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Abstract. Alzheimer's disease (AD) is a complex and multi-
factorial disease. In order to understand the genetic influence 
in the progression of AD, and to identify novel pharmaceutical 
agents and their associated targets, the present study discusses 
computational modeling and biomarker evaluation approaches. 
Based on mechanistic signaling pathway approaches, various 
computational models, including biochemical and morpho-
logical models, are discussed to explore the strategies that may 
be used to target AD treatment. Different biomarkers are inter-
preted on the basis of morphological and functional features 
of amyloid β plaques and unstable microtubule-associated tau 
protein, which is involved in neurodegeneration. Furthermore, 
imaging and cerebrospinal fluids are also considered to be 
key methods in the identification of novel markers for AD. In 

conclusion, the present study reviews various biochemical and 
morphological computational models and biomarkers to inter-
pret novel targets and agonists for the treatment of AD. This 
review also highlights several therapeutic targets and their 
associated signaling pathways in AD, which may have poten-
tial to be used in the development of novel pharmacological 
agents for the treatment of patients with AD. Computational 
modeling approaches may aid the quest for the development 
of AD treatments with enhanced therapeutic efficacy and 
reduced toxicity.
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1. Introduction

Memory loss is naturally associated with old age (1). 
Specifically, dementia is the clinical condition whereby the 
severity of the symptoms, such as memory loss, begins to 
affect normal functioning and social life (2,3). Alzheimer's 
disease (AD) is a slow but progressive and lethal neurodegen-
erative disorder (4), and the risk of developing AD increases in 
individuals >65 years of age (5). However, cases of early-onset 
AD (EOAD) have been reported in individuals between 40 and 
50 years of age. EOAD occurs less frequently and is classified 
as presenile dementia of the Alzheimer type, whereas the 
late‑onset form of AD (LOAD) is classified as senile dementia 
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of the Alzheimer type and affects 7% of individuals >65 and 
40% of individuals >80 years of age (6).

AD is a complex and multifactorial disorder (7), the 
progression of AD is influenced by genetic, environmental and 
dietary factors. The genetic vulnerability is also associated 
with AD in autosomal dominant linkage and is considered to 
be early onset familial AD (8). Autosomal dominant familial 
AD is primarily attributed to mutations in the following three 
protein-encoded genes: Amyloid precursor protein (APP); and 
presenilin (PSEN) 1 and 2 (9). Mutations in APP and PSEN 
genes lead to increased production of amyloid β (Aβ)42, a small 
protein that is the primary component of senile plaques (10). It 
has been observed that environmental and genetic differences 
may also be risk factors for and govern sporadic AD, without 
following the autosomal-dominant inheritance pattern. The 
ε4 apolipoprotein E (APOE) allele is considered to be a 
genetic risk factor for AD (11,12). Genome-wide association 
studies have demonstrated that mutations in genetic material 
are frequently associated with AD, and mutations in specific 
genes are considered to be risk factors for the development of 
AD (13). The genomic location and functional characteristics 
of these AD-associated genes are provided in Table I, whereas 
a graphical depiction of AD-mediated genes, i.e., genes that are 
altered during AD, is presented in Fig. 1. In addition, previous 
reports have demonstrated that environmental and dietary 
factors, including toxic metals, air pollutants, pesticides and 
diet, are also risk factors for AD (14). Various toxic compounds, 
including iron (Fe), zinc (Zn), copper (Cu), aluminum (Al) and 
lead (Pb), have been reported to alter APP expression and Aβ 
aggregation, and a high cholesterol diet is reported to be impli-
cated in plaque formation and subsequent (15).

2. Neuropathology and disease mechanisms

Neurobiological data have demonstrated that AD is charac-
terized by the degeneration of neurons and disturbances in 
neuronal synapsis within cortical and subcortical areas (16). 
Amyloid plaques and neurofibrillary tangle (NFT) accu-
mulations have been reported to be governing mechanisms 
of AD in humans (17). Plaques are characterized by dense 
deposition of Aβ, while NFTs are clumps of microtubules 
associated with tau protein. Aβ consists of 39-43 amino 
acids, which are also found in APPs. Proteomic studies have 
demonstrated that APP is a transmembrane protein that aids 
neuron growth and post-injury repair (18,19). In AD, β- and 
γ-secretase are proteolytic enzymes that cleave APP into 
smaller fragments, which accumulate outside the neurons to 
form senile plaques (20,21). The basic mechanistic pathway 
of AD is presented in Fig 2A.

Glycogen synthase kinase 3 (GSK-3) is also associated 
with neuronal loss and is potentially implicated in AD, 
as GSK-3 forms associations with Aβ and NFTs, which is 
considered to be a major hallmark of AD (22). GSK-3 controls 
various metabolic processes, including phosphorylation, 
protein complex formation and subcellular distribution (23). 
Additionally, GSK-3 is considered to increase the production 
of Aβ and NFTs by hyperphosphorylation of tau proteins (24). 
Furthermore, disturbance in hippocampal volume, inflam-
mation and oxidative stress may also be implicated in the 
pathology of AD.

3. Neuronal receptors and their associations with AD via 
downstream signaling pathways

Acetylcholine (ACh) receptors and AD. ACh receptors are 
the most important target proteins that specifically bind to 
ACh neurotransmitters. Based on the affinities and speci-
ficities with neurotransmitters, ACh receptors are divided into 
nicotinic Ach receptors (nAChRs) and muscarinic receptors 
(MRs). nAChRs are localized to skeletal neuromuscular 
junctions and autonomic ganglia, whilst MRs are present in 
the brain and parasympathetic effector organs (25), and are 
associated with cognition in AD (26,27). Tsang et al (28) iden-
tified that M1/G‑protein coupling significantly decreased with 
the progression of AD, whereas the density of M1 receptors 
was not reduced. Furthermore, another in vitro study reported 
that an M1 receptor agonist, TBPB, reduced Aβ production, 
which indicates that the M1 receptor may be used as a novel 
therapeutic target for the treatment of AD (29). Furthermore, 
in a knockout mouse study, the M3 receptor was reported to be 
associated with fear learning and memory conditions, which is 
relevant to AD symptoms (30).

Another type of receptor that has been extensively inves-
tigated is the nicotinic Ach receptor (nAChR), which consists 
of two subtypes, α7 and α4β2 (31). Previous studies have 
reported that the expression of these receptors is reduced 
with the progression of AD (25,32). Young et al (33) also 
investigated the role of α7-nAChR in knockout mice and 
demonstrated an impairment in the attention of knockout mice 
compared with wild type mice (33). However, another study 
reported conflicting results in α7-nAChR knockout mice by 
demonstrating neuroprotective effects compared with normal 
groups (34). However, additional studies have reported that 
α7-nAChR agonists have led to improvements in cognitive 
deficits (35-37).

