 143 descriptive traits

after the SVM-RFE procedure. We adopt SVM-light [30]
as the classification tool and train it with a training data
set which contains 2431 biologically confirmed siRNAs
(2182 training and 249 testing records) along with their
normalized interference activities [15].

Compressed sensing matrix design
Once we obtain the siRNAs, their target genes can be
derived based on the motif search result. Considering
the example shown in Figure 2, MOTIF 200 is found to
locate in nine genes (IDs: 1100, 993, 956, 922, 859, 606,
694, 631, 614) with a sufficiently small E-value 1.1e-014.
On the other hand, these genes may contain other
motifs as candidate group identifiers. The candidate siR-
NAs and their putative target genes consequently form a
multi-to-multi correspondence, which fits to a network
structure. Although rarely the case, for genes which
share exactly same motif group, we randomly choose
one of them and discard the remaining, because genes
can eventually be identified only if a group of siRNAs
uniquely encodes one gene. Then we mathematically
represent the network as a sensing matrix Φ whose rows
stand for siRNAs and columns refer to mRNAs (targets)
(Figure 4, see also [22]).
The entries of the sensing matrix are arranged in the

manner that if motif i does not respond to gene j according
to the motif search, then Φij=0; otherwise, we endow Φij a
positive value that denotes the combining affinity between
motif i and gene j. Although researchers proposed several
Table 2 Number of features with and without feature selectio

Feature Groups PSF SPSF TD N-Gram

W/O Feature Selection 20 16 21 336

FS individually 18 16 21 55

FS combined together 6 4 1 56

Proportion 30% 25% 4.8% 16.7%
parameters to configure the nonzero affinity value, Xu
et al. [31] achieved promising performance by using per-
cent identity (percentage of matched bases in the aligned
region) as the single parameter. Hence in this study, we
consider the identity percent alone and implement the
configuration row by row in the following procedure: for
each motif i, which corresponds to the ith row of the
matrix, we select the index of its potential targets from the
motif search result, and assign a nonzero probability for
the corresponding columns within the current row. This
probability is calculated based on its degree of consistence
with the maximum consensus sequence (MCS). We com-
pute the probability as the number of bases identical to the
MCS divided by the width of the motif (i.e., percent iden-
tity). Taking Figure 2 for example again, the columns with
respect to targets indexed by (1100, 993, 956, 922, 859,
606, 694, 631, 614) are assigned with probability
1; 1; 1; 1; 1; 1; 1419 ;

14
19 ;

14
19

� �
respectively. The remaining en-

tries in this row are assigned 0 to indicate that there is no
or very low hybridization affinity between the correspond-
ing targets and Motif 200. Finally, we regulate columns of
Φ into unit l2 -norm, which is a prerequisite of compressed
sensing theory and will be further explained.
Of note, our scheme of CS matrix design implicitly

assumes the binding affinity between an siRNA and its target
gene depends solely on the sequence match degree (percent
identity). This simplification is beneficial for the implementa-
tion of the whole csRNAi system, since it avoids complicated
algorithms for the design of probe sequences, as in [22].
Signal reconstruction
In RNAi screening, cellular morphological changes could
be quantified as the effectiveness of gene knockdown. In
n

N-GSK PC Image Speech All

336 364 132 199 1424

30 49 34 75 298

13 39 8 16 143

3.9% 10.7% 6.1% 8.0% 10.0%



Figure 4 Schematic of the sensing matrix in relation to number
of siRNA and mRNAs. The compressed sensing matrix has much
less rows than columns, i.e., m≪ n.
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a large-scale (e.g., genome-wide) RNAi experiment, not
all potential target genes can be recognized as knock-
down genes in the screening based on the final cell
phenotype alterations. To find the small part of genes
that really contributes to phenotype change is biologic-
ally significant. Since the phenotype alterations can be
obtained by running the bench experiment in the lab,
the functional genes can be identified with the help of
compressed sensing RNAi (csRNAi) strategy.
To be concrete, our goal here is to predict the silen-

cing profile of n genes from only m (m « n) readouts of
measurement change in m wells (Figure 1). Mathematic-
ally, we denote siRNAs by an m-dimensional vector y =
(y1, y2,⋯, ym)

