

Received 8 April 2015 Accepted 18 August 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; frustrated Lewis pair; halogen; heterolysis; electrophilic aromatic substitution

CCDC reference: 1419502 **Supporting information**: this article has supporting information at journals.iucr.org/e

Crystal structure of bis(3-bromomesityl)(quinolin-1-ium-8-yl)boron(III) tribromide

Jungho Son, Sem Raj Tamang and James D. Hoefelmeyer*

Department of Chemistry, University of South Dakota, 414 E. Clark St, Vermillion, SD 57069, USA. *Correspondence e-mail: jhoefelm@usd.edu

The title compound, $C_{27}H_{26.82}BBr_{2.18}N^+ \cdot Br_3^-$, is a cationic triarylborane isolated as its tribromide salt. The aryl substituents include a protonated 8-quinolyl group and two 3-bromomesityl groups. The molecule was prepared on combination of 3:1 Br₂ and dimesityl(quinolin-8-yl)borane in hexanes. The refinement of the structure indicated a degree of 'over-bromination' (beyond two bromine atoms) for the cation. There are two tribromide ions in the asymmetric unit, both completed by crystallographic inversion symmetry.

1. Chemical context

We recently prepared the preorganized unimolecular frustrated Lewis pair molecule 8-quinolyldimesitylborane (Son et al., 2010) and hypothesized that it could participate in the heterolytic cleavage of molecular bromine. Halogen addition to a frustrated Lewis pair was recently reported in the literature (Frömel et al., 2012). The combination of 8-quinolyldimesitylborane with three equivalents of Br₂ in hexanes led to precipitation of the title compound. Features of the structure suggest heterolytic cleavage of Br₂ occurred at the frustrated Lewis pair site. The bromination of the mesityl groups is likely due to electrophilic aromatic substitution from a brominium ion that yields HBr, manifest as a proton on the quinoline nitrogen atom and bromide bound to molecular bromine to form the tribromide ion. Alternatively, radical bromination of the solvent (hexane) yields HBr; however, a radical mechanism is not likely for the bromination of mesityl groups. Typically bromination of aromatics is performed with a Lewis acid catalyst and occurs through an electrophilic aromatic substitution mechanism.

OPEN d ACCESS

2. Structural commentary

The title compound crystallizes in the space group $P\overline{1}$, and contains one cation and two half tribromide ions (completed by inversion symmetry) in the asymmetric unit. The cation

Figure 1

The molecular structure of the title compound. Hydrogen atoms are omitted for clarity. Displacement ellipsoids are shown at the 30% probability level. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 + x, y, z.]

(Fig. 1) features a planar three-coordinate triarylborane with two 3-bromomesityl groups and an 8-quinolyl group. The nitrogen atom is protonated and the positive charge is balanced by the presence of a tribromide anion, Br_3^- . The tribromide anions are shared between asymmetric units of the crystal, such that each unit contains two halves of an anion (Br5 and Br7 lie on crystallographic inversion centers). The Br5–Br6 distance is 2.5427 (11) Å and the Br7–Br8 distance is 2.546 (2) Å. Other bond distances and angles are given on Table 1. The mesityl groups are brominated at the *meta* positions such that one position is nearly completely brominated while the other *meta* position on the same ring is

 Table 1

 Selected geometric parameters (Å, °).

Selected geometric parameters (11, -).					
1.579 (14)	B1-C19	1.588 (14)			
1.598 (13)	Br3-C21	1.690 (12)			
1.901 (9)	C23-Br2	1.905 (10)			
121.6 (8)	C10-B1-C19	121.0 (8)			
117.2 (8)					
	1.579 (14) 1.598 (13) 1.901 (9) 121.6 (8) 117.2 (8)	$\begin{array}{cccc} 1.579 & (14) & B1-C19 \\ 1.579 & (13) & Br3-C21 \\ 1.901 & (9) & C23-Br2 \\ \end{array}$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$			

brominated to a much lesser extent. The best solution was found with refined bromine occupancy at the *meta* positions (C10 ring: Br1 = 0.95, Br4 = 0.09 for a total Br count of 1.04 on the ring; C19 ring: Br2 = 0.89, Br3 = 0.24 for a total Br count of 1.13 on the ring). The balance of electron density at the positions is accounted by partial hydrogen atoms at a reciprocal value of the bromine occupancy to give an overall formulation for the cation of $C_{27}H_{26.82}BBr_{2.18}N^+$.

