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ABSTRACT: Molecular modeling and simulations have emerged
as effective and indispensable tools to characterize polymeric
systems. They provide fundamental and essential insights to design
a product of the required properties and to improve the
understanding of a phenomenon at the molecular level for a
particular system. The polymer−nanoparticle hybrids are materials
with outstanding properties and correspondingly large applications
whose study has benefited from this new paradigm. However,
despite the significant expansion of modern day computational
powers, investigation of the long time and large length scale
phenomenon in polymeric and polymer−nanoparticle systems is still
a challenging task to complete through all-atom molecular dynamics
(AA-MD) simulations. To circumvent this problem, a variety of
coarse-grained (CG) models have been proposed, ranging from the generic CG models for qualitative properties predictions to more
realistic chemically specific CG models for quantitative properties predictions. These CG models have already delivered some
success stories in the study of several spatial and temporal evolutions of many processes. Some of these studies were beyond the
feasibility of traditional atomistic resolution models due to either the size or the time constraints. This review captures the different
types of popular CG approaches that are utilized in the investigation of the microscopic behavior of polymer−nanoparticle hybrid
systems. The rationale of this article is to furnish an overview of the popular CG approaches and their applications, to review several
important and most recent developments, and to delineate the perspectives on future directions in the field.

1. INTRODUCTION
The organic−inorganic hybrid materials (i.e., polymer nano-
composites, biosensors, metal-impregnated polymers, fuel cells,
solar cells, etc.) are of great importance today because of their
enhanced mechanical, structural, thermal, gas barrier, and
electrical properties, making them suitable for space
application, automobile, electronics, consumer goods, health
and medical, and food technology industries.1−10 The global
aspirations are to search for some new organic−inorganic
hybrids materials (such as polymer nanocomposites, functional
nanomaterials, etc.) having properties that are optimized for
some of the applications mentioned earlier. Especially, polymer
nanocomposite materials (or organic−inorganic materials) are
among the most studied advanced materials because of their
enhanced properties (optical, electrical, gas barrier, thermal
stability, mechanical strength, etc.); however, they are by no
means completely explored. Polymer−particle hybrids repre-
sent an exemplary demonstration of the persistent and critical
relationship between the structure and the properties in
synthetic materials to deliver improved properties. It is
demonstrated that the hybrid organic−inorganic materials
play a pivotal role in developing the advanced functional
nanomaterials that can be used for specific applications.

Discovery and development of the materials with experiment
alone can be a tedious process and may require decades for
such materials to be developed, tested, and manufactured to
meet operational requirements.11 Notably, the cost of the
development of organic−inorganic materials is huge. On the
other hand, computational approaches such as multiscale/CG
simulation can help to design the hybrid organic−inorganic
materials using fundamental science and engineering princi-
ples, can contribute significantly to their experimental
development, and can save the high cost.

In principle, the polymer−nanoparticle hybrids are materials
consisting of two or more dissimilar materials with well-defined
interfaces. Among dissimilar materials, at least one remains
one-, two-, or three-dimensional nanostructured (having
structural features ranging in size from 1 to 100 nm).
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Depending on the strength of the interfacial tension between
the polymeric matrix and the nanoparticles that could be
modified, the resulting polymer−particle hybrids (e.g., polymer
nanocomposites (PNCs), etc.)12 exhibit enhanced properties.
For instance, the molecular simulations and experiments have
revealed that the morphology and properties of the hybrid
materials depend rather considerately on the chemical details
of the system,13,14 with solubility parameters for several hybrid
components and length and density of the grafting polymer on
the nanoparticle surface identified as the important parameters
governing the hybrid morphology and properties.15−17

1.1. Challenges in the Design of Polymer−Nano-
particle Hybrids. The major issues that need to be addressed
in the context of polymer−solid hybrid materials are the
variation in different properties (e.g., structural, dynamic,
mechanical, thermodynamic, electrical, etc.) near to the
interface compared to the bulk and the extent of these
variations from the basal surface. For experiments, typically the
challenges originate in the characterization of the structural,
thermodynamic, and dynamic properties near the surface,
which is either too small to be resolved via the experimental
techniques or hidden by the bulk region. It is observed that the
diffusion of nanoparticles within a polymer matrix is a long
time scale phenomenon, and the exact mechanism of
exfoliation is yet to be explored thoroughly. However, it is
anticipated that the diffusion and dispersion of the nano-
particles within polymer matrixes is fairly related to the size of
the nanoparticle, the aspect ratio and molecular weight of the
polymer, and the nature of interactions between different
components (e.g., monomer−monomer, monomer−nano-
particle, nanoparticle−nanoparticle, etc.) of polymer−solid
hybrid materials. It has been successfully demonstrated that the
management of the characteristics in subtle ways (i.e.,
molecular weight, aspect ratio, polarity, etc.) of the distinct
components may lead to a synergistic enhancement in the
properties of the hybrid materials.15,17 Therefore, a compre-
hensive understanding of the dependence of the overall
morphology of the hybrid materials on the material character-
istics and process parameters is very crucial for the systematic
design of these hybrid materials to make the development
timely and cost-efficient.18 It is anticipated that an improved
understanding of the mechanisms at the nanoscale level could
lead to the optimization of the processing variables at the
macroscale. Industrial-scale production of suitable hybrid
materials such as polymer nanocomposites is a big challenge
as a result of the lack of experimental research in identifying
the appropriate composition and combination of nanoparticles,
polymers, modifiers, compatibilizer, and processing method-
ology. These parameters are very critical to develop hybrid
materials (e.g., PNCs) with the required properties. To
compensate the experimental effort, the application of
computer simulation (such as density functional theory
(DFT), molecular dynamics (MD), Monte Carlo (MC),
statistical associating fluid theory (SAFT), self-consistent field
theory (SCFT), polymer reference interaction site model
(PRISM), coarse-grained molecular dynamics (CG-MD), etc.)
techniques are being explored for the design of these materials.
They further assist in a priori prediction/optimization of their
structures and properties.19,20

1.2. Computational Approach in Designing Poly-
mer−Nanoparticle Hybrids. For addressing very basic
issues such as the molecular origin of the reinforcement of
nanoparticles in polymer matrixes�dispersion, fluctuation,

heterogeneities in mechanical properties, thermodynamics of
the formation of hybrid materials, etc.�and the molecular
origin with the dependence of rheological behavior upon the
addition of nanoparticles in polymer matrixes, molecular
simulations have been demonstrated and proved to be fairly
useful. To this extent, the molecular modeling and simulation
and polymer theories have made large contributions recently,
but the former allows for more details on the chemical building
blocks of the various components. Therefore, the development
of computer simulation techniques for investigating and
designing polymer−nanoparticle hybrids remains an active
research field.18−20

Many classical simulation models have been developed for
capturing the various aspects of polymer−inorganic hybrid
materials (e.g., PNCs). The polymer theories21−26 such as
SCFT, DFT, and integral equation theory have made a
significant contribution in predicting the equilibrium phase
behavior, the thermodynamic tendency for the nanoparticle
dispersion, and the macroscopic properties of polymer−
particle hybrids, based on a mean-field approximation, but
fail to describe the chemically specific nature of the
nanoparticles and polymers.27 DFT can provide the hybrid
material structures in bulk to some extent and close to certain
metal surfaces.28 The MD simulations can furnish insights into
the role of the solid surface in altering the polymer
morphology. MD reveals more details at the molecular level
and efficiently illustrates the chemical specificity of different
components of the nanocomposites. The molecular modeling
and simulations of different scales (from quantum to coarse-
grained) have been indispensable tools for scientific research
and engineering. These methodologies facilitate predictions
and provide the understanding of experimentally observed
phenomena such as the evolution of macromolecular
structural, dynamic, and thermodynamic properties and
microscopic and macroscopic material properties, which are
important for the design of new materials. With the recent
advancement in computational power, simulations of the
polymer−nanoparticle systems can guide and complement in
vitro macromolecular materials design and discovery endeav-
ors. However, the long relaxation times linked with the
polymer dynamics and the requirement of large system size for
the anisotropic particles limit the utilization of atomistic
resolution simulation on the polymeric materials. All-atom
simulations have been utilized to simulate different polymer−
nanoparticle systems. These simulations provide a good
understanding of the interfacial behavior such as perturbation
of the polymer structure (e.g., chain orientation, density,
arrangement or wrapping of chains around nanoparticles, etc.),
thermodynamics and dynamics of chains, and formation of
glassy polymer layer around the nanoparticles but fail to
investigate the long time scale phenomena such as the
mechanism of dispersion or miscibility of nanoparticles in
the polymer matrix.