' and target genes by an n-dimensional vec-
tor x = (x1, x2,⋯, xn)

' . Their correspondence is described
by the m × n sensing matrix Φ as introduced in the pre-
vious paragraph. With this mathematical notation, the
task is to uniquely solve the following system of linear
equations given the measurement vector y and sensing
matrix Φ:

y ¼ Φx ð1Þ

This seems impossible in general because it is under-
determined, i.e., there are fewer equations than the num-
ber of unknowns. However, the recently developed
compressed sensing (CS) theory guarantees that there
exists unique solution to (1) with some preconditions.
To perfectly reconstruct the signal in the underdeter-

mined condition, there are two critical prerequisites in
compressed sensing theory [32]: (1) the sparsity condi-
tion: the signal vector x to be sensed should be sparse
enough. This means that x has a very limited number of
nonzero components, although we do not know a priori
which of them are nonzero; (2) the incoherence condi-
tion: the rows of the sensing matrix Φ are sufficiently in-
coherent. Incoherence is achieved if Φ satisfies the so-
called Restricted Isometry Property (RIP). For example,
random matrices with independent identically distribu-
ted (i.i.d.) entries, such as Gaussian or ±1 binary entries
exhibit a very low coherence [32,33]. Furthermore, in
most practical situations, we cannot assume that Φx is
known with arbitrary precision. Therefore, we consider
some unknown perturbation instead of an exact case
and modify equation (1) accordingly to obtain

y ¼ Φxþ e ð2Þ
where e = (e1, e2,⋯, em)

' is some unknown perturbation
satisfying jjej l2≤εj .
Next, we present the most important result recently

developed in compressed sensing theory and how it applies
to the proposed csRNAi system, or how a biological ques-
tion can be answered by a modeling scheme. Let ΦT, T ⊂
{1,⋯, n} be the m×|T| submatrix obtained by extracting
the columns of Φ indexed by T. Define the S-restricted
isometry constant δs of Φ which is the smallest quantity
such that

1� δSð Þjjcj 2
l2 ≤
�� ��jΦTcj 2

l2 ≤ 1þ δSð Þ�� ��jcj 2
l2

�� ð3Þ
holds for all subsets of T with |T|≤S and coefficient
sequences(Cj)j∈T.
Suppose x0 is a sparse signal, which indicates the sup-

port T0 = {t: x0(t) ≠ 0} of x0 is assumed to have small car-
dinality. Consider the convex program searching, among
all signals consistent with the data y, for that with mini-
mum l1-norm

P1ð Þ minjjx j l1 s:t: jjΦx� yj j l2 ≤ εj
ð4Þ

The following theorem shows that the solution to (P1)
recovers an unknown sparse signal with an error at most
proportional to the noise level.
Theorem 1 (Candes-Romberg-Tao, 2006) Let S be

such that δ3Ѕ+3δ4Ѕ<2. Then for any signal x0 supported
on T0 with |T0|≤Ѕ and any perturbation e with jjej l2≤εj ,
the solution x# to (P1) obeys

jjx# � x0j l2 ≤ CS:εj
ð5Þ

Here the constant CS only depends on δ4S.
Interested readers are referred to [34] for detail of the

proof of Theorem 1. This theorem transforms the fol-
lowing l0-regularization problem (P0) which requires
combinatorial optimization into a more tractable convex
programming problem (P1), as shown in (4).