3. Supramolecular features

The cations are arranged in rows that propagate along the *a*-axis direction wherein each cation is in the same orientation due to translation along the row. Inversion centers are located on the dimesitylboryl side of the row, just beyond the brominated mesityl groups, and the packing of the cations in the crystal results in interdigitated parallel quinolinium rings; these symmetrically sandwich a tribromide anion, such that the central atom of the anion is located at an inversion center. A packing diagram is shown in Fig. 2.

Figure 2 Packing diagram of bis(3-bromomesityl)(quinolin-1-ium-8-yl)boron(III) tribromide in the crystal (C: gray, H: white, B: green, N: blue, Br: brown)

research communications

Table 2Experimental details.

Crystal data Chemical formula $C_{27}H_{26.82}BBr_{2.18}N^+ \cdot Br_3^-$ 789.66 М., Crystal system, space group Triclinic, $P\overline{1}$ Temperature (K) 100 8.8469 (10), 11.2365 (13), *a*, *b*, *c* (Å) 14.7528 (18) 79.600 (2), 85.158 (2), 87.994 (2) $\begin{array}{l} \alpha,\,\beta,\,\gamma~(^{\circ}) \\ V~(\mathrm{\AA}^{3}) \end{array}$ 1437.0 (3) Ζ 2 Radiation type Μο Κα $\mu \,({\rm mm}^{-1})$ 7.25 $0.44 \times 0.22 \times 0.14$ Crystal size (mm) Data collection Bruker SMART CCD Diffractometer Absorption correction Multi-scan (SADABS; Bruker, 2008) T_{\min}, T_{\max} 0.161, 0.362 No. of measured, independent and 14439, 5310, 3409 observed $[I > 2\sigma(I)]$ reflections $R_{\rm int}$ 0.052 $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.605 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.070, 0.156, 1.10 No. of reflections 5310 No. of parameters 341 H-atom treatment H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} \text{ (e Å}^{-3})$ 1.19. -1.37

Computer programs: *SMART* and *SAINT* (Bruker, 2008), *SHELXTL* (Sheldrick, 2008).

4. Database survey

A search in the Cambridge Structural Database (Groom & Allen, 2014) for structures with the tribromide anion revealed 162 hits while a search for structures with the dimesitylboryl fragment revealed 539 hits. Among these are several structures of planar organic aromatic cations as tribromide salts. There are examples that display a cationic aromatic ring–tribromide–cationic aromatic ring motif (Manna *et al.*, 2014), including 8-quinolinium derivatives (Müller *et al.*, 2010; Rybakov *et al.*, 2013) similar to the title compound. Alternatively, non-sandwich-type packing modes were found (Dean *et al.*, 2009) including structures that feature π -stacking between aromatic cations (Bakshi *et al.* (1996), even 8-quinolinium derivatives (Thone *et al.* (2010).

5. Synthesis and crystallization

Reactions were performed using Schlenk and glovebox techniques under an atmosphere of N_2 using dried and distilled solvents. Dimesityl(8-quinolyl)borane was prepared according

to the literature (Son *et al.*, 2010). A round-bottom air-free flask was charged with 110 mg (0.29 mmol) dimesityl(8quinolyl)borane and 20 ml hexanes. In a separate flask, 2 ml of a solution of 5% Br₂ in CCl₄ (1 mmol Br₂) was added to 10 ml hexanes and subjected to one freeze–pump–thaw cycle. The Br₂ solution was transferred to the borane solution *via* a cannula at room temperature with stirring, and immediately a light-yellow precipitate formed. The solvent was removed *in vacuo*. Dichloromethane was added to the solid reside into which the title compound was dissolved; remaining insolubles were filtered off. Pale-yellow prisms of the title compound were grown by vapor diffusion of pentane into the methylene chloride solution.

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2. C-bound H atoms were refined using a riding model with C-H = 0.95 or 0.98 Å and with $U_{\rm iso}({\rm H}) = 1.2$ or $1.5U_{\rm eq}({\rm C})$. The N-bound H atom was freely refined.

Acknowledgements

This work was supported by the National Science Foundation (CHE-0552687 and EPS-0554609) and the US Department of Energy (Contract Nos. DE–FG02-08ER64624 and DE–EE0000270).

