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Abstract
The conditions and extent of cross-protective immunity between severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) and common-cold human corona-
viruses (HCoVs) remain open despite several reports of pre-existing T cell immunity 
to SARS-CoV-2 in individuals without prior exposure. Using a pool of functionally 
evaluated SARS-CoV-2 peptides, we report a map of 126 immunogenic peptides with 
high similarity to 285 MHC-presented peptides from at least one HCoV. Employing 
this map of SARS-CoV-2-non-homologous and homologous immunogenic peptides, 
we observe several immunogenic peptides with high similarity to human proteins, 
some of which have been reported to have elevated expression in severe COVID-19 
patients. After combining our map with SARS-CoV-2-specific TCR repertoire data 
from COVID-19 patients and healthy controls, we show that public repertoires 
for the majority of convalescent patients are dominated by TCRs cognate to non-
homologous SARS-CoV-2 peptides. We find that for a subset of patients, >50% of 
their public SARS-CoV-2-specific repertoires consist of TCRs cognate to homologous 
SARS-CoV-2-HCoV peptides. Further analysis suggests that this skewed distribution 
of TCRs cognate to homologous or non-homologous peptides in COVID-19 patients 
is likely to be HLA-dependent. Finally, we provide 10 SARS-CoV-2 peptides with 
known cognate TCRs that are conserved across multiple coronaviruses and are pre-
dicted to be recognized by a high proportion of the global population. These findings 
may have important implications for COVID-19 heterogeneity, vaccine-induced im-
mune responses, and robustness of immunity to SARS-CoV-2 and its variants.
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INTRODUCTION

After almost 2  years, the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) pandemic remains 
a global health challenge and causes a huge economic 
burden. SARS-CoV-2 virus gives rise to COVID-19 dis-
ease, which is characterized by a heterogeneous clinical 
outcome ranging from asymptomatic infection to severe 
acute respiratory distress and death. The virus has proven 
to be dynamic, and the emergence of ‘variants of concern’ 
(e.g. the delta variant) challenges the existing mitigation 
strategies including vaccine rollouts [1].

Although disease morbidity is associated with sev-
eral factors including age, sex and aberrant immune re-
sponse, the mechanisms and factors underpinning the 
heterogeneity of disease are incompletely understood [2]. 
Furthermore, reports of differential immune responses 
following vaccination have started to emerge, demonstrat-
ing prior SARS-CoV-2 infection can enhance COVID-19 
vaccine response compared with naïve individuals [3,4]. 
Despite the great recent efforts, many questions regarding 
the magnitude and robustness of immune response in dis-
ease, variants of concern and/or COVID-19 vaccination in 
different individuals, remain open.

In particular, the extent of T cell cross-reactivity be-
tween SARS-CoV-2 and other viruses and its impact on 
COVID-19 disease is incompletely understood. Since Don 
Mason's seminal work on the existence of T cell cross-
reactivity [5]; its extent [6] and importance in T cell recog-
nition have been extensively studied, and thus recognized 
as an essential feature of T cell responses [6–9]. As such, 
the role and involvement of T cell cross-reactivity have 
been widely investigated in multiple human diseases, in-
cluding cancer [10–12], auto-immune disease [13–15], in-
fections [16–19] such as dengue [20,21] and zika [22], and 
unsurprisingly for SARS-CoV-2 [23–26].

Several studies [23,27] have illustrated that the cor-
relates of immunity to SARS-CoV-2 are implicated by 
the presence of pre-existing immunological memory 
conferred from cross-reactivity to other viruses. On the 
contrary, such cross-reactivity could modulate disease se-
verity, vaccine response and/or protection against SARS-
CoV-2 and its variants via the presence of antigen-specific 
memory T cells [28]. Conversely, cross-reactivity may 
provoke immunopathology through mechanisms such as 
antibody-dependent enhancement of infection, with the 
potential for virus-induced autoimmune disease in years 
to come [16,29,30].

Coronavirus strains that infect humans belong to ei-
ther alpha or beta genera. The alphacoronaviruses contain 
HCoV-229E and -NL63 while the four lineages of betacoro-
naviruses include HCoV -OC43 and -HKU1, SARS-CoV 
and -CoV-2, MERS-CoV and other viruses only identified 

in bats. HCoV-OC43, -HKU1, -NL63 and -229E strains are 
known to cause mild to moderate ‘common cold’ symp-
toms whereas MERS-, SARS-CoV-1 and -2 can cause se-
vere respiratory tract disease and death. Previous natural 
and experimental infection studies in humans suggest 
antibody cross-reactivity within—but minimal reactivity 
between—endemic human alpha and beta coronaviruses. 
Unlike antibodies, T cell cross-reactivity to SARS-CoV-2 
appears to be more prevalent. Several recent studies have 
reported the existence of SARS-CoV-2-specific T cells in 
unexposed individuals [24,31–36], although it appears 
that T cell cross-reactivity is more pronounced in CD4 + 
than CD8 + T cells in these subjects.

Recent studies have provided varying insights regard-
ing the presence of pre-existing CD8  + T cell immunity 
to SARS-CoV-2 conferred by HCoV. In an investigation 
into the immunodominant SARS-CoV-2 SPR* epitope—
associated with HLA-B*07:02—Nguyen et al [37], found 
little evidence of cross-reactive exposure in pre-pandemic 
Australian samples. On the contrary, Francis et al [36]. 
found evidence of pre-existing memory CD8 + T cells in 
naïve samples and have shown that HLA genotype con-
ditions pre-existing CD8 + T cell memory to SARS-CoV-2, 
and they suggest that unexposed individuals with specific 
HLA alleles (such as HLA-B*07:02), may be more likely to 
possess cross-reactive memory T cells specific for the SPR* 
SARS-CoV-2 epitope. These disparate results may stem 
from differences in regional HLA allele frequencies and/
or experimental methodology. Nevertheless, the extent to 
which patients’ haplotypes and SARS-CoV-2-HCoV cross-
reactivity—amongst other factors—are linked to hetero-
geneous COVID-19 disease, the robustness of immunity 
against SARS-CoV-2 and its variants, and/or protection 
after vaccine-induced immune response, remains to be 
elucidated.

In this study, we examined the evidence for SARS-
CoV-2-specific T cell cross-reactivity with common-cold 
HCoVs and identified 126 immunogenic SARS-CoV-2 
peptides that are highly similar to 285 predicted HCoV 
pMHC. We additionally identified a set of SARS-CoV-2 
peptides with high similarity to several human proteins. 
We found that public TCR repertoires reactive to SARS-
CoV-2 in COVID-19 patients who carry specific HLA al-
leles primarily recognize SARS-CoV-2 peptides with high 
similarity to HCoVs, suggesting that common-cold HCoV 
cross-reactivity is variable and likely to be conditioned by 
HLA. It is plausible that patients carrying these HLAs may 
exhibit more robust protection against SARS-CoV-2 and its 
variants. We lastly identified a set of 10 peptides that are 
highly conserved across multiple coronavirus strains, to 
serve not only as potential pan-coronavirus T cell targets, 
but we propose are leading candidates as cross-reactive 
CD8 + T cell epitopes.
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RESULTS

Curation of functionally evaluated SARS-
CoV-2 peptides

To investigate the potential for T cell cross-reactivity 
against SARS-CoV-2 conferred by common-cold HCoVs, 
we curated a comprehensive pool of SARS-CoV-2 class I 
and II peptides from three previously published datasets 
(see Methods), which have been functionally evaluated for 
CD4 + and CD8 + T cell responses (Figure 1: study over-
view). The data comprise 1799 and 1005 immunogenic 
and non-immunogenic SARS-CoV-2 peptides, respectively 
(Figure 2a). Many of these peptides were tested for T cell 
reactivity in the context of multiple HLA alleles and/or by 
multiple assays (IFNγ, IL-5 production, etc.). Furthermore, 
some peptides are described by qualitative labels corre-
sponding to varying response magnitude (Positive-high 
and Positive-low, etc.). Taking various combinations of 
peptides and MHC molecules into account, we found 3979 
and 2427 immunogenic and non-immunogenic observa-
tions (Figure 2b). For unique immunogenic observations, 
the most common lengths are 9 mers, followed by 15 and 
10 mers (Figure 2c), and of the total immunogenic obser-
vations 36·0% are presented by class I MHC, 32·9% by class 
II (Figure 2d) and for 31% MHC type is unknown (Figure 
S1a). For non-immunogenic observations, 36·1% are pre-
sented by class I, 26·4% by class II and for 37·51% the 
MHC is unknown. At the gene level, HLA-allele specific 
information was available for 934 (56·5%) and 607 (42·2%) 
of immunogenic class I and II observations, respectively 
(Figure S1a).

Given the high proportion of missing MHC informa-
tion, we employed netMHCpan 4.1 and netMHCIIpan to 
predict presenting class I and class II alleles respectively for 
immunogenic peptides (see Methods). Here, we were able 
to identify 98% of known MHC molecules, providing confi-
dence in predictions for unknown alleles (Figure S1b).