ACh receptors and signaling pathways in AD. It has been 
observed that Ach receptors are associated with improvements 
in cognitive deficits in patients with AD (38). For example, ACh 
receptors govern calcium signaling, which has been demon-
strated to improve learning and memory in aging (38,39). 
Upon activation, ACh receptors trigger increases in calcium 
levels, which induces various intracellular processes that 
mediate learning and memory (40). Calcium signaling medi-
ates three different types of effects, which include rapid, short 
and long-term effects. Short and long-term effects are the 
result of signaling cascades and changes in gene expression, 
respectively (41).

Specifically, following activation of calcium influx, 
long-term effects involve the activation of calcium/calmod-
ulin-dependent protein kinase II/IV (CaMKII/IV), extracellular 
signal-regulated kinase/mitogen-activated protein kinase 
(ERK/MAPK) and cAMP response element-binding protein 
(CREB). As a result, the activated enzymatic cascades alter 
the gene expression and may govern cognition symptoms 
via long-term potentiation (LTP) (42-45). An antagonistic 
association was observed between Aβ peptides and cholin-
ergic systems. The binding of Aβ to nAChRs is also a factor 
in the activation of calcium, and may induce certain down-
stream signaling pathways that lead to a decline in cognition 
(Fig. 2B) (46,47).
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Table I. Genes which increase the risk of AD.

 Genomic  
Gene location Encoded protein Functions

CASS4 20q13.31 Cas scaffolding protein Axonal transport and influence the expression
  family member 4 of APP and tau
CELF1 11p11.2 CUGBP Elav‑like family Tau modifiers, and these loci have been independently
  member 1 validated as AD susceptibility loci
FERMT2 14q22.1 Fermitin family member 2 Tau modifiers
HLA-DRB5 6p21.3 Human leucocyte antigen DRB5 Methylation in the locus associated with Aβ load and
   with tau tangle density
INPP5D 2q37.1 Inositol polyphosphate-5 Lipid metabolism, homeostasis and endocytosis, as
  -phosphatase D the likely modes through which INPP5D products
   participate in AD
MEF2C 5q14.3 Myocyte enhancer factor 2C Immune response and inflammation. Mutations are
   associated with severe mental retardation, seizure, 
   cerebral malformation and stereotypic movements
NME8 7p14.1 NME/NM23 family member 8 rs2718058 polymorphism appears to have a role in
   lowering brain neurodegeneration
PTK2B 8p21.2 Protein tyrosine kinase 2β Acts as an early marker and in vivo modulator of
   tau toxicity
SORL1 11q24.1 Sortilin-related receptor 1 Contributes to AD through various pathways, 
   processing of APP, involvement in Aβ destruction, 
   and interaction with apolipoprotein E and tau proteins
ZCWPW1 7q22.1 Zinc finger CW‑type and ZCWPW1 involved in epigenetic regulation. NYAP1
  PWWP domain containing 1 gene in ZCWPW1 region is involved in brain and
   neural development
SLC24A4 14q32.12 Solute carrier family 24 member 4 Potassium-dependent sodium/calcium exchanger. 
   SLC24A4 with methylation, and brain DNA
   methylation has a role in the pathology of AD
CLU 8p21.1 Clusterin Clusterin levels in the blood associated with faster
   cognitive decline in individuals with AD
PICALM 11q14.2 Phosphatidylinositol binding PICALM affects AD risk primarily by modulating
  clathrin assembly protein production, transportation, and clearance of Aβ
   peptide, but other Aβ-independent pathways are
   discussed, including tauopathy, synaptic dysfunction, 
   disorganized lipid metabolism, immune disorder and
   disrupted iron homeostasis
CR1 1q32.2 Complement component 3b/4b Astrocyte CR1 expression levels or C1q or C3b
  receptor 1 binding activity are the cause of the genome-wide
   association study identified association of CR1
   variants with AD
BIN1 2q14.3 Bridging integrator 1 BIN1 affects AD risk primarily by modulating tau
   pathology
ABCA7 19p13.3 ATP binding cassette subfamily Has a role in the regulation of Aβ homoeostasis in the
  A member 7 brain, which may be associated with Aβ clearance by
   microglia
EPHA1 7q34 EPH receptor A1 EPHA1 gene product in AD may be mediated via the
   immune system
CD2AP 6p12.3 CD2-associated protein CD2AP in mediating blood-brain barrier integrity
   and indicates that cerebrovascular roles of CD2AP
   may contribute to its effects on AD disease risk

AD, Alzheimer's disease; APP, amyloid precursor protein; NYAP1, neuronal tyrosine phosphorylated phosphoinositide-3-kinase adaptor 1; 
Aβ, amyloid β.
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Serotonin receptors and AD. An increased serotonin 
(5-hydroxytryptamine) concentration in the synaptic cleft has 
been reported to be a potential therapeutic strategy to slow the 
progression of AD (48,49). Serotonin targets specific receptors 
at postsynaptic neurons and mediates downstream signaling 
pathways that control cognition. It has been reported that ≥16 
different types of serotonin receptors exist, which are catego-
rized into 7 subfamilies (5-HT1-5-HT7) (50). All serotonin 
receptors are G-protein-coupled receptors (GPCRs), excluding 
the 5-HT3 receptor (50). The activation of these receptors 
stimulates downstream signal transduction pathways that 
govern certain intracellular responses. The protein kinase A 
(PKA) signaling cascade is responsible for the inhibition and 
stimulation of phospholipase C/protein kinase C, which regu-
lates the ERK/MAPK pathways (51,52). Subsequently, these 
activations affect cognitive impairment in neurodegenerative 
diseases.

Results from animal and clinical experiments have also 
demonstrated the importance of 5-HT in cognitive dysfunc-
tion and memory deficits (53). Increases in the expression 
of 5-HT1A receptors were reported to be associated with 
cognitive impairment, and these receptors are therefore 
considered to be potential targets for the treatment of AD (54). 
Furthermore, Garcia-Alloza et al (55) demonstrated that 

5-HT1B/1D receptors were associated with cognitive dysfunc-
tion in AD. It was also observed that the density of the 5-HT2A 
receptor was significantly reduced in the frontal and temporal 
cortical neurons in patients with AD compared with healthy 
participants. Furthermore, various studies have reported an 
important association between 5-HT2 receptors and cognitive 
decline in AD (56-58).

The serotonin receptor 5-HT6 has an important role in 
various mechanistic pathways within the brain (59). It is 
primarily expressed in the striatal, hippocampal and cortical 
areas (60). Notably, it was previously reported that inhibition 
of the 5-HT6 receptor improved learning and memory (61,62). 
Another animal study also demonstrated the importance of 
5-HT6, as the agonist SB-271046 improved age-associated 
deficits and spatial recognition memory in aged mice (63). 
It was also reported that, another agonist, WAY-181187, may 
also be used to modulate synaptic plasticity via attenuation of 
LTP (64).