References

- Bakshi, P. K., James, M. A., Cameron, T. S. & Knop, O. (1996). *Can. J. Chem.* **74**, 559–573.
- Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dean, P. M., Clare, B. R., Armel, V., Pringle, J. M., Forsyth, C. M., Forsyth, M. & MacFarlane, D. R. (2009). Aust. J. Chem. 62, 334.
- Frömel, S., Fröhlich, R., Daniliuc, C. G., Kehr, G. & Erker, G. (2012). *Eur. J. Inorg. Chem.* pp. 3774–3779.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Manna, P., Seth, S. K., Bauzá, A., Mitra, M., Ray Choudhury, S., Frontera, A. & Mukhopadhyay, S. (2014). *Cryst. Growth Des.* 14, 747–755.
- Müller, M., Albrecht, M., Gossen, V., Peters, T., Hoffmann, A., Raabe, G., Valkonen, A. & Rissanen, K. (2010). *Chem. Eur. J.* 16, 12446–12453.
- Rybakov, V. B., Shishkina, S. V., Ukrainets, I. V., Golik, N. Y. & Chernenok, I. N. (2013). Acta Cryst. E69, 082.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Son, J.-H., Pudenz, M. A. & Hoefelmeyer, J. D. (2010). *Dalton Trans.* **39**, 11081–11090.
- Thone, C., Vancea, F., Bello, M. & Jones, P. G. (2010). Private Communication (Refcode QUWBUG). CCDC, Cambridge, England.

supporting information

Acta Cryst. (2015). E71, 1114-1116 [doi:10.1107/S2056989015015467]

Crystal structure of bis(3-bromomesityl)(quinolin-1-ium-8-yl)boron(III) tribromide

Jungho Son, Sem Raj Tamang and James D. Hoefelmeyer

Computing details

Data collection: *SMART* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Bis(3-bromomesityl)(quinolin-1-ium-8-yl)boron(III) tribromide