We next sought to examine whether HLAs exhibit pref-
erences towards presenting peptides from certain SARS-
CoV-2 proteins. By employing a similar methodology to 
Karnaukhov et al [38], we gauged the enrichment and 
depletion of HLA ligands arising from these proteins (see 
Methods). Indeed, we observed differential antigen pre-
sentation by HLAs e.g. HLA-C*07:02 appears to be the 
most consistently enriched in presenting 9mers from the 
examined proteins (Figure 2e), while HLA-A*02:01 is en-
riched in presenting 9mers from ORFs but depleted for 
10mers across most assessed proteins. This disparity may 
be due to a known preference of 9 mers for HLA-A*02:01 
[39]. Furthermore, despite the prevalence of HLA A*02:01 
in the global population and in the MHC presentation ex-
periments, this allele appears to be depleted for presenting 

ligands from SARS-CoV-2 proteins that have been the 
focus of intense experimental work, e.g. spike and nucleo-
capsid phosphoprotein.

These patterns of HLA preferences in presenting 
SARS-CoV-2 peptides appear to differ for 9 and 10 mers. 
For example, whereas HLA-C*07:02 is enriched for pre-
senting 9 mers, this allele appears to be a poor presenter 
of 10mers from each examined protein. It is unclear why 
substantially fewer 10 mer HLA-C*07:02 ligands are pre-
dicted than 9mers, however, it is plausible that this allele 
may prefer 9mers, as appears to be the case with HLA-
A*02:01, -A*11:01 and -B*40:01 [39], or that this may be a 
SARS-CoV-2 specific effect.

Although it is of great interest to reveal the rate at which 
SARS-CoV-2  MHC-bound peptides are immunogenic in 
humans [40], it cannot be examined directly with existing 
data because not all MHC-bound SARS-CoV-2 peptides 
have been evaluated for immunogenicity. Nevertheless, 
we explored the pool of MHC-bound peptides in our 
dataset that have been examined for a T cell response, to 
gauge the proportion that SARS-CoV-2 pMHC are immu-
nogenic. Overall, we observed low rates of immunogenic 
pMHC (Figure 2f), although ligands of HLA-B*40:01 ap-
pear to be commonly immunogenic. Interestingly, we ob-
served that HLA-C*07:02 does not present any 10 mers in 
our dataset. This apparent preference for 9 mers is consis-
tent with the availability of HLA-C*07:02  ligands tested 
for T cell response in humans from the IEDB, where there 
exist only 121 unique peptides, of which 73% are 9 mers 
and only 12% are 10  mers. In summary, these data sug-
gest length and source protein preferences for HLA alleles 
presenting SARS-CoV-2 peptides and that HLA-B*40:01 
SARS-CoV-2 ligands are commonly immunogenic.

Identification of Homologous and 
Non-homologous Immunogenic SARS-
CoV-2 peptides

To discriminate SARS-CoV-2-HCoV homologous (hereby 
referred to as ‘SARS-CoV-2-HCoV’) peptides, we com-
pared immunogenic SARS-CoV-2 peptides to HCoV pro-
tein sequences. For this, we defined a metric that considers 
(1) sequence homology, (2) physicochemical similarities 
(MatchScore [41]) and (3) presentation status for which 
the source peptide from SARS-CoV-2 and the target pep-
tide from one of the HCoVs are required to be presented 
by the same HLA. A source peptide is defined as ‘homolo-
gous’ if it fulfils all these three conditions, otherwise, it 
is considered a ‘non-homologous’ peptide (see Methods).

Using our metric, we identified 126 unique SARS-
CoV-2 (immunogenic) peptides pointing to 285  highly 
similar peptides in HCoVs (Data File S1). Hence, we 
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provide a comprehensive map of non-homologous and 
homologous SARS-CoV-2 functionally evaluated immu-
nogenic peptides, and for SARS-CoV-2-HCoV peptides, 
their matches from each HCoV.

Out of the HLAs tested (see Methods) 33 and 28 class 
I and II HLAs, respectively, were predicted to present the 
target HCoV pMHCs (Figure 3a). HLA-A*02:01 and HLA-
B*27:05 were the most and least common class I present-
ers, respectively. For class II, DRB1-1501 and DRB5-0101 
were the most common presenters, while DRB1-0301 and 
DRB1-1303 were the least. Most homologous class I and 
II peptides were predicted to bind multiple HLA allelic 
variants (Figure S2a). Compared with non-homologous 
peptides it appears that SARS-CoV-2-HCoV peptides are 
presented by less HLAs, although this was not significant 
(Figure S2c). Nevertheless, the range of predicted alleles 
for these peptides suggests recognition in broad geograph-
ical and ethnic settings [42].

For the 126 SARS-CoV-2 peptides with high similar-
ity to HCoV, we also observed binding to multiple HLAs 
(Figure S2b). In addition, we found that 9 mers comprise 
54% of the 126 SARS-CoV-2 peptides with high-similarity 
matches to HCoV, followed by 15 mers (19%) and 10 mers 
(17·5%) (Figure S2c). Consistent with previous reports 
[43], the betacoronaviruses HKU1 and OC43 were most 
enriched in target matches (Figure 3b), perhaps due to 
higher total sequence homology among betacoronavi-
rus strains [25]. We next examined the extent to which 
immunogenic SARS-CoV-2 peptides exhibit homology 
to multiple HCoV strains. Surprisingly, we found that 36 
SARS-CoV-2 immunogenic peptides were homologous to 
at least three strains (Figure 3c). However, we observed 
small clusters of peptides that only possess homology with 
one strain, e.g. OC43 or HKU1. ORF1ab protein and sur-
face glycoprotein (spike) produced the highest quantity of 
homologous SARS-CoV-2-HCoV peptides in both strains, 
and the protein regions from which these peptides were 
found are similar in both HKU1 and OC43 (Figure S2e–h).

Of particular note is that this map of homologous and 
non-homologous peptides is subject to thresholds that 
we used in our similarity metric. The sequence homol-
ogy threshold that was employed here is 50%, although 
most SARS-CoV-2-HCoV peptides had greater than or 
equal to 70% sequence homology with their counterpart 
matches from HCoVs (Figure S2e). While a more stringent 

sequence homology parameter will produce a map con-
taining fewer homologous peptides (Figure 3d), our main 
conclusions in this manuscript remain the same even with 
a sequence homology threshold of 70% (data not shown).

Lastly, we compared the amino acid distribution be-
tween homologous and non-homologous SARS-CoV-2 
peptides for 9 mers, which is the most common peptide 
length in our dataset (Figure 3e). We observed some mod-
erate differences, e.g. increased prominence of Valine at 
position 9 within homologous peptides.

We have therefore identified a pool of 126 SARS-CoV-2 
immunogenic peptides—that exhibit high similarity to 
285 peptides in HCoV strains—which are likely to be pre-
sented by an array of class I and II HLA molecules. This 
array of presenting alleles suggests the potential for broad 
global population coverage, which is explored later. We 
propose that this pool of experimentally confirmed immu-
nogenic SARS-CoV-2 peptides and their counterpart high 
similarity matches be considered as potential targets for 
T cell cross-reactivity, therefore warranting investigation 
into pre-existing immune memory from HCoV or a role in 
protection from SARS-CoV-2 variants.

Identification of peptides with high 
similarity to self and self-microbiomes

To prevent aberrant T cell-mediated inflammation and 
tissue damage, the immune system has evolved several 
checkpoint mechanisms. These include thymus negative 
selection and peripheral tolerance. Indeed, dissimilarity 
to self is increasingly recognized as a component of pep-
tide immunogenicity [44], which may assist in calibrating 
a balance between immunogenicity and inflammatory 
pathogenesis.

To evaluate the extent to which dissimilarity to self and 
self-microbiomes contribute to SARS-CoV-2 peptide immu-
nogenicity, we took a similar approach and used our metric 
to compare SARS-CoV-2 peptides to human self-proteome 
and microbiomes that include 457 gut and 50 airway micro-
biota (see Methods). Here, for SARS-CoV-2 HLA class I pre-
sented 9 and 10 mer peptides—for which we had the highest 
number of class I peptides—we observed that immunogenic 
SARS-CoV-2 peptides were significantly more dissimi-
lar to the human proteome than their non-immunogenic 

F I G U R E  1   Overview of the study. (a) An illustration describing the curation of a SARS-CoV-2 peptide immunogenicity dataset from 
published data. (b) A map of potential cross-reactive SARS-CoV-2 peptides and their target counterparts from HCoVs is presented. (c) A 
set of immunogenic SARS-CoV-2 peptides with highsimilarity to the human proteome is reported. (d) The extent of cross-reactivity and 
common-specificity within SARS-CoV-2 is examined. (e) The landscape of potential SARS-CoV-2-specific cross-reactive public TCRs in 
health and/or COVID-19 disease is detailed. (f) A set of 10 peptides which are highly conserved across HCoVs, SARS, SARS-CoV-2 and 
MERS are predicted to exhibit high global and regional ‘population coverage’ is identified



      |  83
HLA-­DEPENDENT VARIATION IN SARS-­COV-­2 CD8 + T CELL CROSS-­REACTIVITY WITH HUMAN 
CORONAVIRUSES 



84  |      BUCKLEY et al.

counterparts (Figure 4a and Figure S3a). Using this ap-
proach, we could not detect any significant difference 
between immunogenic and non-immunogenic class II pep-
tides in their dissimilarity to self-proteome (Figure S3b).