Serotonin receptors and downstream signaling pathways in 
AD. 5-HT receptor-mediated signaling pathways are associ-
ated with improvements incognitive defects (65). The 5-HT6 
receptor stimulates G-proteins, which results in cAMP 
production via adenylyl cyclase activation (66,67). cAMP 
subsequently triggers PKA, which, via phosphorylation, 
activates CREB (67). A number of studies have indicated 
that the 5-HT6 receptor modulates various neurotransmit-
ters, including glutamate and Ach, to aid memory processes 
(Fig. 2C) (68,69).

Adrenergic receptors and AD. Adrenergic receptors are 
metabotropic GPCRs, which are divided into two major groups, 
α and β. Adrenergic receptors are typically sensitized for 
norepinephrine and epinephrine neurotransmitters. A number 
of studies have reported that adrenergic receptors (α and β) 
are closely associated with cognitive decline in AD (70,71). 
An expression study by Kalaria and Harik (72) demonstrated 
that β2 levels were increased in the cortex and hippocampus 
of patients with AD. In addition, a behavioral study reported 
that certain structural changes in adrenergic receptors were 
associated with the presence or absence of aggressive behavior 
in AD patients (73).

Dopamine receptors and AD. Dopamine receptors exhibit 
important roles in various human functions, including cogni-
tion and learning (50). Dopamine receptors are divided 
into two different classes, D1- and D2-like receptors, which 
consist of five subtypes. D1‑type receptors include D1 and 
D5 receptors, whereas D2-type receptors include D2, D3 and 
D4 receptors (74). Functionally, D1- and D2-type receptors 
function in synaptic plasticity and cognition by stimulating 
the protein signaling cascade of cAMP/PKA and CREB 
modulation (43,44). However, another study demonstrated that 
dopamine receptors were directly associated with AD and 
Parkinson's disease (50).

N‑methyl‑D‑aspartate (NMDA) receptors and its pathway in 
AD. NMDA/glutamate receptors are have been extensively 
studied, and are abundantly expressed in the cerebral cortex, 
hippocampus, nucleus accumbens and striatum (75,76). 

Figure 1. AD-mediated genes which are altered during AD. AD, Alzheimer's 
disease; APOE, apolipoprotein E; NME8, NME/NM23 family member 8; 
MADD, MAP kinase-activating death domain; CASS4, cas scaffolding 
protein family member 4; SORL1, sortilin-related receptor 1; CD2AP, 
CD2-associated protein; PSEN, presenilin; INPP5D, inositol polyphos-
phate-5-phosphatase D; FERMT2, fermitin family member 2; HLA-DRB5, 
human leucocyte antigen DRB5; MEF2C, myocyte enhancer factor 2C; 
RIN3, Ras and Rab interactor 3; TREM2, triggering receptor expressed on 
myeloid cells 2; CLU, clusterin; NYAP1, neuronal tyrosine phosphorylated 
phosphoinositide-3-kinase adaptor 1; EPHA1, EPH receptor A1; PLD3, phos-
pholipase D family member 3; PTK2B, protein tyrosine kinase 2β; PICALM, 
phosphatidylinositol binding clathrin assembly protein; CR1, complement 
component 3b/4b receptor 1; ZCWPW1, zinc finger CW‑type and PWWP 
domain containing 1; SLC24A4, solute carrier family 24 member 4; CELF1, 
CUGBP Elav-like family member 1; BIN1, bridging integrator 1. ADAM10, 
a disintegrin and metalloproteinase domain-containing protein 10; AAP, 
amyloid precursor protein; DGS2, DiGeorge syndrome/velocardiofacial 
syndrome complex 2.
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Variations in glutamatergic receptors are implicated in the 
pathogenesis of neurodegenerative diseases, such as AD, 
as they are associated with neuronal death (77). A reduced 
expression study on NMDA, NMDA receptor subunit 1 and 
subunit 2B proteins in rat models reported that there is a 
close association between NMDA receptors and cognitive 
deficits (78). Neuronal loss induced by amyloid plaques are a 
consequence of NMDA receptor modulation. Amyloid plaques 
activate NMDA receptors, which results in higher calcium 

influx into neurons, ERK1/2 activation and mediation of 
respective downstream enzymes (79-82). Therefore, NMDA 
signaling pathways have a potential role in the pathogenesis of 
cognitive dysfunctions (Fig. 2D).

Acetylcholinesterase (AChE) as an AD drug target. AChE is 
a type of hydrolase, and exhibits key functions in cholinergic 
neurotransmission in the autonomic and somatic nervous 
systems (83). AChE interacts with Ach, converting it into 

Figure 2. Mechanistic overview of AD with neuronal signaling pathways. (A) General mechanism of tau-mediated AD is presented. A double membrane is 
highlighted in silver containing an embedded complex of β-secretase and APP (80). β-secretase and APP protein are indicated by maroon and purple colors, 
respectively. The γ-secretase enzyme is acting to cleave APP into Aβ40 and Aβ42 subunits. The clump of Aβ40, termed amyloid plaques, are generated by a 
process termed oligomerization and interactions with other two enzymes, APoE and neprilysin IDE. The aggregated plaques lead to neuronal loss and synaptic 
dysfunctionality, which ultimately results in cognition deficits. (B) In the acetylcholine signaling pathway, acetylcholine stimulates calcium influx after 
interacting with its respective receptor at the synaptic complex. This calcium flux activates a series of signaling proteins, including CaMKII/IV, ERK/MAPK 
and CREB. As a result, the activated enzymatic cascade leads to altered gene expression and may govern cognition symptoms via LTP (40-43). (C) In the 
serotonin signaling pathway, activation of the 5-HT6 receptor stimulates G-proteins, which results in increased cAMP production via AC activation. This 
cAMP triggers PKA activation, which phosphorylates and regulates the CREB transcription factor, which subsequently leads to cognition dysfunction (65). 
(D) In the glutamic acid signaling pathway, activation of the NMDA receptor by glutamic acid mediates calcium signaling from presynaptic to postsynaptic 
neurons. CaM and ERK1/2 protein cascades are activated, which ultimately leads to CREB activation and cognition dysfunction (77-79). AD, Alzheimer's 
disease; APP, amyloid precursor protein; Aβ, amyloid β; APoE, apolipoprotein E; IDE, insulin-degrading enzyme; CaMK, calcium/calmodulin-dependent 
protein kinase; ERK, extracellular signal-regulated kinase; MAPK, mitogen-activated protein kinase; CREB, cAMP response element-binding protein; LTP, 
long-term potentiation; AC, adenylyl cyclase; PKA, protein kinase A; NMDA, N-methyl-D-aspartate; nAChRs, nicotinic acetylcholine receptors; VDCCs, 
voltage-dependent calcium channels; ER, endoplasmic reticulum; CaM, calmodulin; CaMKK; calcium/calmodulin-dependent protein kinase kinase; GPCR, 
G-protein coupled receptor.
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choline and acetic acid (82). Expression studies have demon-
strated that AChE is frequently present in motor neurons 
and certain other types of conducting tissue, including nerve 
and muscle, motor and sensory fibers, and cholinergic and 
non‑cholinergic fibers (84,85). In AD, cholinergic neurons 
mediate memory deficits and cognitive decline by reducing 
the level of ACh (86,87). Therefore, AChE may be considered 
as a novel target to reverse AD symptoms. Furthermore, 
butyrylcholinesterase (BChE) is also considered to be a minor 
player in the regulation of synaptic ACh levels (88). Therefore, 
inhibition of BChE may also be considered a valid approach to 
restore cholinergic function in AD (89,90).