Crystal data	
$C_{27}H_{26.82}BBr_{2.18}N^+ \cdot Br_3^-$	Z = 2
$M_r = 789.66$	F(000) = 764
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.825 {\rm ~Mg} {\rm ~m}^{-3}$
a = 8.8469 (10) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 11.2365 (13) Å	Cell parameters from 4521 reflections
c = 14.7528 (18) Å	$\theta = 2.5 - 25.3^{\circ}$
$\alpha = 79.600 \ (2)^{\circ}$	$\mu = 7.25 \text{ mm}^{-1}$
$\beta = 85.158 \ (2)^{\circ}$	T = 100 K
$\gamma = 87.994 \ (2)^{\circ}$	Prism, pale yellow
V = 1437.0 (3) Å ³	$0.44 \times 0.22 \times 0.14 \text{ mm}$
Data collection	
Bruker SMART CCD	14439 measured reflections
diffractometer	5310 independent reflections
Radiation source: sealed tube	3409 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.052$
ω scans	$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(SADABS; Bruker, 2008)	$k = -13 \rightarrow 13$
$T_{\min} = 0.161, \ T_{\max} = 0.362$	$l = -17 \rightarrow 17$
Refinement	
Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.070$	and constrained refinement
$wR(F^2) = 0.156$	$w = 1/[\sigma^2(F_o^2) + (0.0279P)^2 + 15.1288P]$
S = 1.10	where $P = (F_o^2 + 2F_c^2)/3$
5310 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
341 parameters	$\Delta \rho_{\rm max} = 1.19 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\min} = -1.37 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$	Occ. (<1)
C1	0.5396 (12)	0.6737 (8)	0.5329 (8)	0.047 (3)	
H1	0.6369	0.6441	0.5502	0.057*	
C2	0.5090 (13)	0.6857 (10)	0.4432 (8)	0.055 (3)	
H2	0.5840	0.6666	0.3978	0.066*	
C3	0.3669 (13)	0.7260 (10)	0.4196 (8)	0.054 (3)	
H3	0.3434	0.7332	0.3572	0.065*	
C4	0.1112 (12)	0.8030 (8)	0.4622 (7)	0.047 (3)	
H4	0.0848	0.8145	0.4001	0.056*	
C5	0.0096 (12)	0.8311 (8)	0.5300 (7)	0.045 (3)	
Н5	-0.0890	0.8597	0.5147	0.054*	
C6	0.0463 (11)	0.8191 (8)	0.6208 (7)	0.036 (2)	
H6	-0.0270	0.8424	0.6656	0.043*	
C7	0.1880 (10)	0.7735 (8)	0.6488 (7)	0.036 (2)	
C8	0.2927 (11)	0.7434 (8)	0.5796 (7)	0.039 (2)	
C9	0.2561 (12)	0.7568 (8)	0.4849 (7)	0.040 (2)	
C10	0.3368 (10)	0.6643 (8)	0.8014 (6)	0.032 (2)	
C11	0.4517 (11)	0.7001 (8)	0.8499 (6)	0.035 (2)	
C12	0.5639 (11)	0.6170 (10)	0.8818 (7)	0.046 (3)	
H12_b	0.6450	0.6451	0.9101	0.055*	0.911 (5)
C13	0.5647 (11)	0.4975 (9)	0.8725 (7)	0.040 (2)	
C14	0.4479 (12)	0.4607 (8)	0.8295 (6)	0.039 (2)	
H14_c	0.4436	0.3778	0.8244	0.046*	0.047 (5)
C15	0.3328 (11)	0.5414 (9)	0.7922 (7)	0.042 (2)	
C16	0.4624 (12)	0.8290 (9)	0.8694 (7)	0.043 (3)	
H16A	0.3987	0.8841	0.8287	0.065*	
H16B	0.5680	0.8549	0.8579	0.065*	
H16C	0.4273	0.8304	0.9340	0.065*	
C17	0.6889 (12)	0.4110 (10)	0.9100 (8)	0.058 (3)	
H17A	0.6436	0.3361	0.9444	0.087*	
H17B	0.7458	0.4484	0.9513	0.087*	
H17C	0.7577	0.3923	0.8586	0.087*	
C18	0.2075 (14)	0.4930 (9)	0.7468 (8)	0.061 (3)	
H18A	0.1540	0.4300	0.7914	0.092*	
H18B	0.2510	0.4587	0.6937	0.092*	
H18C	0.1361	0.5589	0.7260	0.092*	
C19	0.1088 (11)	0.8376 (8)	0.8148 (7)	0.037 (2)	
C20	0.0109 (12)	0.7798 (9)	0.8880 (7)	0.044 (3)	
C21	-0.0971 (12)	0.8503 (11)	0.9318 (7)	0.051 (3)	
H21_a	-0.1628	0.8109	0.9816	0.061*	0.761 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C22	-0.1111 (12)	0.9745 (11)	0.9049 (7)	0.049 (3)	
C23	-0.0117 (12)	1.0276 (9)	0.8338 (7)	0.044 (3)	
H23_d	-0.0193	1.1128	0.8142	0.052*	0.106 (5)
C24	0.1006 (11)	0.9639 (9)	0.7882 (7)	0.039 (2)	
C25	0.0069 (13)	0.6444 (10)	0.9180 (8)	0.059 (3)	
H25A	-0.0305	0.6078	0.8689	0.088*	
H25B	-0.0609	0.6244	0.9744	0.088*	
H25C	0.1093	0.6130	0.9301	0.088*	
C26	-0.2310 (14)	1.0438 (13)	0.9548 (9)	0.075 (4)	
H26A	-0.3066	1.0785	0.9121	0.113*	
H26B	-0.1833	1.1090	0.9775	0.113*	
H26C	-0.2807	0.9888	1.0071	0.113*	
C27	0.2097 (12)	1.0305 (9)	0.7132 (7)	0.047 (3)	
H27A	0.1528	1.0739	0.6627	0.070*	
H27B	0.2808	0.9724	0.6896	0.070*	
H27C	0.2661	1.0886	0.7388	0.070*	
B1	0.2151 (13)	0.7594 (9)	0.7547 (7)	0.033 (3)	
N1	0.4375 (10)	0.7022 (7)	0.5977 (6)	0.039 (2)	
Br1_c	0.43924 (16)	0.29439 (10)	0.82058 (9)	0.0618 (6)	0.953 (5)
Br2_d	-0.03034 (16)	1.19837 (10)	0.79562 (9)	0.0541 (5)	0.894 (5)
Br3_a	-0.2186 (6)	0.8077 (6)	1.0259 (3)	0.070 (3)	0.239 (5)
Br4_b	0.6985 (17)	0.619 (2)	0.9386 (13)	0.112 (11)	0.089 (5)
H1N	0.474 (18)	0.700 (14)	0.655 (11)	0.134*	
Br5	0.5000	0.0000	0.5000	0.0421 (4)	
Br6	0.35660 (13)	0.06362 (10)	0.35619 (8)	0.0532 (4)	
Br7	0.0000	0.5000	0.5000	0.0837 (8)	
Br8	0.15880 (17)	0.49848 (12)	0.34799 (12)	0.0921 (6)	