Interestingly, however, for peptides of both lengths 9 
and 10, we identified several immunogenic SARS-CoV-2 
peptides with considerable sequence similarity to the 
human proteome (Figure 4a,b, Table S1). For the top 10% 
of these peptides with the highest similarity to self, the 
mean amino acid conservation (the proportion of the 
amino acid sequence which is exactly conserved) between 
these peptides and corresponding self-peptides is 72·1% 
with an 8·33% standard deviation (see Data File S2 for the 
number of substitutions under column ‘Hamming’). In 
general, T cells specific for these peptides should be sub-
ject to negative selection otherwise it is plausible that ab-
errant immune responses may occur during the course of 
the disease in the form of immunopathology or the future 
in the form of autoimmunity [29,45,46].

To investigate the potential association of these pep-
tides in immunopathology further, we predicted MHC 
presentation by a set of class I HLA alleles (see Methods) 
for the top 10% of peptides most similar to the human 
proteome for 9mers and 10mers. We observed that these 
peptides with high similarity to self are predicted to bind 
multiple HLAs (Figure 4c), and interestingly, we found 
that in most cases, the SARS-CoV-2 immunogenic peptide 
and the match from the human proteome are predicted to 
be presented by the same allele (Figure 4c).

Next, we examined the list of genes with high sequence 
similarities to these SARS-CoV-2 immunogenic peptides 
(Table S1 and Data File S2). Of particular interest, we found 
e.g. CCL3 and CCL3L1 which are linked to cytokine storms 
and the expression of which have been reported to be ele-
vated in severe COVID-19 patients [47–52] (Figure 4d, Data 
File S2). We additionally observed CD163, similarly asso-
ciated with severe COVID-19, however, the predicted pre-
sentation score of HLA-B*15:01 for peptides from CD163 
with high similarity to SARS-CoV-2 was slightly beyond 
the generally accepted ‘binding’ cut-off. Interestingly, the 
SARS-CoV-2 peptides which exhibited sequence similarity 
with CCL3 and CCL3L1 (and CD163) were not homologous 

with HCoVs (Figure 4d and Table 1)—which may increase 
the likelihood of being involved in immunopathology after 
infection. Additionally, we observed considerable amino 
acid conservation with matches from these genes, with 
77·8% for 9 mers and 70% for 10 mers (Table 1).

CCL3 and CCL3L1 are both ligands for CCR1 and 
CCR5. Interestingly, CCR1 variants are linked to pulmo-
nary macrophage infiltration in severe COVID-19 [53] and 
inhibition of CCR5 in critical COVID-19 patients has been 
associated with a decrease in plasma IL-6 and SARS-CoV-2 
RNA and an increase in CD8 + T cells [54]. Additionally, 
intermediate monocytes which constitutively express high 
levels of CCR5 have recently been suggested as playing a 
role in post-acute sequelae of COVID-19 [55] (often re-
ferred to as ‘long-COVID’). Of further interest, we found 
SMPD4 and SLC1A4, which together with CCL3 and 
CCL3L1 are involved in the response to TNF, which is part 
of the cytokine storm following COVID-19 disease.

By comparing SARS-CoV-2 peptides to human micro-
biomes, we observed subtle higher dissimilarity of SARS-
CoV-2 immunogenic peptides to the gut (Figure S3c) and 
airways (Figure S3d) microbiomes, which may suggest a 
link between the diversity of both microbiota and hetero-
geneity of the disease in populations, although this war-
rants further investigation.

Given the magnitude of the global pandemic and the 
widespread vaccination required to combat it, future virus-
induced autoimmune disease and immunopathology is of 
concern. Overall, this analysis suggests dissimilarity of viral 
peptides to self-proteins as a correlate of peptide immu-
nogenicity. Furthermore, we present candidate genes and 
peptides with high similarity to SARS-CoV-2 T cell targets, 
which we suggest as prime targets for further investigations 
into their role in autoimmune disease and immunopathol-
ogy following SARS-CoV-2 infection and/or vaccination.

CD8 + T cell cross-reactivity and common-
specificity within SARS-CoV-2

A valuable characteristic of our map of SARS-CoV-2-HCoV 
homologous and non-homologous peptides is that for 245 

F I G U R E  2   A comprehensive pool of functionally validated SARS-CoV-2 peptides. Barplots showing (a) The number of SARS-CoV-2 
peptides deemed’positive’ or ‘negative’. ‘Negative’ label reflects only negative qualitative observations and ‘positive’ reflects at least one 
immunogenic observation. (b) The number of total observations, including all assay and HLA combinations for each peptide. (c) The 
distribution of lengths of unique observations (peptide-immunogenicity) in our SARS-CoV-2 dataset. Left panel shows nonimmunogenic 
‘Negative’ peptides. Right panel shows immunogenic or ‘Positive’ peptides. MHC class of the unique observation is colour coded. (d) The 
frequencies of total immunogenic or non-immunogenic observations (peptide-MHC-immunogenicity), where a specific HLA allele is 
available for a peptide. Numeric labels show the number of peptides in each group. (e) The logs odd ratio of observed and expected number 
of presented peptides of lengths 9 and 10 by common HLA alleles for SARS-CoV-2 proteins >100 amino acids in length. Significance 
calculated using binomial distribution. (f) The frequency of immunogenic and nonimmunogenic peptides as presented by HLA alleles 
arising from SARS-CoV-2. Numeric labels show the number of observations per immunogenicity status
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of these (out of 1279 class I immunogenic peptides), cog-
nate TCRs at the beta chain resolution are available in the 
IEDB. We, therefore, set out to map the TCR landscape 
through a network approach to explore the potential for 
cross-reactivity among SARS-CoV-2-specific CD8 + T cells 
and their common specificity. Here, to avoid overestimat-
ing connectivity, any peptides of different lengths, which 
share starting positions in the SARS-CoV-2 proteome and 
are recognized by identical sets of TCRs, are considered as 
one peptide.

Through a two-mode (bipartite) network-graph illus-
trating the connectivity of SARS-CoV-2 immunogenic 
peptides with their cognate TCRs, amongst a highly con-
nected topography we observed considerable connectivity 
for some SARS-CoV-2-HCoV peptides e.g. ‘FLN’ (Figure 
S4a). Exploring this further, we projected the bipartite 
network graph into a one-mode graph where nodes rep-
resent peptides and an edge between two nodes requires 
the existence of a TCR recognising both peptides (Figure 
S4b). The clustering around a small set of hubs suggests 
that many experimentally assessed TCRs target a small 
set of SARS-CoV-2 peptides. Indeed, we found that in this 
dataset, 80% of the TCRs are reported to recognize only 
40 (16%) peptides, of which 4 are SARS-CoV-2-HCoV pep-
tides and 36 are non-homologous (Figure S4c). This dom-
inant set of peptides may be due to experimental biases 
e.g. research may be heavily biased toward several protein 
regions. However, this may also reflect a selection bias by 
SARS-CoV-2  specific TCRs. In this regard, amongst the 
TCRs recognising these dominant peptides, we observed 
high usage of V gene TRBV20-1 [56] and J gene TRBJ2-1 
[57] (Figure S4d), which have been previously reported to 
have implications in COVID-19 patients.

Similarly, we examined the extent of common spec-
ificity in SARS-CoV-2  specific T cells by a one-mode 
graph in which nodes represent TCRs and an edge rep-
resents whether two nodes (TCRs) recognize the same 
peptide (Figure S4e). Interestingly, this graph reveals a 
set of highly connected hubs reflecting levels of com-
mon specificity, however, there are many TCRs that rec-
ognize only a single unique peptide. Comparing these 

two sets of TCRs, we did not observe considerable dif-
ferences in their CDR3β sequences (Figure S4f–g), how-
ever, we observed differences in V and V-J gene usage 
(Figure S4h–j).

In summary, we employed peptides with known cog-
nate TCRs in the IEDB database—although limited in 
numbers—to explore SARS-CoV-2 CD8  + T cell cross-
reactivity. Our network approach demonstrates that 
SARS-CoV-2 CD8  + T cells can cross-react and exhibit 
common specificities.

Presence of public TCRs recognising 
SARS-CoV-2-HCoV peptides in COVID-19 
convalescents and healthy subjects

We next integrated our map of SARS-CoV-2 homologous 
and non-homologous peptides with a recently published 
dataset known as ‘MIRA’ [58] to track the patterns of 
public TCRs (defined as CDR3β+V  +  J gene(s) present 
in at least two subjects) recognizing SARS-CoV-2-HCoV 
peptides in convalescents and/or healthy subjects. Here, 
Nolan et al., employed the multiplex identification of 
antigen-specific T cell receptors (MIRA) assay to iden-
tify SARS-CoV-2 specific TCRs from PBMCs and naïve T 
cells. These data include more than 160k high confidence 
SARS-CoV-2-specific TCRs mapped to target peptides 
from 39 healthy controls (HC) (defined as unexposed to 
SARS-CoV-2) and 90 COVID-19 convalescent patients. 
These data consist of 792 unique SARS-CoV-2 peptides, 
54 of which are SARS-CoV-2-HCoV homologous peptides.