P0ð Þ minjjx j l0 s:t: jjΦx� yj j l2 ≤ εj ð6Þ
The restricted isometry property (RIP) imposed on Φ

essentially requires that every set of columns with car-
dinality less than S approximately behaves as an ortho-
normal system. In practice, we evaluate the behavior of
Φ by the absolute maximal inner product MΦ among all
the inner products of its column pairs:
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MΦ ¼ max < Φi;Φj >� �; 1 ≤ i; j ≤ n; i ≠ j ð7Þ

The smaller the MΦ, the better the system behaves.
We give an ideal example according to one strategy pro-
vided by Donoho [35], where the sensing matrix Φ is
generated by concatenating several orthonormal bases.
Figure 5 illustrates the frequency distribution of inner
products of Φ and the performance of signal reconstruc-
tion, where Φ is a 48×146 matrix whose columns are a
concatenation of several orthonormal bases of R48, and
MΦ=0.5052.

Results
To clearly demonstrate the idea of CS-based RNA interfer-
ing, we present a numerical experiment of a small-scale
csRNAi system. The detail of how we implemented each
step and how we obtained the related data is elucidated in
Methods. Figure 6 illustrates the flowchart of the numerical
experiment. We first identified 200 motifs (indexed by s1
to s200 in this work) of 19 nucleotides as candidate group
identifiers from 600 EST (expressed sequence tag, a short
sub-sequence of a cDNA sequence) sequences (indexed by
g501 to g1100). Figure 2 illustrates an identified motif with
its associated target genes, and Additional file 1: Figure S7
provides more examples. The abovementioned EST dataset
(with 600 elements) is a part of a cDNA library (of UniGene)
NCI_CGAP_DHO (http://cgap.nci.nih.gov/Tissues/LibInfo?
ORG=Hs&LID=26664) which contains a total of 4647 EST
sequences related to VS-8 cell line from Metastatic Chon-
drosarcoma in lung. We chose the shorter EST sequences
Figure 5 An ideal example based on Donoho’s result. a). Illustration of
0.6 and those locating between 0.1 and 0.2 take an over-whelming part. b
x0 and xr are original and reconstructed signal respectively. The normalized
instead of the original whole cDNAs to significantly shorten
the motif search time without information loss, since the
EST sequence contains enough information to permit the
design of precise probes for DNA microarrays that then
can be used to determine the gene expression [36]. We
performed the motif search using the software MEME as
mentioned and extracted the 200 maximum consensus
sequences (MCS) from the search result. We discarded the
MCSs with the composition like AA. . .AC because almost
all the chosen 600 genes start with this pattern and intui-
tively, the software would invariably identify such kind of
motifs, but apparently they are not good group identifiers.
After previous processing, we obtained 176 siRNA

candidates as group identifiers. Since we intend to
propose a csRNAi system in this paper, for the siRNA
prediction, we only present key results here. The details
are provided in the Additional file 1, in which we ana-
lyzed the prediction results based on each feature group
independently with and without feature selection. Then
all the features were combined and feature selection was
applied. The classification results for each feature group
were listed in Additional file 1: Table S5, Additional file 1:
Table S6, Additional file 1: Table S7, Additional file 1: Table
S8, Additional file 1: Table S9, Additional file 1: Table S10,
Additional file 1: Table S11 and Additional file 1: Table
S12, individually. Additional file 1: Figure S5 illustrates the
prediction accuracy with and without SVM-RFE on data
set 2. There are totally 1424 features if combining the en-
tire feature group together. Feature selection keeps 143
features, which is ten percent of its original size. The cross
validation accuracy can reach as high as 88%, which
improves by 21.5% by discarding about one thousand
the frequency of the 10585 inner products. All of them are less than
). Reconstruct simulation for 50 times, with a noise ε∈ N(0,0.001), where
errors are bounded invariably by 0.3%.

http://cgap.nci.nih.gov/Tissues/LibInfo?ORG=Hs&LID=26664
http://cgap.nci.nih.gov/Tissues/LibInfo?ORG=Hs&LID=26664