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	<i>U</i> ³³	<i>U</i> ¹²	<i>U</i> ¹³	<i>U</i> ²³
$\overline{C1}$	0.051.(7)	0.035 (6)	0.058 (7)	0.015 (5)	(6)	-0.016(5)
C^2	0.051(7)	0.059(0)	0.038(7)	0.013(5)	-0.007(0)	-0.013(6)
C2 C3	0.059(8)	0.059(7)	0.040(7)	0.020(0)	-0.002(0)	-0.026(6)
C3	0.000(8)	0.039(7)	0.047(7)	0.017(0) 0.013(5)	-0.020(6)	-0.014(5)
C4	0.003 (8)	0.033(0)	0.047(7)	0.015(5)	0.020(0)	0.014(3)
05	0.043 (6)	0.033 (5)	0.060 (7)	0.005 (5)	-0.018 (6)	-0.006 (5)
C6	0.035 (6)	0.028 (5)	0.042 (6)	0.010 (4)	-0.007(5)	-0.002(4)
C7	0.029 (5)	0.026 (5)	0.052 (6)	0.006 (4)	-0.007 (5)	-0.003 (4)
C8	0.043 (6)	0.026 (5)	0.049 (6)	0.009 (4)	-0.015 (5)	-0.008 (4)
C9	0.053 (7)	0.029 (5)	0.042 (6)	0.005 (5)	-0.017 (5)	-0.014 (4)
C10	0.036 (6)	0.028 (5)	0.030 (5)	0.006 (4)	0.001 (4)	-0.005 (4)
C11	0.038 (6)	0.044 (6)	0.023 (5)	0.004 (5)	0.003 (4)	-0.004 (4)
C12	0.028 (6)	0.057 (7)	0.053 (7)	0.001 (5)	-0.008(5)	-0.011 (5)
C13	0.033 (6)	0.048 (6)	0.038 (6)	0.006 (5)	0.002 (5)	-0.006 (5)
C14	0.056(7)	0.022 (5)	0.036 (6)	0.005 (4)	0.000 (5)	-0.004(4)
C15	0.045 (6)	0.047 (6)	0.035 (6)	0.003 (5)	-0.014 (5)	-0.003 (5)
C16	0.047 (6)	0.052 (6)	0.034 (6)	-0.004 (5)	-0.005 (5)	-0.015 (5)
C17	0.045 (7)	0.059 (7)	0.072 (8)	0.017 (6)	-0.016 (6)	-0.014 (6)

C18	0.082 (9)	0.027 (5)	0.079 (9)	0.001 (6)	-0.039 (7)	-0.005 (5)
C19	0.040 (6)	0.034 (5)	0.039 (6)	0.008 (4)	-0.016 (5)	-0.009 (4)
C20	0.046 (6)	0.053 (7)	0.034 (6)	0.014 (5)	-0.011 (5)	-0.006 (5)
C21	0.040 (6)	0.072 (8)	0.037 (6)	0.009 (6)	-0.002 (5)	0.000 (6)
C22	0.036 (6)	0.074 (8)	0.041 (6)	-0.001 (6)	-0.006 (5)	-0.017 (6)
C23	0.053 (7)	0.034 (5)	0.048 (6)	0.014 (5)	-0.023 (6)	-0.015 (5)
C24	0.038 (6)	0.043 (6)	0.040 (6)	0.009 (5)	-0.016 (5)	-0.012 (5)
C25	0.049 (7)	0.065 (8)	0.056 (7)	0.002 (6)	-0.003 (6)	0.007 (6)
C26	0.064 (9)	0.107 (11)	0.059 (8)	0.021 (8)	0.001 (7)	-0.037 (8)
C27	0.048 (7)	0.034 (6)	0.057 (7)	0.010 (5)	-0.010 (5)	-0.005 (5)
B1	0.040 (7)	0.028 (6)	0.029 (6)	0.003 (5)	-0.001 (5)	-0.001 (5)
N1	0.044 (5)	0.030 (4)	0.044 (5)	0.015 (4)	-0.008 (4)	-0.010 (4)
Br1_c	0.0883 (11)	0.0296 (7)	0.0724 (10)	0.0149 (6)	-0.0404 (8)	-0.0099 (6)
Br2_d	0.0710 (10)	0.0353 (7)	0.0590 (9)	0.0164 (6)	-0.0068 (7)	-0.0189 (6)
Br3_a	0.043 (3)	0.138 (6)	0.033 (3)	-0.012 (3)	-0.008 (2)	-0.021 (3)
Br4_b	0.037 (10)	0.22 (3)	0.085 (14)	0.036 (11)	-0.026 (8)	-0.052 (14)
Br5	0.0373 (8)	0.0411 (8)	0.0431 (9)	0.0049 (6)	0.0028 (7)	0.0012 (6)
Br6	0.0453 (7)	0.0616 (7)	0.0474 (7)	0.0047 (5)	-0.0052 (5)	0.0040 (5)
Br7	0.0685 (12)	0.0449 (10)	0.1295 (18)	-0.0202 (9)	-0.0623 (12)	0.0350 (10)
Br8	0.0755 (10)	0.0663 (9)	0.1269 (13)	-0.0174 (7)	-0.0613 (9)	0.0309 (8)