The MD simulations with chemically specific force fields
excel in investigating the effects of specific intermolecular
interactions among the various components of polymer−
particle hybrids. Several computational approaches have been
established to examine the mesoscopic structures in polymeric
systems including Brownian dynamics (BD), lattice Boltzmann
(LB), dissipative particle dynamics (DPD), and time-depend-
ent Ginzburg−Landau (TDGL) theory. However, the particle-
based scale methods, including LB method, or DPD
simulations have been utilized to explain the hydrodynamic
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effects.29,30 The DPD simulations can help to understand the
behavior of clusters of particles qualitatively. However, such
simulation methods remain incapable of reproducing the
structural properties of hybrid materials such as PNCs, while it
is feasible with the CG-MD simulations.11,31 In CG-MD, one
or more monomers/units of the hybrid materials are
represented as a coarse-grained bead capable of reproducing
parts of the polymer architecture. This leads to the loss of fine-
grained atomic details of the system, which are crucial for
studying properties and interactions of atom-level structures,
but concurrently saves a significant computational cost by
speeding up the simulation time through the minimization of
degrees of freedom, simplifying the potentials, and allowing for
larger time steps.
In recent years, the CG models have gained a lot of

precedence in the field of MD simulations. The CG models
could deliver a substantial alleviation of both the spatial and
temporal limitations of all-atom models by averaging out some
of the atomistic degrees of freedom. They perform better on
reproducing the structural and thermodynamic proper-
ties.32,33,31 However, the coarse-graining schemes for reproduc-
ing the dynamic and transport properties are yet to be explored
completely to achieve the state of the art for delivering the
desired outcomes, and hence numerous research studies are in
progress in this area.34 In this context, the highly efficient CG
models are required to capture the long time scale and large
length scale phenomenon. For example, it can allow the
dispersion of clay platelets within the polymer matrix to
elucidate the synergistic effect and structure−property relation-
ships of polymer−clay systems.11,32 In recent years, numerous
modeling methodologies have been proposed to provide better
insights into the nanoclay reinforcement physics. Zeng et al.19

provided an extensive review of the work that has been done in
this field. In studying the system behavior of nanocomposites,
MD has been the primary method of choice. Kuppa et al.35

implemented MD simulations to study poly(ethylene oxide)
(PEO)/nanoclay hybrid structures. They were able to correlate
the results from the analysis with wide-angle neutron
diffraction (WAND) and differential scanning calorimetry
(DSC) studies of purely intercalated PEO in montmorillonite
clay. Sinsawat et al.36 utilized the CG-MD simulation to study
the influence of polymer matrix architecture on nanoclay
intercalation. Some simpler theoretical models are also
proposed to explain the dynamics of melt intercalation in
polymer nanocomposites.21

Notably, different types of CG models were utilized to
investigate structure−property relationships in polymer−
particle hybrid systems. In an oversimplified approach, the
CG models are generally extended to explore the physics of
particular systems and to more broadly delineate the
fundamental characteristics of the systems. A further
subcategorization into categories, including top-down, bot-
tom-up, physics-based, knowledge-based, etc., also has been
reported. Notably, some of these approaches can be classified
into two groups, namely, generic and systematic or chemically
specific. We believe that all of the approaches and
subcategorizations have their own specific applications. Several
reviews focusing upon CG polymer modeling have been made
available over the last two decades.37−44 Considering the
essence of revisiting the topic, this article is committed to
dispensing an overview of the popular CG approaches for
polymer−nanoparticle hybrid systems and their applications
along with a review of several important recent developments

to particularize the perspectives on future directions in the
field. It may be noted that the various methods discussed here
are not exhaustive and do not cover all of the available
methodologies, for which the reader’s indulgence is sought.

Here, in the present review article, we predominantly focus
upon the chemically specific modeling via bottom-up and top
down strategies. We will also discuss the importance of generic
CG modeling (phenomenological approach). The first part of
the article focuses on the various challenges in designing
polymer−nanoparticle hybrids, the limitations of atomistic
simulations, and the necessity of CG models for the hybrid
systems. Next the article covers the methodological develop-
ments, applications, and limitations of the popular bottom-up
and top-down CG strategies. The major points of discussion
are the implementation of these CG models in reproducing or
predicting the structural, dynamic, thermodynamic, and
mechanical properties of hybrid materials. Further, we
scrutinize the unsolved problems and prospects for CG
modeling by spotlighting the potential of the methods to
model the polymer−particle hybrid systems under diverse
conditions. We believe this review article will be able to
contribute to both new researchers who have been recently (or
are planning to be) familiarized with CG modeling and
seasoned veterans who stay tuned to the latest progress and
perspectives in the field. Despite the comprehensive coverage,
it was not possible to cover all of the relevant impactful work;
therefore, we encourage readers to consider the presented
review as a handy guide and the cited articles as a foundation
stone to survey the primary literature.

2. COARSE-GRAINED MODELS FOR
POLYMER−SOLID HYBRID SYSTEMS

The CG models for polymer nanocomposites were generally
developed to reproduce the structural, dynamic, thermody-
namic, and mechanical properties qualitatively and quantita-
tively. Therefore, these already developed CG models can be
grouped into two main categories, namely: (a) generic coarse-
grained models to determine properties qualitatively and (b)
systematic or chemically specific coarse-grained models that
predict properties of the specific system quantitatively.
Chemically specific approaches are further categorized into
two major approaches, namely, structure-based and thermody-
namics-based approaches.
2.1. Generic CG Models for Polymer−Solid Hybrid

Systems. The generic CG models can only predict the
qualitative properties of the polymeric system instead of the
quantitative measurement (such as extent of impact of
temperature on the polymer mobility). They simulate the
polymeric systems using a bead−spring model approach
including the nonbonded interaction levels such as repulsive,
neutral, or attractive.45,46Figure 1 shows a bead−spring model
developed for the polymeric systems.47 Initially, the generic
CG models were used to simulate the simple polymer−solid
hybrid systems in which the polymer was near or confined
between the planar solid surface.

Furthermore, the capability of the CG model was extended
to more complicated systems such as polymer nanocomposites.
The literature included numerous studies of a simple
polymer−solid hybrid system, of which Bitsanis and
Hadziioannou48 were the first to successfully investigate the
structure and microscopic dynamics in thin films of polymer
melts confined between structureless, planar solid walls. They
modeled the segments of the polymer molecules as point
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particles interacting with each other via a spherically
symmetric, truncated, and shifted Lennard-Jones (LJ)
potential. In a similar study, Matsuda et al.49 investigated the
influence of the surface topography and interactions on
structural and dynamic properties of n-alkane chain molecules
confined between solid interfaces. The polymer chain was
assembled from mass points linearly connected by rigid bonds,
which represented CH2 units. The units of different chains and
the units belonging to the same chain at least four bonds apart
from each other were modeled to interact with each other via
the shifted and truncated LJ potential. They observed an
increase in layering of monomers as well as whole molecules
near the strongly attractive surface, whereas the static behavior
and dynamics of chains near the repulsive surface were similar
to the behavior near the flat and structureless surface. In 2001,
Aoyagi et al.50 performed CG-MD simulation of a bead−spring
polymer model confined between two solid walls and
investigated the consequence of the interface on the chain
relaxation by evaluating the time autocorrelation functions of
the normal modes as a function of distance perpendicular to
surface. They observed that the polymers near the walls are
compressed toward the walls, and the influence of the solid
wall on the polymer is observed up to a distance of ∼1.5 nm
(∼Rg) from the wall surface. In another study, Mansfield and
Theodorou51 performed dynamic CG Monte Carlo simu-
lations on freely jointed model chain molecules in a cubic
lattice near the solid surface. They determined the self-
diffusion coefficient of chains and its spatial dependence. In all
of the mentioned studies, the dynamic behavior of the polymer
was investigated by calculating the mean-square displacement
of the center of mass of the polymer segments (beads) as a
function of simulation time. The chain mobility exhibited a
dramatic reduction near the strongly adsorbing surfaces over
several layers. For weakly adsorbing surfaces, these models
predicted an enhancement in the polymer segment diffusivity
due to the decrease in the polymer segmental density near the
surface, as observed in real systems. A strong attractive
interaction between the chain segment and the surface was also
observed to appreciably prolong relaxation times in compar-
ison to the bulk. These observations were in qualitative
agreement with the behavior of all-atom simulation models.
Polymer chain and segment dynamics near or in confined
geometries is still a topic of interest that was studied broadly in
the past through generic CG models.

Later on, the coarse-graining of the polymer melt near an
adhesive solid substrate was conducted by De Virgiliis et al.46

to investigate the other properties. They used various degrees
of adhesion of the polymer toward the solid substrate and
observed a slight decrease in the number of loops and trains
with the increase in degree of adhesion; however, the average
length of the trains and loops was found to be independent of
the adhesion strength. Subsequently, in the case of more
complicated systems, different bead−spring CG models were
used to investigate the structural,52−54 dynamic, glass
transition, and rheological properties of the polymer in the
polymer−nanoparticle system. Grest used a simple bead−
spring model to examine the miscibility of polymer-grafted
nanoparticles in the polymer melt. A single nanoparticle in the
polymer melt was simulated, and it showed the monomer
layering to the vicinity of the nanoparticle, which was in
reasonable accordance with the results of a more detailed,
atomistic-level simulation. In contrast, autophobic dewetting of
the nanoparticle was observed because of the transition of the
stretched conformation to the collapsed conformation.53

Afterward, Kalb et al.55 investigated the effect of surface
coverage and curvature of grafted nanoparticles immersed in
an entangled polymer melt. The computational efficiency and
simplicity of the bead−spring models allowed them to be
utilized in studying systems with high molecular weight, such
as entangled polymer chains close to a single-wall carbon
nanotube (SWCNT), which are relatively hard to analyze
using the full atomistic detailing methodologies.