Figure 6 Flowchart of the numerical experiment. Illustration of how the numerical experiment is implemented following the four progressive
steps presented in Methods section.
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features. Table 2 lists the numbers of features of each group
that comprise the final selected feature space. These pro-
portions demonstrate the importance of different feature
groups. For example, although the PSF has merely 20 fea-
tures, 30% of them are kept, which is three times of the
average ratio 10%. Additional file 1: Figure S4 compares the
prediction accuracy among the position specified rules
derived by literature and our method. It can be seen from
the figure that our rules consistently yield higher prediction
accuracy in all cases.
We employed SVM-light to categorize the candidates

into 49 siRNAs and 127 non-siRNAs using the previously
mentioned classifier and feature space. These 49 siRNAs
correspond to 147 target genes in a multi-to-multi man-
ner. By checking the correspondence we found that motif
164 only targeted at gene 541 and vice versa, hence we
discarded this 1-to-1 correspondence and eventually
obtained a 48×146 network. We drew this figure of net-
work using Cytoscape, an open source platform for
complex-network analysis and visualization [37]. The net-
work is shown in Figure 7 (see Additional file 1: Figure S8
for the heatmap visualization), in which the red balls stand
for siRNAs and the blue ones represent target genes. The
connection between gene and siRNA indicates the knock-
down relationship. We present details of all the siRNAs and
target genes involved in this network in Additional file 1:
Table S17 and Additional file 1: Table S18 respectively.
Then we transformed the network into a sensing

matrix Φ following the step described in the Methods
section. Among the C146

2 = 10585 inner products of col-
umns of Φ, 9170 are 0 and those with a smaller value
than 0.6 take an overwhelming part (data not shown).
This implies that to a large extent, each subset of col-
umns of Φ behaves like an orthonormal system. We first
randomly generated the original signal with each com-
ponent xo(t)∈U(0,1), t = 1, 2,⋯, n and the Gauss white
noise with each element e(t)∈N(0,σ), t = 1, 2,⋯,m. To
obtain a K-sparse signal, we set all but the largest K
components of xo to zero. Consequently we got the
hypothesized measurement y= Φxo + e, where xo has
been calibrated to K-sparse already. To emphasize again,
in an actual RNAi experiment, the measurement vector
y could be a continuous or binary vector to indicate the
averaged cell intensity, cell size or other morphological
changes before and after the application of RNAi. It also
could be a certain biochemical signal change at the mo-
lecular level, to name but a few, fluorescence intensity
shift or variation of mRNA expression level, depending
on the specificity of the experiment. To confirm the
feasibility of this strategy mathematically, we assume this
measurement is available to us and the simulation is per-
formed with different y s. Therefore the task eventually
became to reconstruct the signal xo given y, Φ, e, and to
compare the reconstructed signal xrwith the original one
xo. We applied Hale’s open codes [38] to implement the
l1-regularization problem (P1).
We adopted the sparsity derivation offered by Donoho

in [35]: K ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m= log nð Þp

and varied K by changing the
coefficient c. By assigning c=1, 1.2, 1.5, 2 we accordingly
get K=3, 4, 5, 6, after rounding each value to its nearest
integer. For each K the simulations are repeated five
times by regenerating random xoand e. We regenerate e
by changing σ to get different Signal-to-Noise Ratios
(SNR). The performance of signal reconstruction is
assessed by the corresponding Mean-Squared-Error
(MSE) under different SNR levels. The simulation results
are shown in Figure 8, with each panel refers to distinct
sparsity level. One can tell from the figure that (1) the



Figure 7 Multi-to-multi siRNA-mRNA network. The network is composed of 48 group identifier siRNAs (red balls) and 146 putative target
genes (blue balls). The knockdown relationship is illustrated by solid lines connecting siRNAs and genes, and the index of each object is displayed
on the node, as shown in the zoomed-in sub-graph.
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performance of reconstruction improves stably with the
increase of the signal sparsity and (2) for a fixed sparsity
K, the mean-squared-error decreases consistently with the
increase of the signal-to-noise ratio. Combined, this
demonstrates the effectiveness of the reconstruction
scheme we employ.
To summarize, the simulation results demonstrate that

given m measurements from the wells on the plate, we can
uniquely identify which gene or group of genes from a gene
library with n (m≪ n) genes has been knocked down. Spe-
cifically, a set of 48 siRNAs acting as group identifiers are
able to infer the interfering profile of a group of 146 target
genes, which means that by applying CS principles, the size
of traditionally necessary siRNA library for a certain target
gene group can be reduced substantially. The good per-
formance of signal reconstruction in this numerical experi-
ment implies that both the original signal related to the
target genes and the sensing matrix designed in this work
obey the prerequisites of CS theory and related biological
concerns simultaneously. Hence, it is feasible and effective
to apply the CS theory to the RNAi screening related
experiments to save both time and cost.