First, we set out to identify any shared biochemi-
cal features of these public TCRs which recognize only 
SARS-CoV-2-HCoV peptides compared with those which 
recognize only non-homologous SARS-CoV-2 peptides 
[56,59–62]. Between these two groups, we observed only 
minor differences in CDR3 motifs and lengths of these 
sequences, for which the effect of technical variation 
could not be ruled out (Figure S5a–d). We did not observe 
any evidence of J gene bias (Figure S5e), although we did 
observe some differences in V gene usage, in particular 

F I G U R E  3   A set of peptides from human coronavirus strains with high similarity to immunogenic SARS-CoV-2 peptides. (a) A barplot 
showing the number of high similarity matches predicted to bind a set of common HLA class I and class II alleles. (b) A barplot showing 
the number of unique high similarity matches derived from each human common-cold-causing coronavirus. Each hit is defined as a unique 
observation—that fulfills all three criteria defined in our similarity metric—between an immunogenic SARS-CoV-2 peptide with length l, 
and a stretch of lengthlfrom one viral protein. (c) A dot and line plot showing each SARS-CoV-2 peptide and to which common-cold-causing 
coronavirus it exhibits a high similarity match. The size of each point represents the MatchScore, which reflects the physicochemical 
similarity with a counterpart HCoV match. Peptides are grouped by the number of high similarity matches one exhibits to human 
coronavirus strains (either 1, 2, 3 or 4). (d) Barplots showing the number of unique SARS-CoV-2 peptides (left) and SARS-CoV-2-HCoV 
matches (right), at different thresholds of the sequence homology metric, i.e the % of the amino acids that must be conserved between the 
SARS-CoV-2 peptide and its HCoV match. (e) Sequence logo plots comparing amino acid usage of SARS-CoV-2-homologous and non-
homologous 9-mer peptide sequences
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for TCRBV-5–01 (Figure S5e), as well as a potential bias 
toward TCRBV05-01-TCRBJ-02–01 usage (Figure S5g,h).

Next, we examined whether any of the public TCRs 
in the MIRA dataset that recognize SARS-CoV-2-HCoV 
peptides were reported to react with epitopes from other 
viruses, which would suggest a level of cross-reactivity of 
these TCRs. Interestingly, by comparing the CDR3βs in 
the MIRA dataset with those in VDJdb [63] recognising 
epitopes from other viruses, we observed some SARS-
CoV-2-specific TCRs which recognize peptides from CMV, 
Influenza A, EBV, HIV-1 and Homo sapiens (Figure S6a) 
suggesting some elements of cross-reactivity with other 
pathogens (Data File S3). We observed minor differences 
in the motifs of the SARS-CoV-2-specific CDR3βs which 
cross-react with CMV (Data File S6b), Influenza A (Data 
File S6c) and EBV (Data File S6d), although this may only 
reflect differences in the CDR3s which recognize these 
different viruses. Indeed, it is also important to note that 
the use of the MIRA dataset for this particular type of 
analysis has limitations, and more robust conclusions re-
garding cross-reactivity to other pathogens would require 
more SARS-CoV-2-specific T cells.

Next, using the MIRA dataset we set out to elucidate 
the landscape of public TCRs in HC and COVID-19 con-
valescent patients. We, therefore, generated a bipartite 
graph comprising all public TCRs cognate for homolo-
gous and non-homologous SARS-CoV-2 peptides (Figure 
5a, Data File S4). This graph revealed two clear hubs. In 
the first (green nodes), we observed that healthy subjects 
were connected to public TCRs which recognize both 
SARS-CoV-2-HCoV and SARS-CoV-2-non-homologous 
peptides. In the second hub (red nodes) comprising 
convalescent patients, we observed that generally their 
public TCR repertoires predominately recognize SARS-
CoV-2-non-homologous peptides. Indeed, it appears that 
cognate TCRs of SARS-CoV-2-HCoV peptides are more 
pronounced in HC (Figure S7a-Homologous, Wilcoxon 
p = 0·00029), whereas cognate TCRs of SARS-CoV-2-non-
homologous peptides appear enriched in the convales-
cent cluster (Figure S7a-Non-homologous). Interestingly, 
we observed a considerable number of TCRs recognising 
homologous peptides which are common between these 

two subject clusters, indicating that SARS-CoV-2-HCoV-
specific public TCRs are present not only in COVID-19 pa-
tients but are also expanded from unexposed individuals 
(Figure 5a,b, Data Files S4 and S5).

Given that in these healthy donors, the TCRs are gen-
erally from naïve CD8 + T cells which are expanded and 
stimulated with SARS-CoV-2 peptide pools and analysed 
with the ‘MIRA’ assay, the presence of cognate TCRs rec-
ognising SARS-CoV-2-HCoV peptides in HC, as well as 
COVD-19 patients, may not necessarily translate into pre-
existing T cell immunity. Rather, due to the high similarity 
between the cognate SARS-CoV-2 antigens and (predicted) 
HCoV presented peptides, we suggest it is plausible that 
these SARS-CoV-2  specific TCRs are cross-reactive with 
HCoV peptides. Indeed, consistent with Francis et al. [36] 
who demonstrate pre-existing memory CD8  + T cells to 
SPR* peptide in 80% of unexposed individuals, we found a 
set of public TCRs—which are observed in both convales-
cent and unexposed individuals—recognizing this SARS-
CoV-2-HCoV peptide. In this light, we reveal candidate 
public TCRs and corresponding SARS-CoV-2 peptides 
with high similarity to HCoVs, which should be examined 
further for cross-reactive potential.

From these two bipartite graphs, we observed that 
healthy individuals respond to a balance of SARS-CoV-
2-non-homologous and SARS-CoV-2-HCoV peptides, 
although it appears that infection primarily dictates a 
dominant recognition of non-homologous SARS-CoV-2 
peptides (Figure S7b). For convalescent patients, we ob-
served that public TCR repertoires of the majority (51/86) 
of patients are almost entirely (≥99%) occupied by TCRs 
recognizing non-homologous SARS-CoV-2 peptides 
(Figure 5c). However, in a subset of convalescent patients, 
public TCRs recognizing SARS-CoV-2-HCoV peptides 
comprise a substantial fraction of the public repertoire. 
In fact, for 12 convalescent patients, >50% of their public 
TCRs recognize SARS-CoV-2-HCoV peptides.

Comparing these two groups of patients, we did 
not find evidence of a link towards biological sex or 
age. To explore potential correlates, we first gathered 
the 12 patients whose public TCRs most dominantly 
(>50%) recognize SARS-CoV-2-HCoV peptides (labelled 

F I G U R E  4   A pool of immunogenic SARS-CoV-2 peptides with high similarity to human genes. (a) Jittered boxplots showing the 
similarity—evaluated by the ‘MatchScore’—of nonimmunogenic and immunogenic SARS-CoV-2 peptides with sequences derived 
from the human proteome of lengths 9 (immunogenic n = 906, nonimmunogenic n = 734 peptides) and 10 (immunogenic n = 394 and 
nonimmunogenic n = 394 peptides). The green dot indicates the median of each group, red line shows the median of the immunogenic 
group. (b) A barplot showing the physicochemical similarity scores (MatchScores) of peptides from the human proteome which were found 
to have high similarity with immunogenic SARS-CoV-2 peptides, labelled by protein length. (c) A dotplot showing the predicted HLAs of 
peptides from the human proteome which exhibit ‘high similarity’ to SARS-CoV-2 proteome. The size of the point reflects the MatchScore. 
An ‘X’ shows where the SARS-CoV-2 derived peptide and the match are predicted to bind the same allele. (d) A bar chart showing the genes 
from which the high similarity match peptides arise from the human proteome, grouped by whether the SARS-CoV-2 peptide exhibits a high 
similarity match with HCoV (Homologous) or not (Nonhomologous)
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PubTCR-Homologous), and then via sampling 12 patients 
10 times from the set of 51 patients whose public TCRs 
almost entirely recognize non-homologous SARS-CoV-2 
peptides (labelled PubTCR-Non-homologous), we com-
pared HLA coding genes of these two groups. We observed 
that the PubTCR-Homologous group is statistically en-
riched for carrying HLA-B*07:02, HLA-C*07:02 and HLA 
A*03:01, whereas the former group includes a broader 
set of HLAs among which HLA A*01:01 was more pro-
nounced (Figure 5d). The enrichment of HLA-B*07:02 in 
the PubTCR-Homologous group is consistent with recent 
work from Francis et al [36], and these data are in agree-
ment with their claim that CD8  + T Cell HCoV-SARS-
CoV-2 cross-reactivity may be conditioned by HLA.

Employing these two groups and sampling a set of 
healthy patients (n = 12), we reveal the set of epitopes only 
recognized by public TCRs in these healthy patients, and 
those shared with the convalescent PubTCR-Homologous 
group (Data File S6 and S7). Additionally, we reveal pep-
tides only observed in the PubTCR-Non-homologous 
convalescent group, adding to previous insights that 
SARS-CoV-2 infection can provoke T cell responses to a 
novel set of peptides compared to those expanded from 
unexposed patients [28].

Recent work shows cross-reactive private TCRs from 
unexposed subject repertoires, capable of recognising 
both the SARS-CoV-2 SPR* peptide and its LPR* homo-
log from HCoVs OC43 and HKU1. By mapping out which 
SARS-CoV-2 peptides are recognized in which individuals 
by private TCRs, we observed SPR* but also an additional 
set of SARS-CoV-2-HCoV peptides recognized in both 
healthy and convalescent patients (Figure S7c, Data Files 
S8 and S9). Lineburg et al., [64] recently reported private 
TCRs in HLA-B*07:02  + unexposed individuals which 
cross-react with both the SARS-CoV-2 SPR* peptide and 
the OC43/HKU1 homolog LPR*, which indicates a level 
of pre-existing immunity. Of these TCRs, we found two 
(defined as CDR3b, TRBV, TRBJ) which appear in two 
HLA-B*07:02  + unexposed individuals within the MIRA 
dataset (Table S2). As these TCRs are now observed in two 
separate datasets, we, therefore, propose these as public 
TCRs, capable—as identified by Lineburg et al.,—of cross-
reacting with both SARS-CoV-2 SPR* and OC43/HKU1 
LPR* peptides.