4. The use of receptor‑based pharmaceutical agents to 
treat AD

AChE‑based inhibitors. The majority of neuromuscular 
problems are treated by AChE inhibitors, which are also 
considered to be first‑generation drugs for the treatment of AD. 
There are four established inhibitors (donepezil, galantamine, 
rivastigmine and tacrine) that are commonly used to improve 
cognition (91). However, tacrine is not as reputable due to poor 
tolerability (92,93). Donepezil demonstrated its neuroprotec-
tive effects by diminishing the excitotoxicity of glutamate by 
reducing Aβ load and cell toxicity, as well as increasing cell life 
span (94,95). Rivastigmine is a cholinergic agent that targets 
AChE and BChE. Clinical trials have indicated that rivastig-
mine improves cognition, with few side effects in patients 
with AD (96). Tacrine is another inhibitor that increases ACh 
levels from cholinergic nerve endings. Tacrine inhibits the 
activity of certain enzymes, including monoamine oxidase, 
and suppresses γ-aminobutyric acid (GABA) signaling, which 
results in the release of dopamine, noradrenaline and serotonin 
from nerve endings, and improves memory in patients with 
AD (97).

Recently, novel inhibitors have been synthesized from 
natural and synthetic sources for patients with AD. Huperzine 
A (Hup A) is an AChE inhibitor that is primarily used in the 
treatment of memory disorders. Hup A is highly potent and 
has a higher bioavailability compared with donepezil and 
tacrine, but is less effective compared with BChE inhibitors 
for treating AD symptoms (98). Recent attempts have demon-
strated that derivatives of Hup A, with aromatic rings, exhibit 
potential therapeutic effects for AD symptoms (99). However, 
further studies are required to assess the potential benefits of 
Hup A for treating AD (100). Camps et al (101) synthesized 
hybrids of innovative tacrine and Hup A as a cholinesterase 
agonists to treat AD. This designed agonist exhibits different 
functional moieties at basic nuclei of chemical compounds, 
and provided good results at various positions. The halogen 
moiety had a higher activity and increased therapeutic effec-
tiveness of treating AD compared with tacrine. However, it 
also exhibits limited inhibition of BChE. Furthermore, the 
agonist designed by Camps et al (101) also has the propensity 
to cross the blood-brain barrier.

Huperzine B (Hup B) is also considered to be an AChE 
inhibitor with reversible and effective properties. Hup B 
is less potent compared with Hup A, and is also used as a 
template structure to synthesize novel compounds that inhibit 
AChE (102). Another potent derivative is bis-Hup B, which 

consists of two Hup B molecules connected to a carbon-nitrogen 
chain by an amine group. The bis-Hup B compound has exhib-
ited higher inhibitory potential against AChE compared with 
against BChE (103).

Berberine is another candidate compound with multiple 
biological activities, including the potential to cross the 
blood brain barrier and target the central nervous system 
(CNS). Berberine acts as an inhibitor of AChE (104,105) 
and also performs a neuroprotective function by reducing 
NMDA-induced excitotoxicity (105).

β‑secretase (BACE) as a therapeutic target for AD. A number 
of BACE1 inhibitors are being synthesized for the treatment of 
AD (105). OM99-2 is a peptide inhibitor of BACE1 that exhibits 
strong hydrogen binding within the active binding region of 
target proteins (106-108). KMI-429 is also considered to be an 
effective BACE1 inhibitor, with a 50% inhibition concentration 
(IC50) of 3.9 nM. In a mouse study, Asai et al (109) demonstrated 
that Aβ production was reduced in APP transgenic and normal 
mice following KMI-429 treatment. Another mouse study was 
performed by Luo and Yan (110) using the GSK188909 agonist 
(non-peptide) against BACE1. The results indicated potential 
therapeutic effects of GSK188909-induced inhibition of 
BACE1, via reduction of Aβ levels in the brain. These results 
demonstrate that GSK188909 may be considered a beneficial 
inhibitor in the treatment of AD (110,111). In addition, another 
orally administered inhibitor, 4-phenoxypyrrolidine, is also 
considered to be a potent agent against BACE1, and it has 
similar functions and pharmacokinetic/pharmacodynamic 
properties to GSK188909 (110,112). Furthermore, GRL-8234 
is also a potent inhibitor of BACE, with an inhibitory constant 
(Ki) value of 1.8 (107). Chang et al (113), in a study on trans-
genic mice, demonstrated the prominent effects of GRL-8234 
on cerebrospinal fluid (CSF) and Aβ production. CTS-21166 
has also been reported to reduce Aβ levels in the brain by 
>35-40%, and was the only inhibitor to pass phase I clinical 
trials (114).

γ‑ and α‑secretase‑based drugs for AD. The designing of 
novel γ-secretase agonists remains a challenging approach 
due to its non-amyloid behavior and interaction with meta-
bolic processes. Various undesired effects are also generated, 
including gastrointestinal lethality, hematological toxicity and 
skin reactions (114).

The first compound that was synthesized as a γ-secretase 
agonist was DAPT (115,116). A pharmacokinetic evalua-
tion study demonstrated that DAPT overdose is required to 
inhibit Aβ production in the neuronal cells of APP transgenic 
mice (117). LY-450139 (semagacestat) is also an inhibitor of APP 
cleavage (118). However, certain side effects are associated with 
LY-450139, including thymus atrophy and a reduction in the 
number of lymphocytes (118). BMS-708163 is another inhibitor 
that is reported to reduce Aβ40 levels in CSF without causing 
adverse effects (119). PF-3084014, a non-competitive compound, 
has been investigated in mice and humans (118). Begacestat 
(GSI-953) is also an effective agonist against γ-secretase, which 
controls Aβ production. Furthermore, in Tg2576 transgenic 
mice studies, high doses of GSI-953 reduced Aβ41 levels in the 
brain (120,121). A clinical study was performed using GSI-953 
for AD treatment (119,122), and the results demonstrated that 
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GSI-953 does not exhibit a positive effect on the reduction of 
Aβ40 levels in the CSF of patients with AD (120).

In addition, a number of candidate molecules have 
been synthesized by considering α-secretase as a target 
molecule (123). Of these, etazolate (EHT-0202) activates 
neuronal α-secretase and, as a result, enhances soluble APP 
production (124). Etazolate was investigated in a phase II 
study in patients with mild-to-moderate AD. Results revealed 
that etazolate exhibited good clinical efficacy in patients with 
AD (124). Bryostatin-1 and exebryl-1 are potent inhibitors 
of α‑secretase, which significantly affect Aβ production and 
improve memory (125).