Geometric parameters (Å, °)

C1—N1	1.333 (13)	C16—H16C	0.9800
C1—C2	1.355 (14)	C17—H17A	0.9800
C1—H1	0.9500	C17—H17B	0.9800
С2—С3	1.373 (14)	C17—H17C	0.9800
С2—Н2	0.9500	C18—H18A	0.9800
С3—С9	1.395 (14)	C18—H18B	0.9800
С3—Н3	0.9500	C18—H18C	0.9800
C4—C5	1.359 (14)	C19—C20	1.403 (14)
С4—С9	1.410 (13)	C19—C24	1.403 (13)
C4—H4	0.9500	B1—C19	1.588 (14)
С5—С6	1.388 (13)	C20—C21	1.409 (14)
С5—Н5	0.9500	C20—C25	1.506 (14)
C6—C7	1.404 (12)	C21—C22	1.385 (15)
С6—Н6	0.9500	Br3_a—C21	1.690 (12)
С7—С8	1.400 (13)	C21—H21_a	0.9500
B1—C7	1.579 (14)	C22—C23	1.373 (15)
C8—N1	1.378 (12)	C22—C26	1.513 (15)
С8—С9	1.440 (13)	C23—C24	1.402 (13)
C10-C11	1.402 (13)	C23—Br2_d	1.905 (10)
C10—C15	1.414 (13)	C23—H23_d	0.9500
B1-C10	1.598 (13)	C24—C27	1.512 (14)
C11—C12	1.390 (13)	C25—H25A	0.9800
C11—C16	1.534 (13)	C25—H25B	0.9800
C12—C13	1.374 (14)	C25—H25C	0.9800
C12—Br4_b	1.516 (17)	C26—H26A	0.9800