Taken together, we report the existence of a set of 
CD8  + TCRs in both HC and COVID-19 convalescent 
patients that recognize SARS-CoV-2 peptides with 
high sequence similarity to a pool of predicted HCoV 
pMHC. This high sequence similarity indicates the 
cross-reactive potential of these TCRs. Primarily, how-
ever, we observed that COVID-19 patients develop pub-
lic TCR responses to non-homologous SARS-CoV-2 

peptides—many of which are not observed in unex-
posed individuals—indicating that any cross-reactive 
potential is limited. For the subset of COVID-19 pa-
tients whose public TCRs are primarily directed to-
wards SARS-CoV-2-HCoV peptides—and are observed 
in HC—we found distinct HLA profiles. Therefore, in 
agreement with recent data from Francis et al., we sug-
gest that CD8 + T cell HCoV-SARS-CoV-2 cross-reactive 
potential is apparent, although likely conditioned by pa-
tient HLA genotype. It is plausible that these patients 
may exhibit more robust protection against SARS-CoV-2 
and its variants.

Potential conserved coronavirus CD8 + T 
cell targets with broad population coverage

Given the emergence of new SARS-CoV-2 variants and 
concern over the theoretical capacity of future mutants 
to evade current vaccine strategies [1], conserved CD8 + 
T cell targets across multiple coronavirus strains with the 
potential to elicit T cell responses in a large percentage of 
global populations are of interest. We, therefore, searched 
our peptide map for SARS-CoV-2 peptides with ‘high-
similarity’ matches to multiple HCoVs, and with cognate 
TCRs in the MIRA dataset. To select only the top ‘high-
similarity’ SARS-CoV-2-HCoV matches for this analysis, 
we applied a more stringent sequence homology thresh-
old. Indeed, in addition to the ‘MatchScore’ and peptide 
presentation criteria outlined previously (see Methods: 
Discriminating homologous and non-homologous SARS-
CoV-2 peptides), we only retained matches with at least 
70% sequence conservation (i.e. allowing 30% amino acid 
substitution).

We found 44 peptides that match these criteria, 43 of 
which are recognized by TCRs in both convalescent and 
HC (Figure 6a,b). We next focused on SARS-CoV-2 pep-
tides with high similarity matches in >=3 HCoV strains 
(Table 2, Data File S10). Of these SARS-CoV-2-HCoV 
matches, the number of amino acid substitutions ranged 
between 0 and 3, with a mean of 1·79 and a standard 
deviation of 0·78. Additionally, while each of these pep-
tides exhibited a high similarity match to either MERS or 
SARS-CoV, the majority exhibited homology with both of 
these viruses (Figure S8a). As well as high conservation 
across many coronavirus strains, collectively these SARS-
CoV-2 peptides are predicted to bind multiple HLA alleles 
(Figure 6c), raising the possibility that this set of peptides 
may elicit T cell responses in a substantial proportion of 
the global population.

We next sought to determine the extent in global and 
regional populations that these CD8 + T cell targets may 
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elicit T cell responses individually and accumulatively. 
We, therefore, used the IEDB population coverage tool 
[65], which employs global HLA allele prevalence data to 
predict the percentage of individuals in a regional popula-
tion to respond to a given epitope set. Starting with each 
SARS-CoV-2 peptide and predicted HLAs individually, we 
find considerable coverage of 55·32% for ‘LLLD*’, while 
‘VQID*’ exhibits the lowest predicted coverage of 7·09% 
(Figure 6d).

Similarly to a previous approach by Ahmedid et al [66], 
we set out to predict the accumulated global population 
coverage of the set. We found that 8 peptides collectively 
produce >90% global coverage, while the entire set is pre-
dicted to elicit T cell responses in 92·93% of the global 
population (Figure 6e). Regionally, Europe and North 
America exhibited the highest predicted coverage (Figure 
6f). Of note, Africa and Asia also exhibited high predicted 
coverage. Central America (defined as Guatemala and 
Costa Rica) exhibited low coverage of 7%. It is unclear 
why, and further investigation is necessary to produce a 
peptide set with high coverage in these countries.

Overall, we identified a set of 10 SARS-CoV-2 immu-
nogenic peptides, each highly conserved across coronavi-
rus strains, which collectively provide global population 
coverage of ~93%. We believe that this is an encouraging 
insight in the search for pan-coronavirus T cell targets, 
and additionally propose these as top candidates for cross-
protective immunity.

DISCUSSION

Our work demonstrates that T cells specific to SARS-
CoV-2 peptides with high similarity to HCoV predicted 
pMHC can be expanded from naïve individuals and that 
these cognate public TCRs are also observed  in a sub-
set of recovered COVID-19 patients. This finding firstly 

suggests that SARS-CoV-2-unexposed individuals could 
mount T cell responses to HCoVs  that—due to peptide 
similarity - could be cross-reactive with SARS-CoV-2 an-
tigens. Furthermore, we propose that while COVID-19 
disease appears to primarily direct responses against non-
homologous SARS-CoV-2 peptides, patients with certain 
HLA alleles (e.g. HLA-B*07:02, -C*07:02, -A*03:01) may be 
more likely to possess SARS-CoV-2-HCoV cross-reactive 
CD8 + T cells. It is, therefore, plausible that SARS-CoV-2 
naïve individuals with certain HLAs may be at lower risk 
of severe disease—or experience augmented vaccine re-
sponses—if previously exposed to endemic coronaviruses, 
however, a direct link to pre-existing immunity requires 
further investigation.

Indeed, our analysis indicates that  after  SARS-CoV-2 
infection, a subset of individuals has memory T cells that 
primarily recognize SARS-CoV-2-HCoV peptides. In these 
convalescent patients, it is unclear whether infection itself 
and/or prior exposure to HCoVs are driving this subset 
of individuals to select for these peptides. There is con-
flicting evidence surrounding the existence of memory 
SARS-CoV-2 cross-reactive CD8  + T cells in unexposed 
individuals [36,37,64], and a limitation of our work is that 
we could not provide a direct link to pre-existing immu-
nity, because from healthy donors the MIRA dataset only 
evaluated expanded naïve T cells and did not examine 
anti-viral efficacy of the responding T cells. Indeed, al-
though we cannot determine the cause or timeframe of 
this selection of SARS-CoV-2-HCoV peptides in this sub-
set of individuals, the potential implications are interest-
ing. It is plausible that these patients may exhibit more 
robust protection against SARS-CoV-2 variants, HCoVs 
or even future emerging coronavirus strains. Future work 
should explore any immunity benefit of infection-induced 
cross-reactive T cell responses, and in addition, it will be 
interesting to examine whether vaccination against SARS-
CoV-2 can induce T cell memory that is cross-reactive with 

F I G U R E  5   A landscape of T cell responses against SARS-CoV-2-HCoV Homologous and SARS-CoV-2-non-homologous peptides in 
healthy or COVID-19 convalescent individuals: (a) A bipartite network graph showing SARS-CoV-2-specific public TCRs which recognize 
homologous or nonhomologous SARS-CoV-2 peptides in healthy or convalescent patients. TCRs are colour-coded by whether they recognize 
only homologous peptides (blue), only non-homologous peptides (orange) or both (yellow). COVID-19 convalescent patients are labelled 
red while healthy controls are labelled green. Node size reflects degree of connectivity, i.e., the quantity of an individual's TCRs which are 
shared with other patients. (b) A bipartite network graph showing SARS-CoV-2 public TCRs that recognize SARS-CoV-2-HCoV homologous 
peptides. Patient node size reflects the quantity of their TCRs which are shared with another patient. Healthy patients are labelled green, 
COVID-19 convalescent are labelled red, and (public) TCRs are labelled blue. (c) A barplot showing the frequency that each convalescent 
patient's public TCRs recognize SARS-CoV-2-non-homologous (red) or SARS-CoV-2-HCoV-homologous (blue) peptides. Patients with 
identical frequencies are ordered by the number of TCRs. (d) Barplots showing the quantities of COVID-19 convalescent patients who carry 
14 class I HLA alleles of interest. Patients are grouped by whether their public TCRs predominately recognize “non-homologous” (PubTCR_
NonHomologous, n = 12, sampled 10 times) or “Homologous” (PubTCR_Homologous, n = 12) peptides. For the PubTCR-NonHomologous 
group, 12 patients were sampled 10 times and the number of patients carrying alleles was measured. The mean number of patients carrying 
each allele and the error are visualized. For the PubTCR-Homologous group, the data contain only 12 patients of interest, thus the number 
of patients carrying each allele is measured and visualised
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SARS-CoV-2 variants and/or wider coronaviruses in such 
individuals. Furthermore, by our identification of a set 
of 10 potentially cross-reactive peptides with broad pop-
ulation coverage, it is possible that these peptides could 
be employed to test which patients exhibit cross-reactive 
phenotypes e.g. after vaccination with relevant antigens.