Discussion
The proposed csRNAi screening employs a combination of
several group identifier siRNAs to knockdown a much lar-
ger set of genes than the size of siRNA set. In most cases,
this system can largely curtail time and cost of the RNAi
experiment. The philosophy of compressed sensing is to
use small number of measurements to construct or
reconstruct a signal of much larger size. In this study, our
experiment was performed on a limited number of genes
due to resource limitation because the whole genome motif
search was very time consuming.The small-scale search
presented in this work (200 motifs from 600 genes) con-
sumed about 30 hours of CPU time on a HP workstation
with 4 GB of RAM. If the number of genes and length of
genes increases linearly, the computation time increases ex-
ponentially. Therefore, the current computational cost is
the major restriction that prevents us from generalizing this
method to the whole genome. However, if we have a certain
group of genes of interest, such as several genes in a par-
ticular pathway and their downstream genes, we can per-
form an extensive search on the gene group and derive the
group identifier to build the sensing matrix. The computa-
tional cost is much more affordable than that in wet labs.
Actually, the total number of six hundred genes in our
simulation is far larger than a common set of genes of
interest that usually contains at most a couple of hundred
genes. In addition, our numerical simulations consistently
showed that about one third of traditionally necessary siR-
NAs is sufficient to identify and silence the effective genes
with high precision. Therefore, by focusing on a certain
gene group, the proposed system is very promising to help
reduce the cost and even derive new scientific discoveries.
Another highlight is the good performance of siRNA fea-

ture extraction and prediction method proposed in this
work. Although we focus on developing a new system for
RNAi screening, the accuracy of siRNA prediction will sig-
nificantly affect the result because 1) if the siRNAs fail to



Figure 8 Performance of signal reconstruction under different sparsity level and signal-to-noise ratio. The overall mean-squared error
(MSE) decreases with the increase of sparsity; for a fixed sparsity level, the MSE falls with the raise of signal-to-noise ratio (SNR).
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knockdown target genes, the following work is meaningless
and 2) if there are no sufficient numbers of group identifier
siRNAs, it is very difficult to design a network or perfectly
reconstruct the signals. Therefore, we documented our
proposed feature extraction scheme and siRNA prediction
method quite extensively, especially in the Additional file 1.
The classification results for each feature group are

listed in Additional file 1: Table S5, Additional file 1:
Table S6, Additional file 1: Table S7, Additional file 1:
Table S8, Additional file 1: Table S9, Additional file 1:
Table S10, Additional file 1: Table S11 and Additional
file 1: Table S12 individually. Additional file 1: Figure S5
illustrates the prediction accuracy with and without
SVM-RFE on data set 2. Additional file 1: Figure S6
shows the contribution of each feature group to the
overall feature space after feature selection within the
combined features. It can be seen from these tables and
figures that the average testing results trained by data
set 2 generally outperform the other two training data
sets. The testing results of different data sets are also
very consistent if trained by data set 2. Thus, the rules
used to extract position specific features (PSF) and se-
quence position specific features (SPSF) are derived
using data set 2. We choose data set 2 to obtain the
rules because it contains a large enough number of
training instances and a wide enough activity value gap
between positive and negative samples.
Our proposed position specific feature (PSF) is more