In another study, Smith et al.56 performed an MD simulation
of model polymer−nanoparticle composites using a generic
CG model to understand the modulation in viscoelastic
properties of PNCs by focusing the interfaces of nanoparticle−
polymers. It was observed that the nature of the nanoparticle−
polymer interactions heavily affects the viscoelastic properties
of the polymer matrix. Furthermore, a dense bead−spring
polymer melt was investigated by Starr and co-workers57 to
explore the mechanism of clustering of the polyhedral
nanoparticles in polymer melt, under both the quiescent and
steady-shear conditions. In dispersed configurations, the shear
viscosity was found to be higher as compared to the clustered
configurations. This was in contrast to the stipulations derived
from the macroscopic colloidal dispersions, and it was
concluded that the variations of the polymer matrix properties
in the surroundings of the nanoparticles could have resulted in
this. In subsequent study, Shen et al.58 implemented a bead−
spring model to investigate the structural, mechanical, and
viscoelastic properties of end-grafted nanoparticle-filled PNCs
by considering the impact of grafted density and chain lengths.
Their findings showed that the increase in the grafted chain
length thickens the polymer matrix interface and improves the
dispersion of nanoparticles (NPs). However, further enhance-
ment in the grafting density facilitates the aggregation of NPs.
The tensile strength of the PNC was also enhanced with the
increase in grafted chain length. Furthermore, many simple
bead−spring CG models were also utilized to demonstrate the
impact of a solid surface on the glass transition temperature of
a polymer near the solid surface.59−61 More literature
indicating applications of the bead−spring CG models is
available elsewhere.37 The generic models were also
implemented to explore the dynamics and entanglements of
polymer melts consisting of an SWCNT. Karatrantos et al.62

carried out a CG-MD simulation of polymer chains comprising
the bead−spring chains of Lennard-Jones (LJ) beads in the

Figure 1. Depiction of the bead−spring model. Reprinted with
permission from ref 47. Copyright 2018 Elsevier.

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.2c06248
ACS Omega 2022, 7, 47567−47586

47570

https://pubs.acs.org/doi/10.1021/acsomega.2c06248?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06248?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06248?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06248?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c06248?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


presence of an SWCNT, with or without attractive
interactions, and observed more entanglement compared to a
pure melt. Their results showed that the polymer mobility
decreases near the SWCNT because of polymers in contact
with the SWCNT. They showed that the entire polymer
diffusion declines corresponding to its melt value, and this was
due to the enthalpic interactions between the polymer beads
and the SWCNT.
In another class of generic CG model that approaches the

systematic model, Chakrabarti and Schweizer63−66 studied the
polymer nanocomposite system by employing certain
compressible free energy CG models derived from the
traditional integral equation theories, viz., the microscopic
polymer reference interaction site model (PRISM) theory to
study second virial coefficients and spinodal demixing over a
broad range of chain length, particle size conditions, and
interfacial chemistry. The two different phase-separation
behaviors, parted by a miscibility window, are commonly
predicted for hard fillers. The study demonstrated that the
nature and range of particle−particle intermolecular inter-
actions significantly affect the contact aggregation, steric
stabilization, and local and longer range bridging. They also
described the application of this theory for systems having
nonspherical, spherical, and polymer-grafted nanoparticles
liquefied in the athermal and adsorbing concentrated solutions
and the homopolymer melts. PRISM integral equation theory
also helped in investigating the impact of local packing and the
polymer−particle interfacial attraction on nanoparticle mobi-
lity.65 These models accounted for the chains as the bonded
sites that comprised a repulsive branch (usually hard core) and
longer-range attractive interactions while interacting via pair
decomposable site−site potentials. These models demonstra-
ted some of the efficient qualitative insights into the structure
and phase diagram of model nanocomposite systems, which
may help narrow the gap to design fillers with specific
thermodynamic stability and miscibility in polymer melts.
More recently, generic bead−spring models were widely

used to investigate the different phenomena in model polymer
nanocomposite systems. For instance, the bead−spring model
based on the Kremer and Grest model67 was implemented to
explore the stress−strain nature of polymer nanocomposites
filled with spherical nanoparticles. Hagita and co-workers68

used the attractive and repulsive interactions of the nano-
particles with the polymers. Two different configurations of
PNCs, namely, aggregated and dispersed, were used to
examine the stress−strain behavior. The attractive interactions
were observed to increase the stress values and the extent of
nanoparticle aggregations. Bond orientations were also
examined during elongation. For the large elongation ratios,
the count of the aligned bonds along the elongation axis was
found to be increasing. However, the correlation of the
interactions was very small for the dispersed PNC config-
uration. Meanwhile, the increase in the aligned bonds was
observed to be significantly correlated for the aggregated
configuration. This demonstrated the significance of bound
rubbers. Further, the nanofiller-filled cross-linked rubber model
was studied to examine the effect of filler aggregation and
filler−rubber bond on the elongation behavior of the rubber.69

The results showed that, at large strain rate, the resulting stress
enhanced with the elongation of the bonds of the polymer
chain lying between the nanofillers. In another study, Furuya
and Koga70 examined the structures and mechanical properties
of a disk-shaped nanoparticle-filled polymer nanocomposite

system through a CG-MD simulation. They used the Kremer−
Grest model to describe both polymer and nanoparticles.
Attractive interaction between the polymer and the nano-
particle beads was used to mimic the adsorption of poly(N-
isopropylacrylamide) on the clay surface. Their results showed
that a higher degree of polymerization is required for large
fracture elongation, while the tensile modulus remains
unaffected by the degree of polymerization, and these results
were qualitatively in accordance with the experimental studies.
Recently, Pasquini and Raos71 studied the morphology of a
model polymer nanocomposite system using a bead−spring
model. They concluded that well-dispersed and aggregated
morphologies in PNCs can be obtained by tuning the
interaction strength between the strength of the polymer and
the nanoparticle.

The studies in the earlier discussion suggest that simple CG
models can be efficient to study and predict the generic
properties (e.g., dynamics, viscosity, Tg, etc.) of polymer−solid
hybrid systems. Their computational efficiencies due to a
simple form of CG bead−bead interactions can be counted as
their major advantages. The bead−spring model was used to
study the structure and dynamics in the thin film of a polymer
confined between a structure-less, planar solid wall,48,72 the
dynamics of short-chain systems along the adsorbing surface,
and the spatial dependency of the self-diffusion coefficient of
freely jointed model chains of the polymer near the vicinity of
the solid surface.51 In all of the studies, the polymer dynamics
were reproduced qualitatively and resulted in a considerable
decline in the chain mobility along the adsorbing surface over
many layers. Despite the advantage of computational
efficiency, these models lack the link to specific systems.
Therefore, a linking with an all-atomistic model/specific
system requires a systematic CG model elicited straight from
the chemistry of the molecules.
2.2. Chemically Specific CG Models for Polymer−

Solid Hybrid Systems. In chemically specific CG models, the
first task is the CG representation of the targeted system and
then determining the suitable interaction between the CG
beads so that the model can reproduce the targeted properties
of the selected system. Typically, the systematic CG models
are developed by eliminating the nonessential degrees of
freedom and interactions from the all-atom level of models or a
more fine-grained model designed to hold the critical
chemistry of the system. To design the CG bonded and
nonbonded interaction parameters, chemically specific or
systematic coarse-graining approaches typically employ either
bottom-up or top-down approaches or both. The bottom-up
approaches utilize statistical mechanics to determine the CG
interaction parameters from the atomistic simulation data.
Hence, the developed CG models regenerate the thermody-
namic and structural properties of the considered atomistic
models. In contrast, the top-down approaches utilize the
experimental data, rather than data from AA simulations, to
design the interaction parameters.

Chemically specific or systematic CG models are effective to
study the fundamental processes to investigate the unusual
material properties, viz., mechanical strength, solubility,
dispersion of nanoparticles, thermal stability, etc., of
polymer−nanoparticle systems that might be difficult to
calculate through all-atom simulation.37,73,74 In chemically
specific CG force-fields, extensive information on the effective
bead for the specific chemical composition is incorporated to
facilitate the study of the effects of monomer−monomer and
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monomer−nanoparticle interactions.75−80 The chemically
specific CG models use effective CG potentials that are
derived from the atomistic details of the particular polymer/
molecule and map the groups of chemically connected atoms
into “superatoms” or CG beads.81,82 The effective CG
potentials among the CG beads can be derived through
reproducing the targeted distribution functions such as radial
distribution function obtained from AA simulation83 or
through determination of the potentials of mean force between
CG beads84 and through reproducing the experimental data
(e.g., partioning free energy).85 The chemically specific CG
models were quite successful in reproducing the structure and
thermodynamics of a variety of systems quantitatively.11,31,32

These models were developed for a variety of polymer−
particle systems using different techniques to determine CG
parameters. For example, the bottom-up approaches, such as
direct Boltzmann inversion (DBI), iterative Boltzmann
inversion (IBI), inverse Monte Carlo (IMC), matching of
potential of mean forces, force matching, and relative entropy
minimization, utilize data from reference equilibrium atomistic
simulation to generate effective CG potentials, whereas the
top-down approaches, such as MARTINI CG models, use
experimental data to parameterize CG potential. These models
contain detailed particle geometry/structure and particle−
polymer, particle−particle, and polymer−polymer interactions.
These models have delivered considerable success to exploring
the thermodynamics and structural conformations of several
homogeneous and block copolymers, hybrid solid−polymer
systems, and polymer nanocomposites quant i ta-
tively.11,31,32,78,86−91 These approaches preserve the intrinsic
properties of the polymers (radius of gyration, density,
diffusion coefficient, etc.).44,75,78,79,89,90,92−96 Thus, the inter-
pretations of CG models can directly correspond to the
experiments. The mesoscale-based linking has been marked as

the foremost bottleneck for developing efficient multiscale
frameworks in several studies, and the systematic CG
approaches may deliver an alternative to these challenges.97−99