More broadly, data are beginning to demonstrate dis-
tinct vaccine-induced responses linked to differential 

patient exposure to SARS-CoV-2 [3,4]. In turn, it is possi-
ble that COVID-19 vaccine boosted cross-reactive immune 
responses may influence vaccine-induced protection [28]. 
Indeed, it will be important to explore whether COVID-19 
vaccination can boost any infection-induced cross-
reactive T cell memory and whether this affects the ro-
bustness of protection from SARS-CoV-2 variants or wider 
coronaviruses.

F I G U R E  6   SARS-CoV-2 T cell epitopes with known cognate TCRs which are conserved across multiple coronaviruses exhibit broad 
population coverage: (a) A dot plot showing SARS-CoV-2 peptides with high similarity to more than one HCoV that are recognized by TCRs 
in the MIRA dataset. Size of the dot represents the MatchScore. (b) The frequency of cognate TCRs which recognize these peptides from the 
COVID-19 convalescent or healthy cohorts. (c) The HLA alleles predicted to present SARS-CoV-2 peptides with high similarity matches to 
3 or 4 HCoV strains. (d) Global population coverage as calculated by the ‘IEDB population coverage tool’ for each individual SARS-CoV-2 
peptide with high similarity matches to 3 or 4 HCoV strains. (e) Accumulated global population coverage predicted by the IEDB population 
coverage tool. (f) Regional population coverage for the entire set of 10 SARS-CoV-2 peptides with matches to 3 or 4 HCoV

T A B L E  2   Highly conserved CD8+ T cell peptides across SARS-CoV-2 and HCoV strains, with high population coverage

SARS-CoV-2 
peptide Virus Protein MatchScore

AIMTRCLAV 229E, OC43, HKU1, NL63, SARS-
CoV, MERS_CoV

Replicase polyprotein 1ab, ORF1ab 
polyprotein, ORF1ab polyprotein, 
replicase polyprotein 1ab, ORF1ab 
polyprotein, 1AB polyprotein

1, 1, 0·977, 0·977, 1, 0·977

KLFAAETLK NL63, 229E, HKU1, OC43, SARS-
CoV, MERS_CoV

Replicase polyprotein 1ab, replicase 
polyprotein 1ab, ORF1ab polyprotein, 
ORF1ab polyprotein, ORF1ab 
polyprotein, 1AB polyprotein

0·881, 0·857, 0·847, 0·847, 1, 
0·929

LLLDDFVEI HKU1, 229E, NL63, OC43, 
SARS-CoV

ORF1ab polyprotein, replicase polyprotein 
1ab,replicase polyprotein 1ab, ORF1ab 
polyprotein, ORF1ab polyprotein

0·894, 0·871, 0·86, 0·777, 1

LQLGFSTGV OC43, HKU1, 229E, NL63, MERS_
CoV, SARS-CoV

ORF1ab polyprotein, ORF1ab polyprotein, 
replicase polyprotein 1ab, replicase 
polyprotein 1ab, 1AB polyprotein, 
ORF1ab polyprotein

0·977, 0·955, 0·809, 0·809, 1, 1

LSDDAVVCFNSTY 229E, HKU1, OC43, SARS-CoV, 
MERS_CoV

Replicase polyprotein 1ab,ORF1ab 
polyprotein, ORF1ab polyprotein, 
ORF1ab polyprotein, 1AB polyprotein

0·843, 0·789, 0·789, 0·872, 
0·789

VLQAVGACV HKU1, OC43, 229E, NL63, SARS-
CoV, MERS_CoV

ORF1ab polyprotein,ORF1ab polyprotein, 
replicase polyprotein 1ab, replicase 
polyprotein 1ab, ORF1ab polyprotein, 
1AB polyprotein

0·876, 0·876, 0·795, 0·773, 1, 
0·832

VQIDRLITGR HKU1, 229E, NL63, OC43, SARS-
CoV, MERS_CoV

Surface glycoprotein (all) 0·887, 0·845, 0·845, 0·804, 1, 
0·804

YEQYIKWPW HKU1, OC43, NL63, 229E, 
SARS-CoV

Surface glycoprotein (all) 0·903, 0·873, 0·855, 0·794, 1

YEQYIKWPWY HKU1, OC43, NL63, SARS-CoV Surface glyco protein (all) 0·913, 0·886, 0·775, 1

YVFCTVNAL 229E, NL63, HKU1, OC43, 
SARS-CoV

Replicase polyprotein 1ab, replicase 
polyprotein 1ab, ORF1ab polyprotein, 
ORF1ab polyprotein, ORF1ab 
polyprotein

0·84, 0·818, 0·809, 0·809, 1
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SARS-CoV-2 reactive CD8  + T cells have been as-
sociated with milder disease [67], and as previously 
mentioned, conflicting evidence has recently emerged 
regarding the presence of pre-existing CD8  + T cells in 
unexposed patients. Nguyen et al [37], found that SARS-
CoV-2-specific CD8 + T cells in Australian pre-pandemic 
samples, including those recognising the immunodom-
inant HLA-B*07:02-SPR* complex, predominately dis-
played a naïve phenotype, indicating a lack of pre-existing 
memory conferred by HCoV. In contrast, Francis et al [36], 
found that ~80% of unexposed individuals carrying HLA-
B*07:02 show a pre-existing CD8 + T cell response to HLA-
B*07:02-SPR*. Francis et al argue that these pre-existing 
memory pools are likely induced by prior exposure to 
HCoV, and that only a subpopulation of individuals car-
rying specific HLA would possess such memory T cells. 
Our work is consistent with a subset of COVID patients 
enriched for carrying HLA-B*07:02, and we observed that 
in these patients, their public T cells respond primarily 
to SARS-CoV-2-HCoV peptides. Despite not providing a 
link to memory vs naïve responses, we build upon existing 
work by proposing additional alleles which may be carried 
by individuals who possess cross-reactive T cells, as well 
as those which appear depleted or absent in these indi-
viduals. Few studies have examined associations between 
HLA type and COVID disease or its severity [36,68,69]. 
Nevertheless, the emerging picture is indicating that 
HCoV-SARS-CoV-2 cross-reactivity is conditioned by 
multiple factors including HLA genotype. Together, we 
provide a landscape of TCR-pMHC interactions (all TCR-
pMHC interactions used in the analyses are found in Data 
File S11) which may be involved in HCoV-SARS-CoV-2 
cross-reactivity and provide a framework for further anti-
viral mechanistic studies.

Although our study provides a map of homologous 
and non-homologous SARS-CoV-2 peptides to date and 
offers the extent to which one may expect CD8 + T cells 
cross-reactivity between HCoVs and SARS-CoV-2, a 
limitation is that for cross-reactivity insights, we had to 
limit ourselves only on CD8  + T cells for which both 
peptides and their cognate TCRs information were 
available. Additionally, our approach for identifying 
homologous sequences seems to work better for MHC 
class I peptides that are considerably shorter in length 
than their class II counterparts. With a more suitable 
metric for longer peptides, one may substantiate our in-
sights for class II.

Our metric for discriminating homologous and non-
homologous peptides is based on three factors: (1) se-
quence homology at 50%, (2) physicochemical similarity 
of 75% and (3) both source and target peptides must be 
presented by the same HLA. Of these three, 50% of se-
quence homology may seem too relaxed. In support of our 

use of this threshold we note that: (a) factors 2 and 3 are 
additionally applied to compensate for this, (b) we have 
checked our results with 70% sequence homology and ob-
served that main conclusions are robust, (c) as this map 
is suggested for further functional validation, we favour 
minimizing false negatives at the cost of potential false 
positives.

Through examining the potential for cross-reactivity be-
tween SARS-CoV-2 and HCoV strains, we have predicted 
that a set of 10 highly conserved immunogenic peptides 
could mount CD8 + T cell responses in >90% of the global 
population. These peptides have been reported previously 
in in silico and experimental work [26,70–73] however to 
our knowledge their large accumulated global population 
coverage has not yet been reported. Some of these pep-
tides exhibit similar population coverage although with 
different HLA profiles, therefore it may be possible to tai-
lor a smaller set of peptides to specific regions of interest 
(based on local HLA frequency), thus maximising cover-
age with a minimal set of peptides. A very recent study [74] 
has shown in healthcare workers with repeated exposure 
to SARS-CoV-2, a proportion of these individuals who did 
not develop symptomatic disease had pre-existing T cells 
which targeted ORF1ab (NSP7/12/13) epitopes with sim-
ilarity to HCoVs. Given that these pre-existing T cells tar-
get a highly conserved region of SARS-CoV-2 (and other 
coronaviruses), Swadling et al speculate that vaccines 
that boost such T cells may lead to long-lasting protection 
against SARS-CoV-2 and wider coronaviruses, comple-
menting the current spike-focused vaccines. Consistent 
with these insights, 7/10 of the highly conserved epitopes 
identified in the current study with predicted high popula-
tion coverage are from ORF1ab, although further analysis 
is required to determine the extent these epitopes may be 
recognized by cross-reactive T cells. Our work firstly iden-
tifies these peptides as top candidates for cross-reactivity. 
Second, we propose that their high conservation across 
strains may be of interest as pan-coronavirus targets, to 
assist ongoing work in search of mitigation strategies to 
reduce the threat from mutant variants of emerging coro-
naviruses [75–77].