GSK‑3 inhibitors in the treatment of AD. Hu et al (126) demon-
strated the importance of GSK-3 as a receptor molecule in the 
prevalence of AD. GSK-3 agonists may have positive thera-
peutic effects on patients with AD. The investigated compound 
SB216763-a (a GSK-3 inhibitor) was synthesized for potential 
use in the treatment of AD. Functionally, SB216763 reduced 
phospho-glycogen synthase by 39% and increased glycogen 
levels by 44%, which demonstrates its potent inhibition of 
receptor activity (126).

It is difficult to fully understand all of the receptor‑based 
mechanistic signaling pathways and the interactions of 
neurotransmitters with drugs by experimentation. Therefore, 
computational modeling and simulation approaches are 
considered to be important for targeting and investigating 
the neurodegeneration disorders. The present review will 
highlight a number of computational modeling attempts and 
biomarker interpretations to improve the understanding of the 
pathogenesis and symptoms of AD.

5. Computational modeling and simulations of AD

To interpret the basic mechanism of AD, computational models 
have been designed on the basis of amyloid plaques, NFTs and 
hippocampus functions. Furthermore, additional models are 
based on neuronal functionality and the synaptic transmission 
of neurotransmitters.

Biochemical and morphological modeling. Aβ is considered 
to be a major hallmark and pathological feature of AD (127). 
Based on Aβ aggregation factors, kinetics, mechanistic path-
ways and its morphological appearance, Aβ is considered to 
be a key feature in the design of computational models for 
AD. Experimental and theoretical investigations on Aβ have 
investigated the kinetics, mechanistic pathways and fibril-
logenesis (128-138). Various computational models have 
been proposed on the basis of Aβ kinetics, which include 
fibril elongation and Aβ self-association (130,137). Through 
computational modeling, the monomers of the oligomers of 
β‑peptides in elongated fibrils were arranged into compact 
aggregations of complexes of pro-peptides in irregular 
symmetry (132,133,136). The key factors regarding oligo-
meric β-peptides in previous models include the exclusion of 
filaments and fibril discrimination, and the use of non‑physio-
logical (pH ~1) experimental conditions (139).

Pallitto and Murphy (140) designed a mathematical model 
on the basis of the kinetics of Aβ aggregation. The core feature 
of this model was identifying that Aβ is partitioned between 

two pathways. The first pathway produces a stable structure 
of monomers and dimers, and the second pathway produces 
an unstable β-sheet, containing intermediate-aggregated 
oligomers (141). A model by Kim et al (131) further explained 
the involvement of Aβ oligomers in the fibrillogenic pathway 
by evaluating the effect of urea on aggregation kinetics, 
size distribution and aggregate morphology. An enhanced 
urea concentration has a direct effect on β-sheet contents, 
including a decrease in the aggregation size and changes in the 
morphology of aggregates. The computational model results 
supported the hypothesis that the amyloidogenesis pathway 
and the globular aggregates were involved as intermediates 
rather than an alternative aggregated species.

Plaque‑based computational modeling. Amyloid plaque 
formation is also considered a key biochemical concept to 
design models (142,143). In addition, the kinetics of APP 
processing and downstream intracellular interactions of 
calcium and Aβ were observed in the AD brain (144-146). 
The secretases (α, β and γ) function as cleaving agents of APP. 
It has been observed that secretase agonists target APP and 
minimize the Aβ production, and may slow the progression of 
AD (147). Based on intracellular calcium and Aβ interactions, 
a computational model was built to account for established 
characteristics of AD, which include its irreversibility, acute 
to chronic pathology and inherent random characteristics of 
sporadic AD.

Anastasio (148) developed a computational model of AD on 
the basis of an amyloid hypothesis. The regulatory pathway in 
the model was justified by interrelated equations. Furthermore, 
the molecular conditions were symbolized by arbitrary integer 
values in the equations, and a set of rules were employed to 
justify the changes in model elements, which change the levels 
of other elements. The model explained the disruption of Aβ 
regulation through the interconnection of various diseases 
and pathological processes, including cerebrovascular disease 
(CVD), inflammation and oxidative stress. More precisely, 
it was reported that CVD contributes to the progression of 
AD. Additionally, multiple target therapies were more effec-
tive compared with single target treatments. In addition, 
Anastasio (149) designed an additional model based on the 
knowledge of previous model evaluations and incorporated 
factors such as the role of estrogen in the regulation of Aβ 
to predict effective AD therapy. The predicted model results 
demonstrated that, by administering non‑steroidal anti‑inflam-
matory drug therapy, estrogen levels decrease, which leads 
to marked reductions in Aβ. Furthermore, Anastasio (150) 
extended this work to further understand the synaptic plas-
ticity dysregulation of Aβ. The predicted results indicated a 
normalization of nAChRs. Neuronal proteins responded to the 
neurotransmitter ACh, which addresses the effects of Aβ on 
synaptic plasticity. These results contributed substantially to 
the understanding of how combinations of drugs may be used 
in the pathogenesis of synaptic diseases (150).

Craft et al (151) investigated the association between AD 
treatment effects and Aβ levels in different parts of the body. 
The study investigated fluctuations in Aβ levels in the brain, 
CSF and plasma prior to and following medication states. This 
was achieved by employing an infinite set of nonlinear differ-
ential equations. Based on the polymerization ratio calculation, 
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results indicated that, when values were >1, Aβ amalgamation 
increased indefinitely. Whereas the Aβ levels in the CSF and 
plasma remained in a steady state. However, polymerization 
ratio calculations <1 demonstrated a steady-state of Aβ levels 
throughout the body.

GSK‑3b, p53, Aβ and tau‑based modeling. In intracellular 
signaling, multiple proteins are interconnected through 
specific receptor‑mediated pathways. GSK‑3b, p53, Aβ and 
tau proteins are observed in computational modeling to 
investigate the mechanistic pathways that mediate AD (152). 
A multi-compartment model for GSK-3b, p53, Aβ and tau 
proteins was designed to determine the associations among 
these proteins (152). The predicted results demonstrated that 
abrupt changes in DNA damage the p53 and Mdm2 complex. 
As a result, GSK-3b/p53 complexes are formed, which enhance 
the transcriptional activity of p53 and GSK-3b. Consequently, 
there are increases in the production of Aβ, Mdm2, mRNA 
and tau phosphorylation. Computational model results indi-
cate that, in normal states, Aβ is degraded in cells and, upon 
dephosphorylation, degradation become optimized within 
cells. However, under conditions of stress, Aβ production and 
tau phosphorylation increase. Therefore, adjusting the DNA 
damage parameter may clear Aβ and stop the phosphorylation 
of the tau protein. Additionally, plaque and tangle formation 
were independent, even with GSK-3b overactivity (152).