In all types of simulations, the crucial features of the system
are required to be retained while reducing the degrees of
freedom. In addition, the CG models may be more beneficial
in the simpler forms of interactions over the detailed models
and deliver a better computational efficiency.85 The system-
specific CG models can vary in the extent of coarse-graining
(the number of real atoms that correspond to one superatom)
and the way of deriving the effective CG potentials. On the
basis of the extent of coarse-graining, the systemic CG
methods are roughly divided into three major classes: (i)
low coarse-graining degrees, with one or two monomers in one
bead, e.g., DBI and IBI schemes and MARTINI approach; (ii)
medium coarse-graining degrees, having 10−20 monomers in
one bead, e.g., blob model; and (iii) high coarse-graining
degrees, having the whole chain mapped to a single soft colloid
in a superatom. These variations impart an access to a broad
range of time and length scales required to simulate the
dynamic properties of the polymeric systems.98

The coarse-graining of the polymeric systems from atomistic
models has advanced, being primarily used for polymers in
melt75−79 and in homogeneous environments.79,80 To model
the polymer interactions in the proximity of solid surfaces, the
CG simulation has also been applied. However, the extension
of the systematic CG models to polymer−solid interfacial
systems is a daunting research field due to the extra
complexities imparted by the presence of interfaces. Therefore,
only a handful of systematic CG studies are available for the
polymer−solid multiphase systems, e.g., exfoliation of clay
particles in polyethylene glycol polymer. On the basis of
reproduction of the energetics and matching structural
properties, a wide range of bottom-up and top-down strategies

Figure 2. Schematic representation of the development of a coarse-grained model from an all-atom model.
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to develop systematic CG models have been proposed. Figure
2 shows the schematic representation of development of a CG
model from an AA model.
2.2.1. Structure-Based Coarse-Grained Models. A straight

link to the chemistry can be achieved in structure-based CG
models by structurally defined bonded and nonbonded
effective CG potentials that are adopted from the atomistic
model. These models delivered a successful quantitative study
of the thermodynamics and structure, as well as conformations
of diverse bulk polymer systems.75,76,78,79,96,100−102 As specified
in the name, structure-based methods build the CG potential
to reproduce a structural property of the all-atom system, viz.,
pair distribution function. The structure-motivated approaches
are quite popular and include DBI, IBI, IMC, force matching
(FM), and relative entropy framework methods. These
structure-based CG approaches calculate the effective CG
potentials from the systematic approximation of the many-
body potential mean force (PMF). This approximation of CG
potential, U(R), adopts a widespread molecular mechanics in
which the angles, bonds, torsions, and pair nonbonded
interactions are modeled through a single potential that is a
function of the corresponding mechanical degree of freedom.
This may be characterized as

=U R U R( ) ( ( ))
i j

i i j
(1)

where i indicates a particular type of interaction and j indicates
the set of particles. The interaction potential, Ui, is a function
of a scalar variable ψi, which itself is a function of the Cartesian
coordinates, Rj. For example, if i represents the nonbonded
pair interaction, then Ui will correspond to the pair potential,
ψi will represent the pair distance, and Rj will be the Cartesian
coordinates for a particular pair, j, of sites.
The iterative Boltzmann inversion (IBI) approach is among

the most popular methods to reproduce the structural
properties; however, many research studies also used direct
Boltzmann inversion (DBI) to construct effective CG
potentials for the polymeric systems with considerable success.
The DBI approach furnishes the simplest and most
straightforward way to determine the effective CG potentials
from the atomistic distribution function.

= { }U r k T p r J r( ) ln ( )/ ( )i i iB (2)

where i is a particular type of interaction (such as pair
potential, bond potential, angle potential, etc.) modeled by Ui,
pi(r) is the atomistic distribution function calculated for
corresponding CG sites for the particular type of interaction
determined at temperature T, Ji is the corresponding Jacobian
factor, and kB is the Boltzmann constant.
In particular, the DBI approach derives the potentials that

deliver a reliable description for interactions that are efficiently
characterized in the CG models. However, only a few
chemically specific CG models based on the DBI approach
have been proposed for the polymer−solid (organic−
inorganic) hybrids.81,82,103−106

Kremer and co-workers extensively used this approach to
develop the systematic CG models for polymer melt as well as
the polymer−nanoparticle systems. The chemically specific
models have been used to develop a dual-resolution CG model
to simulate bisphenol, a polycarbonate in contact with a nickel
surface,103 as well as the study by Huang et al.106 on the CG
simulation of poly(3-hexylthiophene) and fullerene mixtures.

However, none of these studies considered the surface
structure. The interactions of polymer with the nickel surface
were considered in the former study, while the fullerene
molecule is accounted as a sphere estimated by a one-
dimensional 10−4 repulsive potential of constant surface
density in the later study.

Recently, the chemically specific CG force field for silica−
polybutadiene interfaces107 and the silica−poly(vinyl butyral)
system108 were developed using the DBI approach. The
polybutadiene chain was considered through the united atom
model, and the silica nanoparticle was accounted as a rigid
body, implementing one Si-centered superatom for each silanol
SiO2 unit. The nonbonded interactions between silica and
polybutadiene were adopted from Boltzmann inversion of the
density oscillations at the model interfaces, extracted from
atomistic simulations of the silica surface. However, no silica−
silica interactions were used in the CG model; therefore, it
might be possible that their model might not work if bare silica
nanoparticle interactions have to be included. This model
successfully reproduced the structural properties of the
polymer near the silica surface. The dynamic and viscoelastic
properties of the melt were also discussed in this study.107 In
another study, Walker et al.108 examined the interfacial
structure and adhesion properties of random-blocky poly(vinyl
butyral-co-vinyl alcohol) (PVB) melts in contact with an
amorphous silica surface, representing the interface found in
the laminated safety glass. CG bonded potentials for the
polymer chain were constructed via the DBI approach by
matching the bond and angle distributions from all-atom
simulations, while nonbonded interactions for the polymer
were explained by the fused-sphere SAFT-γ Mie equation of
state. The silica−PVB interactions were used in this study;
however, silica−silica interactions were not considered. The
DBI approach is helpful for the nonbonded pair potentials if
the CG sites are dilute and for the bonded potential if the CG
bonds are stiff. This measure depends on both the system and
the CG mapping. Because the interactions in the CG models
are generally linked, sometimes the potentials derived through
the DBI approach do not reproduce the atomic distribution
function, i.e., the radial distribution function (RDF).

Another popular structure-based approach is the iterative
Boltzmann inversion (IBI) approach, a natural extension of the
DBI approach to construct an effective CG potential from a set
of known correlation functions, and it is quite successful for
reproducing the structural properties of a system. The IBI
approach has been remarkably successful for modeling
complex liquids and polymers due to its simplicity in treating
each interaction (Ui) and distance (r) independently. The IBI
approach employs an iterative algorithm to extract an
improved effective CG potential through comparing the
probability distribution functions, giCG(r),obtained from the
CG model with the corresponding target probability
distribution functions, gAA(r), obtained from the atomistic
simulations. The CG potential, UCG, is improved according to
the following iterative process.

= { }+U r U r k T g r g r( ) ( ) ln ( )/ ( )i i i1
CG CG

B
CG AA

(3)

CG simulations are repeated to obtain the new pair
correlations gi+1CG(r), and this procedure is continued until
giCG(r) reproduces gAA(r) as accurately as possible. The same
process can be easily used to improve both bonded potentials.
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Müller-Plathe and co-workers were the first to report the
successful implementation of the IBI approach to construct the
CG potentials for a polymeric system from atomistic
simulation.95 They designed an automatic iterative algorithm
to construct the effective interactions that reliably mimic a set
of target quantities derived from a reference all-atom molecular
simulation. The differences between the potentials of the mean
force calculated from the distribution functions produced from
a guessed potential and the target distribution functions were
used to refine the effective CG potential for a polyisoprene
(PI) polymer melt as well as in solution successively. However,
they stated that a unique CG potential will not work for
different concentration regimes because the developed CG
potentials essentially rely on the state of the polymer.
Subsequently, the IBI approach was successfully used to
develop a systematic CG model for a polymer in aqueous
solution.109,110 Bedrov et al.109 explored the structural
properties of self-assembling poly(ethylene oxide)−poly-
(propylene oxide)−poly(ethylene oxide) (PEO−PPO−PEO)
triblock copolymer micelles in aqueous solution using
multiscale simulation. The CG potentials were determined
using the IBI approach to match the targeted structural and
conformational properties of polymers in aqueous solution
adopted from the atomistic explicit solvent MD simulations.
Although the IBI approach has been predominantly used for

simple fluids and polymer melts with the aim of reproducing
the RDFs of the reference system in order to obtain
nonbonded interactions,89,94,111,112 it has also been used for
multicomponent (polymer−particle) systems. However, for
the multicomponent systems, this approach shows a poor
convergence performance. To determine the polymer inter-
actions at the polymer−solid surfaces is a challenging task.
Therefore, only a few chemically specific CG studies have been
conducted on polymer−solid multiphase systems in the past
decade.