A complex facet of severe COVID-19 disease and its 
diverse clinical manifestation is immunopathogenesis. 
Indeed, exacerbated immune responses including cyto-
kine storm are a primary clinical characteristic in severe 
COVID-19 patients. Aberrant transcriptional programming 
has been observed in response to SARS-CoV-2 [78], charac-
terized by a failure of type-1 and -3 interferon responses and 
simultaneous high induction of chemoattractants. While 
the growing evidence for pre-existing HCoV cross-reactive 
memory T cell responses may simply translate into an im-
munity benefit in some patients, in concert with data from 
MERS and SARS-CoV-1, there is considerable evidence 
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that cross-reactive T and B cell responses may, on the con-
trary, be involved in immunopathology with SARS-CoV-2.

Venkatakrishnan et al. [79], identified peptides that 
are identical between SARS-CoV-2 and the human pro-
teome. Their work demonstrates that the genes giving 
rise to these peptides are expressed in tissues implicated 
in COVID-19 pathogenesis. Our work expands their in-
sights, by identifying SARS-CoV-2 peptides that are ex-
perimentally confirmed to be immunogenic, with high 
similarity to the human proteome. Consistent with their 
conclusions, we find similarities of immunogenic SARS-
CoV-2 peptides to human genes e.g. CCL3, CCL31 and 
CD163. These insights are of particular interest given the 
elevated cytokine and chemokine responses in severe 
COVID patients.

While the negative thymic selection is effective in 
deleting T cell precursors with high avidity for self 
pMHC, some autoreactive T cells can escape negative 
selection [80]. In such cases, an array of peripheral tol-
erance mechanisms play a prominent role in regulating 
responses in healthy tissues. Such mechanisms range 
from, the exclusion of naïve T cells from nonlymphoid 
peripheral tissues, reducing the likelihood of contacting 
a tissue-resident APC expressing self-antigen [80,81], to 
anergy where T cells do respond to self-peptide can be 
eliminated or inactivated [82]. Nevertheless, there is ev-
idence that viral antigens that are structurally similar to 
self-antigens can be involved in inducing autoimmunity 
via molecular mimicry [29]. Additionally, it is hypothe-
sized that non-specific antiviral immune responses may 
lead to the release of self-antigens by damaged cells, re-
sulting in ‘bystander activation’ of autoreactive T cells 
[29,83]. In this light, we propose these immunogenic 
SARS-CoV-2 peptides with high similarity to self, as can-
didates which may exhibit immunopathological or auto-
immune associations.

In conclusion, we have employed an in-silico approach 
to examine the evidence surrounding cross-reactive 
SARS-CoV-2 CD8  + T cell responses. We observed a set 
of SARS-CoV-2 candidates with high similarity to the 
human proteome and suggest investigation into whether 
they provoke immunopathology. We have also provided 
evidence of CD8  + T cell cross-reactivity, not only to an 
extent that indicates that naïve individuals could mount 
cross-reactive responses to SARS-CoV-2 and common-
cold coronaviruses, but we also found that SARS-CoV-2 
infection induces CD8 + T cell responses against peptides 
with high similarity to HCoV in some COVID-19 patients. 
We build upon existing evidence that such cross-reactivity 
is conditioned by the presence of specific HLA alleles 
and envision that the insights presented here are lever-
aged to explore whether these potentially cross-reactive 
T cells and cognate pMHCs influence COVID-19 disease 

heterogeneity, vaccine-  or infection-induced protection 
from SARS-CoV-2 and its emerging variants of concern.

METHODS

Data processing and analysis

All data processing and analysis were performed using 
the R plugin for Pycharm 2020, in either R 40.3 or 4.0.1. 
Visualisations were made using R library ggplot. Any 
graph clustering (i.e Figure 3c) was performed using the 
function daisy from the library cluster.

Curating a pool of SARS-CoV-2 class I and 
II peptides

Human immunogenic and non-immunogenic SARS-
CoV-2 peptide data were gathered from both the IEDB 
and the Virus Pathogen Resource (VIPR) (accessed 11-02-
2021). ‘T cell’ assay, ‘Human’ host and SARS-CoV-2 or-
ganism options were selected. If an observation was found 
in both datasets, the one from the IEDB was retained. 
Protein names were cleaned and standardized where pos-
sible. Immunogenic peptides not observed in either the 
IEDB or VIPR were also gathered from the ‘MIRA’ dataset 
which maps cognate TCRs and SARS-CoV-2 peptides.

Retrieval of coronavirus 
proteome sequences

NCBI reference genomes were gathered for OC43 
(https://www.ncbi.nlm.nih.gov/nuccore/1578871709/), HKU1 
(https://www.ncbi.nlm.nih.gov/nuccore/NC_006577.2),  
229E (https://www.ncbi.nlm.nih.gov/nuccore/NC_002645.1), 
NL63 (https://www.ncbi.nlm.nih.gov/nuccore/49169782/) and 
SARS-CoV-2-Wuhan (https://www.ncbi.nlm.nih.gov/nuccore/
nc_045512.2).

MHC Presentation Prediction

Antigen presentation by MHC class I was predicted using 
NetMHCpan v4.1 against HLA-A*0101, 0201, 0301, 2402, 
HLA-B*0702, 4001, 0801, and HLA-C*0702, 0401, 0701 al-
leles. Antigen presentation by MHC class II was predicted 
using netMHCIIpan against the most common sets of al-
leles found in the IEDB, for which this model can make 
predictions. The alleles are: DRB1-0101, 0102, 0301, 0401, 
0402, 0402, 0404, 0701, 0801, 0901, 1001, 1101, 1104, 1201, 
1202, 1301, 1302, 1303, 1401, 1406, 1501, 1502, 1601, 1602, 

https://www.ncbi.nlm.nih.gov/nuccore/1578871709/
https://www.ncbi.nlm.nih.gov/nuccore/NC_006577.2
https://www.ncbi.nlm.nih.gov/nuccore/NC_002645.1
https://www.ncbi.nlm.nih.gov/nuccore/49169782/
https://www.ncbi.nlm.nih.gov/nuccore/nc_045512.2
https://www.ncbi.nlm.nih.gov/nuccore/nc_045512.2
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DRB3_0101, 0202 and DRB5_0101, 0102. Peptides with a 
rank score <=2·0 were classified as binders.

HLA ligand enrichment analysis for SARS-
CoV-2 proteins

To provide reasonable statistical inference, we only exam-
ined proteins longer than 100 amino acids. To compute 
enrichment or depletion, we followed the approach by 
Karnaukhov et al. First, we predicted using netMHCpan v 
4.1 the number of ligands Ni of length l from each SARS-
CoV-2 protein i which adheres to the criteria. The prob-
ability of a HLA allele presenting a peptide was computed 
as the average number of ligands per allele:

where Li is the corrected protein length (length of protein 
– l), and <:> denotes the average over the assessed SARS-
CoV-2 proteins. It follows that the probability of observing a 
given number of ligands from each SARS-CoV-2 protein is 
computed using the binomial distribution as:

The logs odds ratio (enrichment or depletion) is calcu-
lated as:

Discriminating Homologous and Non-
homologous SARS-CoV-2 Peptides

To compare a SARS-CoV-2 peptide a, of length N to a pro-
teome of interest, all possible linear peptides of length N 
were generated from said proteome. This can be thought 
of as scanning along the proteome of interest with a step 
size of 1, generating all peptides of length N. The deriv-
ing protein was recorded. Three metrics—which all must 
be satisfied—were used to determine whether a peptide is 
considered homologous with HCoV or non-homologous 
to SARS-CoV-2. We below describe each metric and then 
explain the three thresholds which all must be achieved 
for a peptide to be classified as ‘homologous’.

First, once all peptides from the proteome of interest 
of length N are generated, a similarity index we call the 
‘MatchScore’ is calculated for each pairwise compari-
son. This metric is charged with assessing physicochem-
ical similarity between two peptides of interest. For each 
SARS-CoV-2 peptide, the highest ‘MatchScore’ against 
each HCoV protein is retained and the rest are discarded. 
To calculate the ‘MatchScore’, we employ the method de-
signed by Bresciani et al [41]. Briefly, for two peptides a or 
b of length N, the similarity score is given as:

where bl(a,b) is the BLOSUM62  score for peptide a vs b, 
and bl(a,a) is the BLOSUM62 score for peptide a vs a, etc. 
BLOSUM62  local-global alignment scores (local or global 
would produce the same score for a pairwise alignment of 
lengths N vs N) were computed using the pairwiseAlign-
ment function from the R package Biostrings, with high 
gap penalties (opening and extension of both 100). The 
MatchScore function produces a score where 1 reflects an 
exact match, i.e no mismatches in two sequences, and 0 re-
flects high dissimilarity.

Criteria 1: A homologous peptide and its HCoV 
match must have a MatchScore of >0·75

The second metric is based on sequence homology be-
tween two sequences, essentially reflecting the propor-
tion of amino acid positions in the SARS-CoV-2 peptide, 
which are conserved in the HCoV match. This is calcu-
lated as:

where ‘HammingDistance’ is the hamming distance be-
tween two peptides of interest, which calculates the number 
of different positions, and ‘Length’ is the length of the com-
pared peptides.