C12—H12 b	0.9500	С26—Н26В	0.9800
C13—C14	1.370 (14)	C26—H26C	0.9800
C13—C17	1.514 (13)	С27—Н27А	0.9800
C13—Br4 b	2.24 (2)	С27—Н27В	0.9800
C14—C15	1.418 (13)	С27—Н27С	0.9800
Br1 c—C14	1.901 (9)	N1—H1N	0.92 (15)
C14—H14 c	0.9500	Br5—Br6 ⁱ	2.5427 (11)
C15—C18	1.507 (14)	Br5—Br6	2.5427 (11)
С16—Н16А	0.9800	Br7—Br8	2.546 (2)
С16—Н16В	0.9800	Br7—Br8 ⁱⁱ	2.546 (2)
N1—C1—C2	122.1 (10)	H17A—C17—H17C	109.5
N1—C1—H1	119.0	H17B—C17—H17C	109.5
C2—C1—H1	119.0	C15—C18—H18A	109.5
C1—C2—C3	118.4 (10)	C15—C18—H18B	109.5
C1—C2—H2	120.8	H18A—C18—H18B	109.5
С3—С2—Н2	120.8	C15—C18—H18C	109.5
C2—C3—C9	121.7 (10)	H18A—C18—H18C	109.5
С2—С3—Н3	119.2	H18B—C18—H18C	109.5
С9—С3—Н3	119.2	C20—C19—C24	119.8 (9)
C5—C4—C9	119.5 (9)	C20—C19—B1	119.9 (8)
C5—C4—H4	120.3	C24—C19—B1	119.8 (9)
С9—С4—Н4	120.3	C19—C20—C21	118.8 (9)
C4—C5—C6	121.7 (9)	C19—C20—C25	123.3 (9)
С4—С5—Н5	119.2	C21—C20—C25	117.7 (10)
С6—С5—Н5	119.2	C22—C21—C20	122.5 (10)
C5—C6—C7	122.2 (9)	C22—C21—Br3 a	108.2 (9)
С5—С6—Н6	118.9	C20—C21—Br3 ⁻ a	129.2 (9)
С7—С6—Н6	118.9	C22—C21—H21 ⁻ a	118.9
C8—C7—C6	116.4 (9)	C20—C21—H21 ^a	118.6
C8—C7—B1	125.8 (8)	Br3 a—C21—H21 a	11.3
C6—C7—B1	117.8 (9)	C23—C22—C21	116.7 (10)
N1—C8—C7	121.9 (9)	C23—C22—C26	123.9 (11)
N1—C8—C9	116.4 (9)	C21—C22—C26	119.4 (11)
C7—C8—C9	121.7 (9)	C22—C23—C24	124.0 (9)
C3—C9—C4	123.1 (9)	C22—C23—Br2_d	117.2 (8)
C3—C9—C8	118.4 (9)	C24—C23—Br2_d	118.8 (8)
C4—C9—C8	118.5 (9)	C22—C23—H23_d	118.2
C11—C10—C15	118.3 (8)	C24—C23—H23_d	117.8
C11—C10—B1	121.5 (8)	Br2_d—C23—H23_d	1.0
C15—C10—B1	120.1 (8)	C23—C24—C19	118.0 (10)
C12—C11—C10	119.7 (9)	C23—C24—C27	120.4 (9)
C12—C11—C16	117.2 (9)	C19—C24—C27	121.6 (9)
C10—C11—C16	123.1 (8)	C20—C25—H25A	109.5
C13—C12—C11	123.3 (10)	C20—C25—H25B	109.5
C13—C12—Br4_b	101.3 (12)	H25A—C25—H25B	109.5
C11—C12—Br4_b	135.2 (13)	C20—C25—H25C	109.5
C13—C12—H12_b	118.7	H25A—C25—H25C	109.5

C11—C12—H12_b	118.1	H25B—C25—H25C	109.5
Br4_b—C12—H12_b	18.4	C22—C26—H26A	109.5
C14—C13—C12	117.2 (9)	C22—C26—H26B	109.5
C14—C13—C17	122.1 (9)	H26A—C26—H26B	109.5
C12—C13—C17	120.8 (9)	C22—C26—H26C	109.5
C14—C13—Br4_b	158.5 (9)	H26A—C26—H26C	109.5
C12—C13—Br4_b	41.7 (7)	H26B—C26—H26C	109.5
C17—C13—Br4_b	79.2 (8)	C24—C27—H27A	109.5
C13—C14—C15	122.6 (9)	С24—С27—Н27В	109.5
C13—C14—Br1_c	118.5 (7)	H27A—C27—H27B	109.5
C15—C14—Br1_c	118.8 (8)	С24—С27—Н27С	109.5
C13—C14—H14_c	118.8	H27A—C27—H27C	109.5
C15—C14—H14_c	118.5	H27B—C27—H27C	109.5
Br1_c-C14-H14_c	0.6	C7—B1—C10	121.6 (8)
C10-C15-C14	118.8 (9)	C7—B1—C19	117.2 (8)
C10—C15—C18	122.0 (8)	C10—B1—C19	121.0 (8)
C14—C15—C18	119.2 (9)	C1—N1—C8	123.0 (9)
C11—C16—H16A	109.5	C1—N1—H1N	115 (10)
C11—C16—H16B	109.5	C8—N1—H1N	122 (10)
H16A—C16—H16B	109.5	C14—Br1_c—H14_c	0.6
C11—C16—H16C	109.5	C23—Br2_d—H23_d	1.0
H16A—C16—H16C	109.5	C21—Br3_a—H21_a	13.8
H16B—C16—H16C	109.5	C12—Br4_b—C13	37.1 (7)
С13—С17—Н17А	109.5	C12—Br4_b—H12_b	26.0
С13—С17—Н17В	109.5	C13—Br4_b—H12_b	62.2
H17A—C17—H17B	109.5	Br6 ⁱ —Br5—Br6	180.0
С13—С17—Н17С	109.5	Br8—Br7—Br8 ⁱⁱ	180.0

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*, -*y*+1, -*z*+1.