A few chemically specific CG models have been proposed
for polymer−solid (organic−inorganic) hybrids113 and poly-
mer nanocomposites having nanoparticles (silica nano-
particles,104 graphene,88 and nanoclays11,32). These chemically
specific CG models used the IBI approach to obtain the
interactions between CG beads. Chan and co-workers113 were
the first to report the successful implementation of the IBI
approach in constructing the CG interaction potentials for
hybrid organic/inorganic molecules such as polyoligomeric
silsesquioxane (POSS) tethered nanoparticles. The silsesquiox-
ane cube was represented by eight CG beads, where the
interactions of the CG beads were optimized to match the
RDFs derived from the corresponding atomistic simulations of
POSS nanocubes. They observed small aggregates of POSS
molecules with similar local packings of the silsesquioxane
cages and tether conformations in both the AA and CG
simulations. Further, some researchers used the IBI approach
to model polymer−nanoparticle systems. In these studies, the
structure and dynamics of the polymer chain near the surface
were investigated, and the conformation of the polymer chains
was extended to report reduced dynamics of polymer chains/
segments near the solid nanoparticle. Eslami et al.88,114

performed the CG-MD simulation of long chains of
polyamide-6,6 confined between graphene sheets. The CG
potentials were generated via the IBI approach by matching
distribution functions for different degrees of freedom to the
corresponding distribution obtained from all-atom simulations.
The CG models successfully reproduced the layering of the
polymer near the confined surface. In this study, they claimed
that the CG interactions are transferable to a variety of systems
and temperatures and are appropriate to simulate the confined
polymer over a wide range of temperatures and intersurface
distances. However, the graphene sheet−sheet nonbonded
interactions were not included in their CG model. Sub-
sequently, Ghanbari et al.104 developed systematic CG
potentials for a system of spherical silica nanoparticles (bare

Figure 3. Depiction of the intermolecular bead−bead nonbonded interactions in the CG model obtained after using the multistate iterative
Boltzmann inversion approach. Reprinted with permission from ref 111. Copyright 2014 AIP Publishing. (a−c) RDFs and (d) potential derived for
propane using MS IBI. Panels (a)−(c) correspond to states A, B, and C, respectively.
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and grafted) dissolved in atactic polystyrene via the IBI
approach. They showed that the conformation of the polymer
chains was strongly influenced by the presence of nanoparticles
(NPs) and the extent of the structural perturbation depends on
the type of nanoparticles: bare NPs versus polystyrene-grafted
NPs. In another study, conformational properties and local
dynamics of polyisoprene polymer chains near a smooth
graphite surface were studied by a multiscale simulation115

where CG potentials were generated via the IBI approach.
However, it is observed that the developed effective

potentials are limited by their nontransferability across
thermodynamic state space and inability to capture thermody-
namic properties correctly because the CG Hamiltonians are
only parameterized to reproduce structural correlations
appropriately.116 Although these derived CG potentials
accurately reproduce the target RDFs, they are, in general,
only applicable at the state point for which they were derived
due to the nature of their derivation. Equation 3 clearly shows
the explicit temperature dependence as well as the implicit
temperature and density dependence through the g(r) terms.
For example, separate potentials were required to capture both
the solid and fluid structures of a pure simple lipid.117 To
address the temperature transferability of the CG potential,
Moore et al.111 proposed an extension to the standard IBI
approach to improve the transferability of the derived CG
potentials. This study showed that inclusion of target data from
multiple states forces the IBI approach to sample regions of
potential phase space that match the RDFs at multiple state
points, thus constructing a CG potential that is more
representative of the underlying interactions. The derived
CG potential was less state-dependent and thus better suited
than the standard IBI approach to simulate the systems over a
range of thermodynamic states. Figure 3 shows the develop-
ment process of intermolecular CG potentials from several
iterations using the multistate IBI approach.111 However, for
complex systems, it may not be possible to optimize the
potentials at a wide range of state points of interest, due to
time- or length-scale limitations of the atomistic simulations,
thus making it difficult to apply the IBI approach appropriately.
Further, Maurel et al.118 also determined the effective CG
interaction potentials for cis-1,4-polybutadiene polymer chains
and silica surface from atomistic simulation using a bottom-up
approach by employing the IBI method and investigated the
structural and dynamic properties of polymer chains near the
silica surface (bare and grafted) at different separation
distances. Multiscale simulations have also been performed
for the specific case of polymer silicate clay nanocomposite
(PCNC)11,12,20,119 systems. To investigate the impact of the
nature of the interactions among different components on
nanocomposite properties, chemically specific CG models have
proved extremely useful.120 However, the IBI approach showed
the issues of convergence while developing the CG potentials
near the surface in highly heterogeneous systems such as
PCNCs. In these systems, polymer molecules, adsorbed on the
solid surface, interact with a large number of surface atoms,
particularly in one or two directions at varying distances. Thus,
the isotropic environment generally required in the IBI
approach is not observed.37 In a significant work, Suter et al.
developed a chemically specific CG model for a montmor-
illonite−poly(ethylene glycol)/poly(vinyl alcohol) clay nano-
composite. Interaction potentials among the CG beads were
generated by employing the IBI approach. Their model was
able to provide a quantitative description of the dynamic

process of polymer intercalation into clay tactoids.11 The CG
potentials for the polymer were developed using the IBI
approach, and nonbonded interactions between the clay
particles were developed by matching the potential of mean
force. The monomer density profile was used to determine the
CG nonbonded interaction between clay and polymer, which
indicated that the IBI approach is not enough to construct the
CG potentials for polymer−nanoparticle systems. They also
described the mechanism of exfoliation and dispersion of
organophilic clays in hydrophilic polymer melts and
determined the elastic properties of these nanocomposites.
Their study showed that even a partial exfoliation of clay
tactoid helps in significant enhancement of the Young’s
modulus of the nanocomposite, as observed experimentally.32

Recently, Volgin et al.67 performed a CG-MD simulation to
investigate the diffusion of fullerene nanoparticles in a
polyimide R-BAPB melt. Effective CG interaction potentials
for polymer nanocomposites were determined using the IBI
approach. Their CG model excellently reproduced the
structural properties calculated from the fully atomistic system;
however, the local chain conformation in the CG model
substantially perturbed the nanoparticle diffusion. They
observed that the coarse-graining of the polymer chains on
the length scale of the nanoparticle size contributes to a
complete suppression of the sub-diffusive regime identified in
the all-atom simulation. More recently, the IBI approach has
been used to generate the CG models of silica nanoparticles in
a polymer matrix. The CG model of a silica nanoparticle-
impregnated cis-1,4-polyisoprene polymer was built to study
the effect of nanoparticles and cross-links in the uniaxial tensile
simulation.121 The results of this study showed that the
polymer-grafted silica nanoparticles and the cross-linked
structure play reinforcing roles, while the smooth nanoparticles
do the opposite, which was in line with the experiment results.
Further, the same group investigated the effects of silica/
carbon black hybrid nanoparticles on the viscoelastic proper-
ties of uncross-linked cis-1,4-polyisoprene rubber.122 The CG
potential interactions for the system were derived via the IBI
approach. In another study, Shere et al. developed the CG
potentials between various silica species formed during silica
polymerization via the IBI approach in order to understand the
molecular transformation of silica aggregates during polymer-
ization.123

Despite the success of structure-based approaches such as
IBI and DBI to reproduce key structural features and
thermodynamics for the CG model, these approaches showed
a poor temperature transferability of interaction parameters.102

Further, these methods do not show chemical transferability
and are anticipated to need extra parameterization on a change
of the polymer matrix or grafted functional groups or ions.11,94

Another limitation of these models is the overestimation of the
dynamics of the polymer, which is due to the reduced degrees
of freedom in the CG model, which contributes to the
substantial decrease in the friction between the CG beads
compared to what it would be if the monomers were
represented in full atomistic detail. Therefore, the time scales
in the CG models do not resemble that of the microscopic
chemical system. In addition, these CG models exhibit softer
mechanical responses relative to their AA counterpart. While
no universally applicable answers to the problems of
transferability and representability have been reported, a few
strategies have been put forth in the literature. Among them
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are the multiscale coarse-graining (MS-CG) approach and the
relative entropy method.124,125