Criteria 2: The ProportionMismatched between 
a homologous peptide and its HCoV match 
must be <0·5 (50%)

Naturally, the inverse of this is true, in that at least 50% 
amino acid conservation between a SARS-CoV-2 peptide 
and HCoV match must be observed for the peptide to be 
considered ‘homologous’.

The third metric is based on the predicted presentation 
by HLA of the SARS-CoV-2 peptide and its HCoV match.

Criteria 3: Both the SARS-CoV-2 peptide and its 
HCoV match must be predicted to bind at least 
one common HLA allele

All three criteria must be satisfied for a SARS-CoV-2 pep-
tide to be classified as a homologous peptide and also for a 

p = < Ni > ∕ < Li >

P (Ni) = Pbinom(Ni|p, Li)

log(
Ni

pLi
)

MatchScore =
bl(a, b)

√
bl (a, a) × bl(b, b)

ProportionMismatched =
HammingDistance

Length
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match from HCoV to be considered a homologous match. 
doParallel and foreach functions were used to parallelize 
the processing.

Sequence logos of SARS-CoV-2 
Homologous and Non-homologous peptides

The amino acid usage of SARS-CoV-2 homologous/non-
homologous peptides of length 9 were compared using the 
ggseqlogo function of the library PepTools.

Sequence similarity with the human 
proteome and human microbiomes

Here, the same similarity criteria were employed as in the 
previous HCoV section. However, in contrast with HCoV 
comparison, due to the size of the human proteomes and 
microbiomes, the best match against the whole proteome 
is retained. doParallel and foreach functions were used to 
parallelize the processing.

The reference human proteome sequence was down-
loaded in fasta format from UniProt https://www.unipr​
ot.org/prote​omes/UP000​005640

Human gut and airways microbiome sequences 
were downloaded from the HMP Data Analysis and 
Coordination Center http://www.hmpda​cc.org/HMRGD. 
The complete set of genomes was downloaded in fasta for-
mat in ‘Protein multifasta (PEP) format’. For gut, the body 
site was specified as ‘gastrointestinal tract’. 457 and 50 gut 
and airway microbiota were available respectively.

Comparing sequence dissimilarity 
against the human proteome for 
immunogenic vs nonimmunogenic SARS-
CoV-2 peptides

The best ‘MatchScore’ for each SARS-CoV-2 immunogenic 
and nonimmunogenic peptide were compared for various 
peptide lengths. Wilcoxon test was used to assess significance.

Human gene sets with sequence similarity 
to SARS-CoV-2 immunogenic peptides

The SARS-CoV-2 peptides of lengths 9 and 10 with a 
similarity score to the human proteome in the top 10 per-
centile were gathered. Only predicted binders (see MHC 
presentation prediction) were retained. By retaining the 
ProteinIDs of each match, the proteins where a high simi-
larity match was observed, were examined.

CD8 + T cell cross-reactivity maps using 
IEDB receptor data

The entire IEDB receptor data for SARS-CoV-2 peptides 
were downloaded. Bipartite graphs were generated using 
iGraph and Matrix libraries in R. Bipartite graphs were 
projected into one-mode graphs using the bipartite_pro-
jection function. All graphs were exported from iGraph 
into Cytoscape v3.82 using the R function createNet-
workFromIgraph from package RCy3. From Cytoscape, 
‘.graphml’ files were exported and opened with Gephi. 
Gephi was used to finalize the diagrams and improve 
visual aesthetics. Either ‘ForceAtlas’ or ‘Fructerman-
Reingold’ templates were used. Gravity and repulsion pa-
rameters were altered to improve visual aesthetics.

CD8 + T cell CDR3 Kmer Enrichment

R Package immunarch [84]was used to compute Kmer 
(K = 5 in this case) statistics for CDR3 sequences and to 
visualize enrichment. See https://immun​arch.com/artic​
les/web_only/v9_kmers.html for full details.

Gathering clinical and TCR repertoire data 
for COVID-19 patients and healthy subjects

The COVID-19  MIRA dataset (>160k high-confidence 
SARS-CoV-2-specific TCRs) was downloaded from 
https://clien​ts.adapt​ivebi​otech.com/pub/covid​-2020 with 
corresponding sample metadata. These data contain TCR 
repertoire data mapped to SARS-CoV-2 epitopes from 5 
patient cohorts, including COVID convalescent patients 
and healthy subjects with no known exposure to SARS-
CoV-2. Only convalescent patients and healthy subjects 
were used in the analysis due to the low numbers of sub-
jects for other cohorts.

https://clien​ts.adapt​ivebi​otech.com/pub/covid​-2020

Motifs analysis for MIRA SARS-CoV-2-
specific public TCRs which recognize 
Homologous vs Non-homologous Peptides

CDR3b sequences were gathered from the MIRA dataset 
and grouped into those which recognize only SARS-CoV-
2-homologous or only SARS-CoV-2-non-homologous pep-
tides. Rare lengths <7 or >20 amino acids were excluded. To 
deal with CDR3 length variability, a simple ‘alignment’ was 
was performed by introducing n-ki gaps into the centre of 
each CDR3 sequence, where n = 20, the max CDR3 length 
in the analysis, and ki is the length of CDR3  sequence i. 

https://www.uniprot.org/proteomes/UP000005640
https://www.uniprot.org/proteomes/UP000005640
http://www.hmpdacc.org/HMRGD
https://immunarch.com/articles/web_only/v9_kmers.html
https://immunarch.com/articles/web_only/v9_kmers.html
https://clients.adaptivebiotech.com/pub/covid-2020
https://clients.adaptivebiotech.com/pub/covid-2020
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Sequence logo plots using R package ggseqlogo were gener-
ated using the ‘aligned’ sequences for each group. Shannon 
entropy was calculated as described previously [85].

Comparing MIRA SARS-CoV-2-specific 
public TCRs with those which recognize 
epitopes from other viruses

CDR3β sequences comprising public TCRs which recog-
nize SARS-CoV-2-homologous peptides were gathered 
from the MIRA dataset. All human TCRβ sequences 
were downloaded from VDJdb (accessed 05/11/21), 
which contain—amongst other information—CDR3β 
sequences mapped to an epitope, alongside where the 
peptide originates (in most cases a pathogen). CDR3b se-
quences from the MIRA dataset which are observed to 
recognize CMV, Influenza A, HIV-I, EBV, etc. from the 
VDJdb dataset were identified. The overlap of these se-
quences was visualized using the R package venn. After 
dealing with CDR3β length variability (see methods sec-
tion above: Motifs analysis for MIRA public TCRs), motifs 
for SARS-CoV-2-specific public TCRs which overlap with 
Influenza A, or CMV, or EBV were visualized using R 
package ggseqlogo.

Networks of COVID-19 patient TCRs 
recognising Homologous and/or Non-
homologous Peptides

A public TCR is defined as a CDR3 sequence and V and 
J gene which is observed in more than one patient in 
the MIRA dataset. All graphs were first generated using 
iGraph in R, exported to Cytoscape using the createNet-
workFromIgraph function in the RCy3 package. From 
cytoscape, all graphs were exported as.graphml files 
and read into Gephi. In Gephi, either ‘ForceAtlas’ and 
‘Fruchterman-Reingold’ templates were used. In all cases, 
gravity and repulsion parameters were adjusted to im-
prove visual aesthetics. The size of each node reflects the 
degree of connectivity.

Enrichment or Depletion of HLAs in 
COVID-19 convalescent patient TCR 
repertoires

The ‘PubTCR_Homologous’ group of patients was cu-
rated by counting the number of distinct public TCRs 
recognising homologous peptides, for each COVID-19 
convalescent patient in the MIRA dataset. The 

‘PubTCR_Non-homologous’ group was curated by count-
ing the number of distinct public TCRs recognising SARS-
CoV-2-non-homologous peptides for each convalescent 
patient. For the ‘PubTCR-Homologous’ group, we ob-
served that for 12 patients, >50% of their public TCR rep-
ertoires are cognate for homologous peptides. Therefore, 
for this group, we focused on these 12 patients. We report 
how many times each HLA allele was observed amongst 
this set of patients.

For the ‘PubTCR-Non-homologous’ group, we ob-
served that the majority (51) patients had public TCR 
repertoires almost entirely recognising non-homologous 
peptides. For this analysis, we sampled 10 patients, 10 
times from these 51 patients, and each time count how 
many times each HLA allele was observed amongst this 
set of patients. For each HLA allele, we report the mean 
and standard deviation of the distributions.

Estimating population coverage of SARS-
CoV-2 peptides with high conservation to 
three or more HCoV

We followed the approach by Ahmedid et al.66 Population 
coverage is an estimate of the proportion of individuals 
in a given population that may mount a T cell response 
against a peptide. Population coverage is predicted based 
on HLA alleles for each immunogenic peptide as predicted 
by netMHCpan 4.1, leading to individual population cov-
erage of a peptide. To predict accumulated coverage, we 
began with the peptide with the highest individual cov-
erage “FVDG*”, and incrementally added a peptide and 
predicted accumulated coverage. The population coverage 
of a set of peptides (i.e accumulated coverage), is defined 
as the proportion of individuals able to mount a T cell re-
sponse to at least one peptide in the set. Python code for 
the IEDB tool to compute the population coverage was 
downloaded from http://tools.iedb.org/popul​ation/​down-
load on 24 November 2020.
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