In another computational model based on Aβ functionality, 
which was developed by Diem et al (153), the results indicated 
that the deposition of Aβ in human artery walls reflect the 
lymphatic drainage pathway with the progression of AD. 
Initially, the diffusion of Aβ occurs from the brain to basement 
membranes in capillaries and arteries via extracellular spaces 
of gray matter in the brain. However, the exact mechanism of 
perivascular elimination of Aβ remains under consideration. 
Based on this mechanistic approach, a computational model 
was designed to explain the process of periarterial drainage 
with regards to diffusion in the brain, and demonstrated that 
periarterial drainage along basement membranes is rapid 
compared with diffusion. The predicted results indicated that 
failure of periarterial drainage is a mechanism underlying the 
pathogenesis of AD, in addition to complications associated 
with its immunotherapy (153).

Immunity‑based modeling. Proctor et al (154) investigated the 
passive and active immunization effects against Aβ, plaques, 
phosphorylated-tau and tangles. In their extended model, Aβ 
clearance was elicited by the administration of antibodies, 
which were modeled by the addition of species termed 
‘anti-Aβ’ and ‘Glia’ (with an additional species to represent 
microglia). Both additions (antibodies and microglia) were run 
by predetermined time points during simulation. The predicted 
model results demonstrated that immunization helped to clear 
the plaques. However, immunization only exhibited limited 
effects on soluble Aβ, tau or tangles. The results of this model 
demonstrated that immunotherapy against Aβ is more effec-
tive during early stages of AD.

An additional network interaction model of Aβ, neuroin-
flammation, mitochondrial dysfunction and lipid metabolism 
dysregulation was designed by Kyrtsos and Baras (155). The 
basic purpose of this computational model was to investigate 

the short and moderate level effects of inflammation, and 
mutational effects on the ApoE allele. Their model was based 
on cellular and molecular levels. In cellular levels, four 
different types of cells, which included neurons, astrocytes, 
microglia and brain endothelial cells, were used to interact 
with each other. While at the molecular level, each cellular 
downstream metabolic network was addressed to mediate 
the metabolic responses of particular cell types. Modeling of 
chemical species for each cell type was performed by average 
distribution. The simulation results indicated that the ApoE4 
allele ultimately led to an increase in Aβ. This increase causes 
ATP to collapse and an elevation of glutamate levels, which 
is the major cause of neuronal loss in a local region. The 
computational model results demonstrated that inflammation 
may be considered as a key component in the pathogenesis of 
AD. Furthermore, inflammation strength and duration are also 
important factors in AD progression (155).

Single cell‑based models for AD. To interpret the Aβ function-
ality more adequately against AD, single-cell-based models 
were employed. The different cell-based-models act as a single 
framework, which investigates the different properties of 
individual cells. Chen (156) revealed that a higher expression 
of Aβ in cells leads to intrinsic disruption of electrical proper-
ties in the dendrites of the hippocampus. In the dendrites of 
pyramidal cells, Aβ bocks the A-type potassium channels, 
which results in enhanced membrane excitability and calcium 
influx (156). Hyperexcitability of dendrites gradually leads to 
degenerative changes or neuronal cell death (157). The effect 
of Aβ was modeled by decreasing the maximal conductance in 
transient A-type potassium channels. The simulation results for 
this experimental study demonstrated that, when Aβ affected 
the potassium current, there was increased invasion of back-
propagated action potentials (bAPs) from the cell body into the 
apical dendritic trunk of CA1 pyramidal neurons. In another 
study by Hoffman et al (158), similar results were observed 
following the administration of pharmacological agents that 
blocked the A-type potassium current (158). The simulation 
results indicated that the disturbance of normal dendritic elec-
trical activity caused by an intra-articular blockade produces 
significant differences between the depolarizations of Aβ 
and normal cases in the distal oblique branches compared 
with the dendritic trunk. Furthermore, a number of studies 
have reported that modified synaptic membrane properties 
disturb the firing properties of CA1 pyramidal neurons under 
current and voltage clamp conditions by the amalgamation of 
Aβ (159,160).

In addition, Abramov et al (161) identified that increases 
in endogenous Aβ enhances the initial release probability 
(p0) at the CA3-CA1 synapses of the hippocampus, without 
altering the intrinsic neuronal excitability and postsynaptic 
function. The increased level of p0 is also directly involved in 
the destruction of vesicles by increasing Aβ production (162). 
Furthermore, a hippocampal CA1 pyramidal neuron model 
demonstrated that the enrichment in p0 affects the synaptic 
short‑term plasticity of the synapse and the firing probability 
of the CA1 output neuron (163).

Neural network and drug‑based models for AD. A neural 
network model of corticohippocampus formation was 
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designed to investigate the effects of scopolamine, a drug that 
blocks cellular effects of ACh, on the encoding and retrieval of 
memories in paired associate tasks (163). Four modules were 
present in this model by Hasselmo and Wyble, which included 
the entorhinal cortex (EC), dentate gyrus (DG), region CA3 and 
region CA1 (164). In each module, ‘memory’ was represented 
as a pattern of neural activation. The information following the 
patterns among the four modules were represented as EC to 
DG to CA3 to CA1. The represented items, such as individual 
words, in CA3 neurons exhibited weaker recurrent connec-
tions compared with contextual information. Their detailed 
model simulation demonstrated that scopolamine impaired the 
encoding of new input patterns, but had no effect on previously 
learnt recalled patterns. Results indicated that impairment 
is selective in free recall, upon the recognition of items that 
are not already encoded. This model was the first attempt to 
simulate the effects of a drug on human memory. The experi-
ment investigated and quantified the physiological effects at a 
cellular level. To design novel drugs against neurodegenerative 
diseases, modeling attempts to interlink the behavior, physi-
ology and molecular biological aspects in a single constrained 
model for human memory functions.

An additional computational modeling approach was 
established to investigate the modulation and control storage, 
and AD dynamics within the hippocampal CA3 network on the 
basis of subcortical cholinergic and GABAergic inputs (165). 
To build upon Meschnik and Finkel's model (165), Buzsaki 
developed a ‘two-stage’ memory model and highlighted the 
importance of interneurons, basket cells and chandelier cells in 
memory (166-168). Furthermore, Lisman et al (168) designed a 
computational model on the basis of embedded γ cycles within 
the θ cycles. Their results demonstrated that attractor‑based 
auto-associative memory may be implemented by the synchro-
nization of γ-frequency ranges. Each newly arrived input 
pattern at the commencement of θ cycle with embedded 5‑10 
γ-cycles generated a network activity to congregate various 
γ-cycles as a steady attractor, which characterizes the stored 
memory. Their predicted results support the hypothesis that 
CA3 pyramidal cells generate distinct behavioral functions by 
bursting and spiking patterns. In addition, the change between 
behavioral states associated with the online processing and 
recall of information is regulated by cholinergic input in the 
hippocampus. A deficiency of cholinergic neurons is associ-
ated with a reduction of γ frequency. The reduction of γ-cycles 
within the θ rhythm results in memory loss and cognition, 
which is associated with AD (169).