In the MS-CG approach, which is an extension of force
matching (FM) methods, the variational strategies are used to
produce unique, effective CG potentials based on the
calculated forces on the particles from atomistic simulation.
This process uses an algorithm to minimize the deviations
between the atomistic force on a particle calculated from the
atomistic simulation and the respective force in the CG
counterpart calculated from the CG simulation using a trial
CG force field.92,126−128 Izvekov, Voth, and co-workers126,128

developed a novel multiscale CG method as an early method
to determine effective CG potentials. This method derives an
optimal CG potential by minimizing a force matching
functional of the trial CG force field. The force matching
methods have been extensively used in biomolecular systems
with considerable success. However, only a few studies have
used the FM approach to model polymer−nanoparticle
hybrids. For instance, Summers et al.129 developed a
transferable CG model for amorphous silica nanoparticles
with the intent to use it in polymer nanocomposite systems.
The CG interaction potentials were derived directly from the
AA simulation of nanoparticle models via a simplified version
of the potential matching scheme, proposed by Tot́h and co-
workers130 and similar to the force matching approach
proposed by Izvekov et al.126 They validated the CG
parameters by comparing against the target data obtained
from the AA simulation of larger nanoparticles, pairs of
different sized nanoparticles, and interactions between
spherical nanoparticles, dimers, and cross-interaction between
nanoparticles and linear alkanes. Further, this CG model was
used to investigate the self-assembly of patchy alkane-grafted
silica nanoparticles to gain insight into the trends in phase
behavior.131 The results of this study showed that the patchy
nanoparticles formed different phases from dispersed to string-
like and aggregates. The nanoparticle self-assembling process
was dependent on the combination of alkane chain length,
grafting density, and fractional grafted surface area.
Recently, different approaches are being implemented to

achieve temperature-transferable CG models of polymeric
systems, including energy-renormalization,132 Bayesian calibra-
tion of coarse-grained forces,133 and relative entropy
approaches.125 For example, Xia et al.132 employed the
energy-renormalization method for CG parameterization of a
polymer. The cohesive interaction strength and effective
interaction length-scale parameters were renormalized to
modify the activation free energy that occurs upon coarse-
graining the dynamics of a polymer. Their model allows the
modeling of a polymer over a wide range of temperatures.
Despite the success of these bottom-up approaches,

efficiency, accuracy, and transferability of the CG potentials
are among the major issues that are typically encountered by
the research community. Thus, substantial efforts have been
devoted in the past few years to address these issues. Some
advanced strategies have been reported to tune the CG
potentials for achieving desired outputs. These strategies
include systematic local optimization methods (e.g., gradient
descent, simplex method, etc.) and metaheuristic methods
(e.g., genetic algorithm, particle swarm optimization (PSO),
etc.) that are being practiced to fine-tune the CG parameters.
The systematic local optimization approaches deploy some
general mathematical algorithms to update a scoring function
until an optimum set of parameters is achieved. On the other

hand, the metaheuristic methods utilize an educated guess and
implement an iterative process to obtain the required solutions.
For instance, Lee and Hua134 constructed CG interaction
parameters for amorphous silica nanoparticles using the
simplex optimization approach. The Boltzmann inversion
method was implemented to generate the initial guess from
the atomistic simulation, and a further penalty function for the
RDF was optimized via the simplex method to reproduce the
RDF. Recently, a metaheuristic approach, such as the PSO
method, has been utilized to develop the transferable CG
parameters for water,135 cross-linked epoxies,136 and amino
acids.137 However, these approaches are yet to be incorporated
in the development of the CG parameters for complex systems
such as polymer−nanoparticle hybrid systems.

Among the latest developments, the machine learning
approaches have claimed some ground in terms of parameter-
ization of the CG interactions from experimental as well as AA
simulation data. McDonagh et al.138 proposed a machine
learning approach to develop CG parameters for alkane. The
Bayesian optimization technique was employed to parameter-
ize CG parameters against experimentally determined partition
coefficients. A few studies on multiscale modeling of the
polymer−filler interaction have been reported that investigated
the interactions between cis-1,4-polybutadiene and different
solid substrates such as metal oxide (Cu2O) and silica
nanoparticles.139−141 The CG interaction parameters of these
models were developed using the Bayesian optimization
scheme that was based on statistical trajectory matching
(STM) of an atomistic description of the system, with the
intent to incorporate CG parameters in DPD simulations.
However, the preferred choice for a heterogeneous polymer−
nanoparticle system among the research community is the
Boltzmann inversion process (direct or iterative).

2.2.2. Thermodynamic-Based Coarse-Grained Models.
Another popular approach, based on reproduction of
energetics, is the MARTINI model.85,142 The MARTINI
model, a thermodynamics-based CG model, was initially
developed to speed up the biomolecular simulations85,142−147

and later found a growing number of applications in a diverse
field of materials science.148−152 The MARTINI coarse-
graining approach uses a combination of top-down and
bottom-up strategies to determine the CG parameters for
different chemical materials (such as lipids,153,154 pro-
tein,155,156 DNA,157 sugars,158,159 polymer,78,90,96,100 organic
and inorganic nanoparticles,31,160,161 etc.) and form an
appropriate bridge between atomistic and macroscopic scales.
One of the important features that makes the MARTINI
model different from the other CG models is its approach.
Instead of concentrating on a precise reproduction of the
structural properties at a specific state point for a particular
system, the MARTINI model targets a wider range of
applications without the need to reparameterize the model
each time, as is usually observed in the other structure-based
CG models like the IBI and DBI approaches. The MARTINI
model has been shown to be accurate and up to 200 times
faster than the all-atom simulation.85 It was shown to capture
75−100% of major collective motions for lipid chains with 5−
7-fold faster sampling, albeit it overestimated short-range
ordering.154

The force field parameters (MARTINIFF) in the MARTINI
model are designed in a systematic way based on the
reproduction of thermodynamic data such as partitioning
free energy between an aqueous phase and an organic phase
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for a large number of chemical compounds, typically referred
to as chemical building blocks (Figure 4).85,162 Free energies of
transfer of organic compounds typically are used to parameter-
ize the nonbonded interactions between the CG beads. To
reproduce the free energies of these chemical building blocks,
different types of interaction levels are used to represent the
CG beads from a well-designed set of 18 types of interaction
sites from the MARTINI model. The interaction levels of these
building blocks were determined after an extensive calibration
against the thermodynamic data, in particular oil/water
partitioning coefficients.85,142,163 A similar approach has been
used to develop an all-atom GROMOS force field. In addition,
the effective CG bonded parameters were developed by using a
bottom-up approach, which includes the matching targeted
distribution of bonded terms (bond length, angle, and
dihedral) obtained from the atomistic simulation data.79,147

In the MARTINIFF, a CG bead or chemical building block
is composed of 3−4 heavy atoms with their linked hydrogen
atoms. This mapping scheme effectively decreases the number
of particles to be simulated in a system and helps to improve
the simulation speed significantly. In addition, the smoother
CG energy landscape leads to faster overall dynamics and
allows the use of larger time steps compared to all-atom
simulations. The MARTINIFF beads are classified into four
main types on the basis of their polarity, namely, polar (P),
nonpolar (N), apolar (C), and charged (Q). These are further
categorized into subtypes on the basis of either polarity
(ranging from 1 = low polarity to 5 = high polarity) or their
hydrogen-bonding capabilities (donor, acceptor, both, or
none). Thus, this gives a total of 18 unique MARTINI
building blocks. Such a building-block strategy offers a
relatively straightforward and systematic framework for
switching from atomistic to CG model for an extensive range
of biological, polymeric, and soft material systems. Further, a
limited number of interaction levels between distinct types of

particles facilitate easy parameterization of new molecules,
albeit limiting the quantitative accuracy of the force field.

In light of the underlying chemical building block principle
of the MARTINIFF, it is quite possible to model a variety of
multicomponent systems. The MARTINI model enjoyed a
remarkable success for modeling of a variety of biomolecular
processes and has been incorporated by the worldwide user
community to study a large number of systems including lipid
membrane, protein, sugar, DNA, RNA, hydrocarbons, short
peptides, polymers, etc.78,79,143−145,148−153,155−159 In the past
decade, the MARTINI model has been used successfully to
simulate a variety of polymeric systems including homoge-
neous polymers, e.g., polyethylene (PE), polypropylene
(PP),78 polyethylene glycol (PEO),100 and polystyrene
(PS).79 MARTINI CG parameters (bonded and nonbonded)
for polymers typically are constructed by matching bond and
angle distributions obtained from reference all-atom simu-
lations, the free energy of transfer of the target repeating units
in organic and aqueous phases, and long-range structural
properties such as radii of gyration.78,79,164 Apart from that,
polymer melt density profile, structure factor, end-to-end
distance, and persistence length can also be used as the
validation target. Currently, the MARTINI CG parameters are
available for >50 types of polymers ranging from simple linear
and branched polymers to conjugate polymers such as poly(3-
hexylthiophene) and block copolymers.78,79,90,149,164−166 More
recently, it has been successfully used to simulate a variety of
organic−inorganic systems such as block copolymers assem-
bly,90 organic−electronic materials,167,168 ionic liquids,148 ion-
conducting materials,169−171 polymer nanocomposites, self-
assembled supramolecular materials,172,173 and many
others.152,174 In the past decade, the MARTINI models have
also been used for more complex polymer−nanoparticle
systems such as graphene, carbon nanotubes, gold, and
montmorillonite clay nanoparticle−polymer composites and