robust than the determined rule derived from specific data,
which is a major advantage of our method. Additional file 1:
Figure S4 shows that our proposed position specific rules
significantly outperform Reynolds’ rational siRNA design
and Huesken’s artificial neuron network method. Sequence
position specific features (SPSF) and Thermodynamic (TD)
features are similar in that both of them employ 2-bp (base
pair) length short sequence patterns to define features. Our
method is also able to extract different features using dif-
ferent feature training data for SPSF. It specifies the pattern
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directly without parameterization, summarization or other
kind of procedures. The PSF and SPSF offer information of
desired patterns of sequences at several important posi-
tions and the maximal length of the successive positions is
2. For N-gram and N-GSK features, although the predic-
tion accuracy is high for both, we observe some over-
fitting issue from the fact that the classifier containing
plenty of samples as support vectors. The position coding
(PC) features are composed of features extracted from sin-
gle position along with two successive positions. Although
claimed with the best performance in [21], the modified
PC feature in our experiment is still inferior to our pro-
posed PSF feature. Treated as objects with similar shape to
cells, the transformed gene sequences possess texture and
moment features. It is suitable for a sequence with 15–25
bp length transformed to a round shape to avoid being
treated as random noise and too much overlap in a matrix
representation (see Additional file 1). For the first time the
speech features are introduced into the siRNA signal pro-
cessing, its performance is as good as PSF and SPSF fea-
tures and deserves further study. The wave-like nature of
the gene sequence, together with the underlying linear pre-
diction coding mechanism, inspires us to perform the
speech signal processing technique on the gene sequences.
To summarize, when considered individually, the PSF and
SPSF have higher prediction accuracy than other groups
while the N-GSK bottoms the rank. The feature selection
procedure improves N-Gram, N-GSK, PC, Image and
Speech features dramatically when compared with other
groups, and it pops the PC feature to the top of the rank.
The last issue is that we observe that a minority of

simulations suffer unsatisfactory mean squared error.
This implies that the compressed sensing matrix is not
always ideally incoherent. Actually, for the column pairs
of the sensing matrix in our experiment, 262 inner pro-
ducts (about 2.5%) are larger than 0.6. However, we rea-
sonably expect that the normalized error would decrease
as the dimension of the sensing matrix increases. This is
because the sensing matrix would become relatively
sparse and therefore more column pairs would yield
small inner products.

Conclusions
In this paper, we establish a conceptual model, com-
pressed sensing RNAi (csRNAi) system, by applying the
compressed sensing (CS) theory to the large scale RNA
interference (RNAi) screening. The CS theory guarantees
that under the sparsity and incoherence conditions, one
can recover certain signals or images from far fewer
samples or measurements than traditionally considered
necessary. For the first time, we introduce this theory
into large scale RNAi screening and present an example
illustrating that it is possible to screen the target gene
set of same size using much less wells and siRNAs than
traditional methods. We start with motif search to
recognize candidate group identifier siRNAs. Then we
build a robust machine learning based method to iden-
tify siRNAs from the candidates. In this part, we incorp-
orate the novel features, such as image based features
and speech features into siRNA prediction. We also
propose a general method which is able to extract dis-
tinct PSF for different gene sets. This method considers
both desired and undesired position compositions for a
single nucleotide. With these novelties, a classifier is
established after SVM-RFE feature selection. This classi-
fier substantially improves the prediction accuracy com-
paring with the literature. Since we have identified the
group identifier siRNAs and their targeted genes, we
build a network and construct the corresponding sensing
matrix for the system, based on the compressed sensing
theory. Then we employ convex optimization technique
to reconstruct the signal which contains the information
of the applied siRNAs. Simulation results solidly demon-
strate this concept is easy to implement and can achieve
desired results. In conclusion, a csRNAi screening sys-
tem has been proposed and validated by numerical
experiments. With the result, the current RNAi screen-
ing can be improved to be more efficient and less time
and cost consuming.

Additional file

Additional file 1: This file consists of two parts of Additional file 1.
The first part gives a detailed description of the methods and results of
the siRNA prediction. The second part lists the results of the numerical
experiments, i.e., the selected siRNAs and associated genes.
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