Roberts et al (170) created a cortical circuitry computational 
model using preclinical data available on pharmacological 
receptors for cholinergic and catecholamine neurotransmit-
ters (170). Working memory was identified as a measure of 
cognitive functions. The pathology of AD includes neuronal 
and synaptic loss, and decreases in cholinergic tone. The 
model explains the differential effects of an NMDA agonist, 
memantin, in EOAD and LOAD conditions. In addition, the 
model also explains the inhibition of the NMDA receptor 
NR2C/NR2D subunits, which are present on inhibitory inter-
neurons; the NMDA receptor is inhibited to compensate for 
the higher excitatory decay detected with pathology.

Bianchi et al (171) developed a memory encoding and 
retrieval model in the brain based on a previous computational 

study by Cutsuridis et al (172). Their model explains that 
by enhancing CREB activity, hippocampal CA1 pyramidal 
neuron properties change, which may contribute to improve-
ments in memory storage. The CREB effects were modeled 
with a decrease in the conductance peaks of medium 
after-hyperpolarization (52%) and small after-hyperpolariza-
tion (64%), and increased conductance peak of AMPA (266%) 
currents. The results demonstrated that, by improving CREB 
function in AD-like conditions, the stored pattern in network 
recall quality increased significantly. The results confirmed 
that CREB-based agonists may be used as a novel approach 
for the treatment of AD.

The synaptic deletion and compensation model. The initia-
tion of synaptic deletion and compensation model was initially 
proposed by Horn et al (173) and further developed by Ruppin 
and Reggia (174). The artificial neural progression model for 
AD (173) deviates from the excitotoxicity, which does not 
account for cognitive impairment. It has been observed that 
a 50% loss of synaptic connections is considered a primary 
factor for cognitive deficits. In earlier stages of AD, the loss of 
connections is compensated by strengthening the remaining 
connections. Horn's model demonstrated that synaptic connec-
tions are associated with memory loss and disturbances in 
learning patterns. The rate of memory deterioration may be 
minimized by enhancing the remaining connection weight of 
a constant multiplication factor (173).

The synaptic runway model was based on associative 
memory and memory storage as a pattern of neuronal spatio-
temporal activation (175,176). Memory storage activates 
different analog patterns that interact with previous associa-
tions. For example, if there is an overlap between patterns or 
if the memory capacity is exhausted. The results demonstrated 
that the significant increase in the number of associations 
stored by the network may govern pathological increases in 
the strength of synaptic connections. As a result, such synaptic 
connections give rise to an increase in neuronal activity, high 
metabolic demand and may eventually cause excitotoxicity. 
The synaptic runway model investigated two basic mechanistic 
approaches to memory, encoding and retrieval, to attempt to 
reduce neuronal cell death (176). In normal conditions, neuro-
modulation is satisfactory to preclude the variations in runaway 
synaptic modification (RSM). Whereas, in manifestations of 
disease conditions such as AD, the RSM neuromodulation is 
inevitable. However, the threshold levels for RSM in AD are 
lower compared with controls (177).

Bhattacharya et al (178) designed a computational model to 
determine the association between active synapses and α-band 
frequency amongst individuals that are healthy, exhibit mild 
cognitive impairments and patients with AD. An additional 
aim was to duplicate the dysfunctional electroencephalogram 
experimental data in patients with AD. Their model simulated 
neurological regions composed of various multilayer neurons, 
three for the thalamus and four for the cortex module. However, 
this model was limited as it did not simulate the association 
between α-band frequencies and ACh.

Neurocomputational model at system level. Computational 
exploration of AD has reported changes in hippocampal func-
tionality and behavioral performance (178,179). For example, 
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the ability to learn and adapt learning to novel situations is 
impaired in AD. Moustafa et al (180) also identified that simu-
lated learning occurred through an interaction between the 
hippocampal region and basal ganglia (180). Hebbian learning 
and temporal difference algorithms were used to train the 
model, and the results indicated that hippocampal damage 
leads to impaired learning performance.

Additionally, a computational model by McAuley et al (181) 
investigated the functional association between cortisol 
and the hippocampus in aged individuals and patients with 
AD (180). The results of this model demonstrated the existence 
of an antagonistic association; as cortisol levels increase, there 
is a decline in hippocampal functions and cognitive perfor-
mance. An estimation approach of this model depicts that, in 
90-year-old individuals, increases in cortisol levels lead to a 
30% reduction in hippocampal functions. A limitation of this 
model was that it only considered the effect of cortisol recep-
tors in the hippocampus; the effects of cortisol on other brain 
regions were not considered.

6. AD Biomarkers

Neurological biomarkers. Generally, a biomarker is a param-
eter of physiological, biochemical or anatomical domains 
that indicates normal biological and pathological processes 
or reactions to a therapeutic intervention (182). Biomarkers 
are currently considered to be important factors in the diag-
nosis of neurodegeneration (183). AD biomarkers, which 
include Aβ plaques, and tau‑associated and fluid biomarkers, 
have been validated in clinical trials (183), and are currently 
being used within therapeutic trials (184). There are two 
major categories of AD markers, which are Aβ plaques and 
tau-associated neurodegeneration. Furthermore, certain 
types of AD models based on imaging measurements and 
CSF analytes exist (185-189). Various targeted proteins and 
receptors may also be used as markers by inhibiting their 
downstream signaling pathways by using antagonists. Aβ and 
tau proteins are employed as early markers in the treatment 
of certain cognitive disorders, including LOAD, lewy body 
dementia, mild cognitive impairment, vascular dementia and 
frontotemporal lobar degeneration (190,191).

Neuronal death occurs due to a loss of neuronal 
synapses (192,193), which results in structural and functional 
changes (which may be used as markers) in brain regions 
associated with memory, which include frontal, temporal and 
parietal lobes (194). The strength of these markers is dependent 
upon the time scale of disease, whether it is early or late-stage 
AD. The disturbance of a single neuron or neurotransmitter 
could not be considered as a sole factor for the prevalence of 
neurodegenerative diseases; the risk of developing neurodegen-
erative diseases may be due to the disruption of interconnected 
signaling pathways across multiple neurological regions (195). 
For example, damage to neuronal cells or neurotransmitters 
have been reported to govern atrophy of structures in frontal, 
temporal and parietal lobes (196-200).