Figure 4. Depiction of MARTINI building block types and CG representations of polymers and nanoparticles.
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polymers near graphite and silica surfaces. There are various
studies that involve the interaction of these nanoparticles with
biomolecules and polymers conducted using the MARTINI
CG parameters, of which a few studies related to PNCs and
polymer-tethered nanoparticles are discussed here.
For example, the MARTINI CG parameters have been

developed for carbon-based nanoparticles such as carbon
nanotube (CNT), graphene, graphite, etc. and frequently used
to study the interaction between nanoparticles and biomole-
cules. The MARTINI model was also used to investigate the
mechanism of adsorption of detergents onto a carbon
nanotube.175 Additionally, the MARTINI CG parameters
were used to explore the interaction between CNT and
polymer recently. For example, the conformational behavior of
a polyethylene glycol (PEG) polymer attached covalently and
noncovalently to the CNT has been investigated in a detailed
way in various studies. Lee performed a CG molecular
simulation of a single-wall CNT with different lengths and
densities of polyethylene glycol polymer.164,176 The PEGs were
either covalently grafted or noncovalently self-assembled to the
SWNT. They established the correlation for diffusivities and
conformations of SWNT−PEG complexes with the PEG
length and grafting density and successfully reproduced the
experimentally proposed conformation of PEGs on SWNTs.
They also showed the mushroom-to-brush transition of PEG
chains, which was in good accordance with the Alexander−de
Gennes theory. Furthermore, the MARTINI parameters were
also used to understand the selective molecular recognition of
different categories of analytes by the SWCNT−PEG-based
polymer sensors. This study might be helpful to screen and
select polymers candidates while designing the molecular
recognition sensors.177 Another example of a carbon nano-
particle-based polymer nanocomposite is graphite-filled poly-
mer composites. Recently, the MARTINI model was used to
understand the preferential adsorption of long-chain organic
molecules on the graphite surface from the solvent and the
formation of ordered structures on the surface through self-
assembly.161 In another study, Shi et al. performed a CG-MD
simulation using the MARTINI parameters to understand the
change in mechanical and dielectric properties and crystalline
behavior of the graphite-filled polyethylene polymer compo-
sites and compare with the findings obtained from
experimental study. The microstructural evolution of the
composites during lamination was also explored with MD
simulations.178

In addition to the carbon-based nanoparticle−polymer
hybrid systems, the MARTINI framework also has been used
to construct the CG parameters of inorganic nanoparticles
such as gold, silica, and clay. For example, the CG parameters
were developed for the polymer-grafted gold nanoparticles and
used to investigate the solvent-responsive behavior of grafted

nanoparticles and structural properties of polymer grafted onto
gold nanoparticles. Dong and Zhou performed the CG
simulation of PS-b-PEO block copolymer-grafted gold nano-
particles dissolved in different solvents of different polarities
using the MARTINI CG parameters.179,180 Different compo-
sitions of PS-b-PEO block copolymer, grafting densities, chain
lengths, asymmetries of nanoparticles, and variations in solvent
polarity were used to investigate the solvent-responsive
behavior of amphiphilic polymer brush grafted onto nano-
particles. They observed core−shell, Janus-type, buckle, ring,
jellyfish-like, and octopus-like morphologies of nanoparticles as
a consequence of block sequence and mixing methods (Figure
5). Further, the MARTINI model was used to examine the
interfacial behaviors of polymer-grafted gold nanoparticles with
various grafting architectures at the oil−water interface.87

These studies can be useful to design polymer-grafted
nanoparticles for specific applications. Recently, Dahal and
co-workers described the solvation phenomenon of polymer-
grafted gold nanoparticles in water through a CG-MD
simulation, which remains a challenge experimentally. Their
results showed that the hydration process depends on the
polymer grafting density and radius of curvature of the
nanoparticles and were in agreement with experimental
data.181 Dahal and Dormidontova further investigated the
chain conformation and hydration of PEO-grafted gold
nanoparticles as a function of polymer chain length and
grafting density.182

Recently, Perrin et al.183 used the MARTINI CG model to
study the conformations and dynamics of solvated polymers
near the silica nanoparticle surface. They used poly-
(diallyldimethylammonium) (PDMA) and poly(acrylamide)
(PAAm) polymers to study the effect of differences in the
nature of the polymer and the polymer−solvent interactions on
the behavior of the polymer−surface adhesion. The results of
this study showed that the PDMA preferably adsorbed on the
silica surface, whereas PAAm was well-solvated by water and
preferred to be surrounded by solvent beads rather than close
to silica beads.

More recently, Khan and Goel developed the MARTINI CG
parameters for polymer clay heterogeneous systems to
investigate the role of clay particles on structural, dynamic,
and thermodynamic properties of a polymer melt. In this work,
they used an alternative approach to construct the bonded and
nonbonded parameters that are compatible with the existing
MARTINI force field (MARTINIFF) for polymer clay
nanocomposite systems.31 The nonbonded interaction param-
eters were parameterized from the cleavage energy of
organically modified montmorillonite (oMMT) clay particles,
whereas the mechanical properties such as Young’s modulus of
clay particles were used to parameterize the bonded interaction
parameters. The parameters of the bonded interactions were

Figure 5. Depiction of jellyfish-like and octopus-like morphologies of AuNP-JANUS. Reprinted with permission from ref 179. Copyright 2013 John
Wiley and Sons.
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tuned so as to reproduce the distributions of bonds and angles
obtained from all-atom simulations, in the same fashion as for
other MARTINI polymers. To fine-tune the nonbonded
interaction parameters, individual dispersive and polar
contributions to oMMT cleavage energy were used to
determine the appropriate MARTINI bead types for the CG
model of oMMT clay. The surface energy is determined by
allowing for full surface reconstruction corresponding to a slow
equilibrium cleavage process.184 To ensure the transferability
of developed parameters, different types of polymer (PP, PE,
or PS) and temperatures were used to simulate the polymer−
clay system. This model accurately reproduces the structural,
thermodynamic, and dynamic properties of a polymer−clay
system.
The previous discussion suggests that CG simulation of a

polymer−nanoparticle system using interaction parameters
developed from the IBI or DBI technique predicted
significantly higher dynamics (8−20 times that of the AA
model) of polymer chains in nanocomposites.11,185,67 Struc-
ture-based models (IBI and IDI techniques) predicted
structure very well but sometimes failed to deliver correct
dynamics. It was also reported that a number of different sets
of all-atom simulations were required for each polymer−
particle system to generate CG parameters.67,11 Inversely, in
the case of the MARTINI model, only one atomistic
simulation is required to develop interaction parameters, and
the same parameters can be used while working with other
polymers. Despite the enormous success of top-down
approaches such as the MARTINI model, the main limitation
encountered in the use of these models is the need for reliable
experimental data to be used as a reference. However, in most
of the cases for which it is of practical interest to develop a CG
model, experimental results are often not available. Therefore,
the approach to construct CG interaction parameters from
experimental data becomes increasingly difficult with an
increasing number of distinct representative pseudoatom
types in a CG model. However, widespread use of the
MARTINI model helped to identify its limitations.142,186 This
gave the direction for the development of a new version called
MARTINI 3, which enables more accurate simulation of
biomolecules, polymers, and many others.163 MARTINI 3
employed a more generalized approach (such as free energies
of transfer and miscibility data on binary mixtures) to
parameterize the CG interactions, which will further promote
its application in polymer science.163 However, issues of
temperature transferability187,188 and representability188,189 are
still part of the new model, as observed in some
studies.163,186,188,189

3. DISCUSSION AND CONCLUSION
Here, we have reviewed the progress and challenges in the field
of CG molecular simulations of polymer−nanoparticle hybrid
systems in a detailed and results-driven manner. The successful
development of these organic−inorganic hybrid materials
requires a broad understanding of the phenomena at different
time and length scales (ranging from molecular scale to
macroscale). The methodologies utilizing multiscale molecular
modeling and simulation methods have proven to be valuable
toward investigating the complex phenomena transpiring
during the formation of polymer−particle hybrids, something
which experiments alone cannot fully achieve. The study of
organic−inorganic hybrid materials using multiscale simulation
is a very popular research area that attempts to address the

issues related to the following topics: (1) the deviation in the
polymer properties (e.g., structural, dynamic, mechanical,
physical, and thermodynamic), due to the presence of
nanoparticles, from their bulk values; (2) the extent of
increment or reduction in properties from the solid surface;
(3) the need to deliver a better understanding of the
mechanism of nanoparticle exfoliation or dispersion in the
polymer matrix; (4) the changes in phase boundaries and
phase behavior; and (5) the thermodynamic stability of the
hybrid system. Due to the time and length constraints
observed in the AA simulations, many successful CG models
have been developed using the atomistic simulation data to
address these issues.

Within the context of the CG simulation perspective, various
approaches for modeling processes occurring in the formation
of nanoparticle hybrid systems can be classified into two major
categories, namely, generic and chemically specific approaches.
The chemically specific approach is further categorized into
two major categories, namely, structure-based and thermody-
namics-based approaches. This classification lends itself to an
easy examination of these methodologies and the complex
systems to which they are applied.

We note that the characterization of the polymer behavior
near the surface is more challenging as compared to the bulk
polymers, because the structure of polymers near the surface
relies upon the intermolecular interactions and the geometry of
the surface. Thus, it is very sensitive to the chemical structure
of the confined nanoparticles, and a limited number of reports
on chemically specific CG models for polymer clay nano-
composites are available. However, a lot of the work involves
the use of simple bead−spring models that are CG models
with little chemical details that have used a bead−spring model
of a polymer near structure-less surfaces.48,72 Later, extensive
work was done to include more information on the structure
and nature of interactions between polymer and par-
ticles.81,82,103−106 This chemically specific approach involves
the use of IBI, DBI, force matching, and MARTINI methods to
obtain the CG interaction parameters for the systems with
more details of particle structure and particle−polymer,
particle−particle, and polymer−polymer interactions. The
CG models allow a substantial alleviation of both the spatial
and temporal limitations of all-atom models by averaging out
some of the atomistic degrees of freedom. It performs better
on reproducing the structural and thermodynamic properties.
Finally, the CG models have allowed the extension of the
realm of molecular dynamics simulations to the mesoscale,
with comparative predictive performance in terms of dynamic,
structural, thermodynamic, and mechanical properties.

Despite a number of improvements in the CG models of
polymer−nanoparticle hybrid materials to address the
aforementioned issues, there are still many open issues and
challenges in terms of fundamental physics and the develop-
ment of approaches taken toward the simulations. In this
article, we have accounted for all such open challenges that are
still believed to be among the important and relevant
questions. Further, the issues like glass transition temperature,
chain dynamics, prediction of thermodynamic properties,
geometric effects, fluctuation at interface, etc. need to be
addressed carefully while working with the CG models.
Presently, the CG modeling requires careful consideration
toward the coarseness of the system, underlying energy
functions, and sampling scheme being employed. These
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parameters must be fine-tuned to address a specific query in a
specific model under investigation.
One of the key challenges encountered in the molecular

simulations of polymer−nanoparticle hybrid systems is the
development of highly heterogeneous systems (e.g., nanoclay
in polymer matrix) having many nanoparticles. This may allow
the study of collective phenomena related to the effective
interactions between nanoparticles at the molecular level, as a
function of the distance between them and corresponding
concentrations. This is principally significant if it is considered
that experimentally the solubility or exfoliation of nanoparticles
is a quite problematic issue. Furthermore, the focus should be
toward the development of systematic methodologies to
connect techniques over a wider range of length and time
scales. However, a major issue encountered in the development
of CG potentials for these systems is the requirement of AA
reference distributions, which have been found to be difficult
for anisotropic structures due to the convergence issues.
Further, the derived potentials for nanoparticles might lack
transferability to other systems, although the AA simulations
are quite successful to address the changes in morphology and
phase behavior, but at short time and length scales. Therefore,
to connect the CG simulations with all-atom simulations, a
precise estimation of the CG bead−surface effective free
energy calculated through nonbonded potential and correct
incorporation of the local conformation and rigidity of the
polymer chain in the CG model are imperative. Further, the
CG models help the extension of multiscale molecular
simulation studies to the mesoscale. Therefore, it is necessary
to extend and/or develop some new CG methodologies that
can accurately reproduce structural and thermodynamic
characteristics of the heterogeneous polymer hybrid system
to address morphological changes.
Furthermore, despite the enormous success to reproduce

key structural features, the quantitative prediction of dynamics
of polymer−solid systems via simulation methodologies is a
critical issue for the structure-based approaches. The averaging
over atomic degrees of freedom may potentially reduce the
activation barriers that are present in the potential landscape of
the CG model and could lead to more diffusive movement
through the configuration space. The elimination of explicit
atomic interactions that are responsible to generate friction
against motion could result in a relatively less viscous
environment in CG models, which in turn accelerates its
dynamic processes and sampling. The statistical models and
theories suggested that the reduced degrees of freedom are
associated with configurational entropy, while coarse-graining
causes a significant reduction in fluctuations and fractional
forces associated with atomistic details, which further leads to
the faster dynamics in CG models. However, these effects also
pose substantial challenges toward interpreting the CG
dynamics because not all of the processes in the CG model
are necessarily accelerated to the same degree. The net result
of these considerations leads to the 3 or more orders of
magnitude efficiency of CG models compared to the atomistic
models. This enables simulations of systems and phenomena
that could not otherwise be investigated, allows for quantitative
comparisons with experimental observations, and also provides
the efficiency required for achieving adequate convergence of
free energies and dynamic quantities. To correctly determine
the dynamic and transport properties using the CG models, a
typical approach is to scale down or scale up the CG time scale
in bulk systems based on either a postprocessing time rescaling

step or the inclusion of friction forces in the equations of
motion. The CG schemes for reproducing the dynamic and
transport properties are yet to be explored completely to
achieve the state-of-the-art for delivering the desired outcomes.
Therefore, it is necessary to extend and/or develop new
methodologies to overcome this issue.

The equilibration issues are very critical in modeling highly
heterogeneous polymer−nanoparticle systems having long
polymeric chains. The equilibration time for high molecular
weight chains with entanglement is sufficiently high. Further, it
is observed that the dynamics of polymer chains near the solid
surface become slower, requiring more computational time to
equilibrate the system. Therefore, CG simulations are proving
greatly helpful to address the equilibration issue. The CG
approaches can be used to generate the equilibrium
morphologies for further analysis through atomistic simula-
tions after back-mapping the CG structure to the AA structure.
The back-mapping process in the CG simulation of polymer
nanocomposites is useful in bypassing long or untenable
equilibration times, which can be caused due to slow diffusion
and relaxation of entangled polymer chains. Further, for
specific multiscale simulation paradigms or when features of
atomistic details are required, back-mapping processes are
quite useful to reintroduce lost degrees of freedom.

Further, another major issue that arises with the coarse-
graining procedure is the question of transferability of the final
CG model. The CG models generally encountered temper-
ature/thermodynamic and chemical transferability issues. The
temperature transferability issue arises because most of the
bottom-up approaches calibrated CG potentials to reproduce
targeted properties at or near the specified thermodynamic
state, so developed potentials often fail to accurately predict
the same properties at different thermodynamic states.
Temperature transferability might be a big issue for the
determination of glass transition temperature and mechanical
properties of polymer nanocomposites. To determine these
properties, polymeric systems need to simulate over a wide
range of temperatures from high to well below the glass
transition temperature. Therefore, if the CG potentials are not
temperature-transferable, then they will not accurately predict
these properties. However, recently some new methodologies
have been proposed to overcome this issue. For instance, the
multiscale IBI, relative entropy framework, energy renormal-
ization, etc. approaches have shown remarkable temperature
transferability for homogeneous systems, although these
methods need to be tested for multicomponent heterogeneous
systems such as polymer nanocomposites. Another subtle issue
is the chemical transferability, which arises due to the inability
of the developed CG parameters to work with different
chemical species. The CG potentials are the effective potentials
that furnish partially limited transferability, as revealed by the
requirement for additional parameterization when modeling
the same polymer with different nanoparticles or environ-
ments. To reproduce the distribution observed in atomistic
simulations, the many-body PMF is typically approximated
with simple potentials, e.g., nonbonded pair potentials are
optimized to reproduce the corresponding pair distribution
functions. These pair distribution functions may work well
with liquids, pure melt, etc. but are not efficient enough to
construct effective CG potentials to work with more complex
or heterogeneous systems. As a result of coarse-graining over
atomic degrees of freedom, many physical details of the system
are lost. Because these features may vary from system to
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system and may have varying importance with changes in the
thermodynamic state, an effective potential that provides a
reasonable description for modeling, one particular system or
thermodynamic state may not be transferable or may not
provide adequate desired accuracy for modeling the same
system with a different environment. Investigation of trans-
ferability conditions could help to gain insight into
fundamental principles that govern the behavior of the system.
It is anticipated that the emergence of new CG models in
terms of better transferability will help to extend its
applicability to the study of new phenomena at large length
and longer time scales. To ensure the wide range of
transferability of the CG potentials, the main focus should
be on the development of a general approach to construct
interaction potentials. The challenges discussed here are just a
few examples among many other challenges, such as model
assessment, integration of multiple CG models, and adaptive
resolution.
It is fairly clear from this review that the different multiscale

approaches have furnished precious insights into the structure,
dynamics, and thermodynamics of polymeric hybrid materials.
However, the new CG schemes with fair degrees of
temperature and chemical transferability along with the
capability of reproducing the dynamic and transport properties
are yet to be explored completely to achieve the state-of-the-art
for delivering the desired outcomes; hence, numerous research
studies are in progress in this area. In general, unique insights
available through the simulation of materials at a range of
scales (quantum → molecular → mesoscale) can generate a lot
of insight into the system, significantly decrease experimental
efforts, allow optimization of processes, and permit screening
of large numbers of candidate materials prior to the
production. Therefore, a multiscale computational approach
that allows accurate representation of each length and time
scale can play an essential role in designing and predicting
polymeric materials with target properties.19 Despite all the
studies discussed here, there is still a need for a thorough,
systematic, and comprehensive investigation to deal with the
multiscale modeling and simulations of polymer nano-
composites covering all length scales, with an aim to study
the morphology phenomena and the prediction of macroscopic
effective properties.
In a nutshell, the development of hierarchical or multiscale

molecular modeling methods for highly heterogeneous systems
is an interesting field in the computer-aided simulation of soft
matters, with a major objective of direct quantitative
comparison of properties calculated from experiments and
simulations. To attain this, new mathematical and computa-
tional approaches are required. Insights obtained from this
review will not only stimulate the field to rationally design
polymer−nanoparticle hybrid materials with excellent proper-
ties but also foster research to predict structure−property
relationships of hybrid materials at the molecular level.
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