Studies concerning AD have demonstrated that damage 
may occur at various regions of the brain, including the 
neocortex, EC, hippocampus, amygdala, nucleus basalis, 
anterior thalamus and the corpus callosum within these 
lobes (201-204). Neuronal damage results in atrophy of 

structures in the frontal, temporal and parietal lobes. Consistent 
with the heterogeneous symptomatology of AD, damage may 
be localized to numerous sites within these lobes. An abnormal 
paleness of the ceruleus locus, which contains neuromelanin 
neurons, is also considered to be a key feature of AD (205). 
The neuropathological structures, NFTs and senile plaques, 
within affected brain regions of AD are also considered to be 
markers. The accumulation of NFTs in the affected regions 
following neuronal death causes abnormalities in structure 
of the cytoskeleton, which is important for preserving the 
cell structure as well as for transportation (206). In addition, 
the hyperphosphorylation of tau interrupts axonal transport, 
which leads to disturbances in various molecular movements 
and results in neuron death (202,207).

BACE1 and amyloid plaque‑based biomarkers. The secre-
tases (β- and γ-secretase) cleave APP into various types 
of Aβ protein. It has been reported that an elevated level of 
BACE1 activity may contribute to the amyloidgenic process 
in AD (207,208). Therefore, BACE1 is considered to be a 
biomarker for monitoring amyloidogenic APP metabolism in 
the CNS (209).

Aβ is the fundamental element of senile plaques, which 
is considered to be a common biomarker for AD (210). 
Depending on the structure of senile plaques, they are classi-
fied as either neuritic or diffuse plaques (201). Neuritic plaques 
have spherical morphology with a periphery of neurites, which 
may include axons, astrocytes and microglia, with neigh-
boring dense amyloid proteins (206). Diffuse plaques have 
an amorphous morphological appearance without neurites. 
Diffuse plaques may be present in normal aging brain 
tissue (211). However, a number of studies have also reported 
that diffuse plaques may or may not be ancestors of neuritic 
plaques (201,212). Amyloid angiopathy is a generic term for 
blood vessel (arteries, veins and capillaries) disease. Amyloid 
angiopathy is also considered to be a marker for AD, as it 
involves the accumulation of amyloid protein in the cerebral 
blood vessels of patients with AD (213-215).

Glucose metabolism and oxidative free radicals as biomarkers. 
Additional reported biomarkers for the pathogenesis of neuro-
degenerative diseases include glucose metabolism, oxidative 

Table II. Biomarkers based on clinical and exploratory 
research.

 Clinical Exploratory
AD biomarkers research research

Neurological - Yes
BACE1 Yes -
Amyloid plaque-based Yes -
Glucose metabolism  Yes -
LOAD Yes -
Blood-based Preclinical  

‘-’ indicates that no data is available at present. AD, Alzheimer's 
disease; BACE, β-secretase; LOAD, late-onset AD.
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free radical damage to mitochondrial DNA, neuroreceptors and 
neurotransmitter functional activity (216,217). It has been reported 
that decreases in glucose metabolism (218,219) and augmented 
oxidative free radical damage (220-222) are responsible for 
neuronal death in the temporal and temporoparietal regions of 
the brain. Furthermore, changes in the neurotransmitter activity 
may govern abnormal types of neuroreceptor responses. Data 
mining revealed that a reduced density of nAChR, and sero-
tonin and α2-epinephrine receptors (217), reduces the binding 
of neurotransmitters and may disturb synaptic efficiency. Any 
modulator of neurotransmitters, including ACh, serotonin and 
GABA, may be considered beneficial in the improvement of 
cognition in AD. In addition, other neurochemical markers, 
including N-acetylaspartate and myoinositol, have also been 
reported as potential treatments for AD (223).

LOAD biomarkers. Modeling AD biomarkers becomes more 
important in the elderly state, due to the neurodegenerative 
nature of AD. A previous study using autopsy demonstrated that 
the medial temporal tauopathy may be decreased by two-thirds 
after the age of 50, and is present in the majority of individuals 
>70 years of age (224). Furthermore, a number of studies 
have reported that tauopathy precedes LOAD (224-226). In 
Aβ deposition, CSF levels of Aβ42 and amyloid PET scans 
are highly effective parameters for biomarkers to accurately 
identify EOAD (227).

It has been observed that magnetic resonance imaging 
(MRI) studies may be considered as quantitative biomarker 
measures for AD, on the basis of calculating the values of 
AD-signature regions (228). The summation calculation is 
primarily performed by an anatomic atlas that is spatially 
registered to the subject's imaging study (228). Additional 
potential AD biomarkers that may be employed to investigate 
the pathology of AD include visinin-like protein 1, a CSF 
analyte (229), diffusion and perfusion MRI (230) and agonist of 
tau PET imaging (231). These biomarkers are reported as novel 
suggestions and limited experimental data exists currently.

Blood‑based biomarkers. Certain blood-based proteomic 
biomarkers are also being used for AD treatment (232). 
However, there are disadvantages associated with the complex 
nature of blood-based biomarkers. One of the most prominent 
hindrances is the presence of multiple dynamic ranges of 
proteins in the blood (233). The blood-brain barrier is inter-
rupted in aging patients with AD. This results in enhanced 
permeability, which is considered to be the first indicator of 
cognitive impairment in AD (234). The association between 
the blood and the brain is strengthened by blood-brain barrier 
disruption. This association may aid with the detection of 
protein-based biomarkers during the earlier stages of AD (235). 
However, blood-based biomarker associations with AD are 
lower compared with the CSF, due to the reduced peptide (Aβ) 
concentration in the CSF (235). AD biomarkers at preliminary 
exploratory stages, and biomarkers that are currently being 
tested in clinical studies are presented in Table II.

7. Conclusions and future directions

AD is a slow neurodegenerative disorder in which patho-
physiological irregularities lead to obvious symptoms such 

as severe memory loss. This review has demonstrated that 
mechanistic gene/receptor-mediated signaling pathways may 
be used as novel therapeutic targets to treat cognitive symp-
toms. To interpret such receptors and their effects on Aβ, 
various computational modeling and simulation approaches 
have been employed to identify novel targets for AD. 
Furthermore, identification of potential biomarkers may also 
be considered an important approach prior to the implementa-
tion of in vitro and in vivo experiments. Therefore, the design 
of interventional approaches (modeling and simulations) that 
target the appropriate molecular pathways in developmental 
stages of AD depends upon specific AD biomarkers. This may 
improve treatment by allowing individual patients to receive 
the most appropriate drug for them in the shortest amount of 
time (236-240). However, current AD models have limitations, 
which include not explaining the effects of mechanistic path-
ways and cytotoxicity. Furthermore, there is no comprehensive 
explanation of the ACh neuronal transmission that leads to AD 
and other neurodegenerative diseases. Future models should 
aim to investigate and explain the molecular mechanisms 
underlying the implication of ACh in the development of AD in 
the human hippocampus. In addition, drug simulations should 
also be addressed to determine their effects on other brain 
compartments. Notably a model has already been suggested 
to explain the dysfunction of ACh in AD (164). Finally, drug 
models may be more helpful if they considered key knowledge 
regarding dosage form, targeted receptors and their associ-
ated downstream signaling pathways. Detailed computational 
modeling and simulation approaches are essential to under-
standing what chemical compounds may be synthesized in 
order treat or cure AD.
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