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Circulating-free RNAs (cfRNAs) have been regarded as potential biomarkers for “liquid
biopsy” in cancers. However, the circulating messenger RNA (mRNA) and long noncoding
RNA (lncRNA) profiles of lung cancer have not been fully characterized. In this study, we
profiled circulating mRNA and lncRNA profiles of 16 lung cancer patients and 4 patients
with benign pulmonary nodules. Compared with benign pulmonary nodules, 806 mRNAs
and 1,762 lncRNAs were differentially expressed in plasma of lung adenocarcinoma
patients. For lung squamous cell carcinomas, 256 mRNAs and 946 lncRNAs were
differentially expressed. A total of 231 mRNAs and 298 lncRNAs were differentially
expressed in small cell lung cancer. Eleven mRNAs, 51 lncRNAs, and 207 canonical
pathways were differentially expressed in lung cancer in total. Forty-five blood samples
were collected to verify our findings via performing qPCR. There are plenty of meaningful
mRNAs and lncRNAs that were found. MYC, a transcription regulator associated with the
stemness of cancer cells, is overexpressed in lung adenocarcinoma. Transforming growth
factor beta (TGFB1), which plays pleiotropic roles in cancer progression, was found to be
upregulated in lung squamous carcinoma. MALAT1, a well-known oncogenic lncRNA,
was also found to be upregulated in lung squamous carcinoma. Thus, this study provided
a systematic resource of mRNA and lncRNA expression profiles in lung cancer plasma.

Keywords: lung cancer, high-throughput sequencing, plasma RNA, cell-free RNAs, expression profiles
INTRODUCTION

As the leading cause of cancer deaths, lung cancer is a serious threat to human health, accounting for
over 1.8 million deaths in 2020 (1). Lung cancer consists of two histological subtypes: non-small cell
carcinoma (NSCLC) and small cell lung carcinoma (SCLC) (2). As the mainly subtype, NSCLC,
accounting for approximately 80% lung cancer, includes lung adenocarcinoma (LUAD), lung
squamous cell carcinoma (LUSC), and large cell carcinoma. Although the relevant therapeutic
strategies of surgery, chemotherapy, and target therapy for lung cancer have been improved over the
past years, the prognosis is still unsatisfied (3). Due to the advanced stage of lung cancer at diagnosis,
the early detection of the disease is most important for the promotion of patients’ prognosis.
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The promising non-invasive method for early detection of
lung cancer is the examination of specific biomarkers in blood
(4). In 1948, cell-free nuclear acids [cfNA, such as DNA,
messenger RNA (mRNA), and noncoding RNA] were
described by Mandel and Metais for the first time (5). During
the past decades, studies revealed that there are plenty of cfNAs
in the blood of cancer patients (6). Interest is growing in the
detection of cfRNAs in several cancers, such as hepatocellular
carcinoma (7), breast cancer (8), and prostate cancer (9). During
the progression of tumor, the cfRNA molecules in blood may be
shed by the apoptosis and necrosis of cancer cells (6). In recent
years, the cfRNA in plasma was thought to be a “liquid biopsy”
for cancer diagnosis and prognosis (10). Although a series of
studies have described the different expression panels of miRNAs
(11, 12), few studies focused on the mRNA and lncRNA features
in the plasma of lung cancers.

A further insight into the molecular characteristics can help
us gain a better understanding of lung cancer and discovery of
some novel biomarkers for early diagnosis and prognosis. High-
throughput RNA sequencing provides a platform to analyze
transcriptome comprehensively in various diseases, especially
in cancers.

In our study, the mRNA and lncRNA expression profiles in
the plasma of lung cancer patients were compared with those of
lung hamartoma patients by whole transcriptome sequencing.
Analysis of RNA-seq data revealed that a set of mRNAs and
lncRNAs are differentially expressed in subtypes of lung cancer.
Moreover, these results provide novel information on the
comparation of lung cancer with benign lesion, which might
be beneficial to search circulating candidates for early diagnosis
of lung cancer.
MATERIALS AND METHODS

Patients and Blood Samples
This study was approved by the Ethics Committee of the Peking
University People’s Hospital, and informed consent was
obtained from each participant. Blood samples were obtained
from 20 patients that included patients with LUAD (lung
adenocarcinoma, n=11), LUSC (lung squamous cell carcinoma,
n=3), SCLC (small-cell lung cancer, n=2), and LUH (lung
hamartoma, n=4) who underwent surgery in 2020 at the
Department of Thoracic Surgery of Peking University People’s
Hospital. Peripheral blood was collected before any treatment,
and the 20 patients were confirmed by pathological diagnosis.
Forty-five blood samples, including LUAD (15 samples), LUSC
(15 samples), and healthy donor (15 samples), were collected to
validate the results of differentially expressed mRNAs
and lncRNAs.

Sample Preparation, RNA Isolation, and
Quantitative Real-Time PCR
Peripheral blood of each participants was collected before surgery
using ethylenediaminetetraacetic acid (EDTA) tubes and
immediately processed to isolate plasma. Blood samples were
centrifuged at 1,600×g for 10 min, and then, supernatants were
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centrifuged at 16,000×g for 10 min. Plasma samples were stored at
−80°C. Total RNA was isolated from the plasma using Trizol LS
reagent (Invitrogen, CA, USA) separately. The RNA quality was
checked for the RNA integrity number (RIN) by Bioanalyzer 2100
(Agilent, Santa Clara, CA, USA) and stored at −80°C. The
procedure of reverse transcription followed the manufacturer’s
protocol (TaKaRa, Shiga, Japan). Each quantitative polymerase
chain reaction was performed in Applied Biosystem with a total
reaction volume of 10 ml (Thermo Fisher, Waltham, MA, USA).
Moreover, glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
was used as an internal control. The expression of mRNAs and
lncRNAs were calculated using 2−DDCt methods. Relative fold
change of each sample was calculated using the mean GAPDH
expressionof healthy donor group as reference. The primers used in
this study are showed in Supplementary Table S1.

Library Construction and RNA Sequencing
The libraries were constructed following the manufacture’s
instruction of SMARTer Stranded Total RNA-Seq Kit v2
(TaKaRa Bio USA, Mountain View, CA, USA) with 1–10 ng
input RNA. In brief, (1) the purified RNA were fragmented at
94°C for 4 min in the first step of the cDNA synthesis. (2) The
addition of Illumina adapters and indexes to single-stranded
cDNA was finished by the first round PCR. (3) AMPure Beads
was used to purify the amplified RNA-seq library. (4) Ribosomal
cDNA was depleted with ZapR v2 and R-Probes v2. (5) The
second round of PCR of 15 cycles was performed for the final
RNA-seq library amplification. (6) The amplified RNA-seq
library was purified again by immobilization onto AMPure
beads. (7) Libraries were quantified with Qubit 3.0 (Thermo
Fisher Scientific, Waltham, MA, USA). A yield >2 ng/ml was
considered as sufficient material for further library validation and
sequencing. Library size distribution was evaluated by running
samples on the Agilent 2100 Bioanalyzer, with a local maximum
at ~300–400 bp.

RNA-Sequencing Data Mapping
The reads were first mapped to the UCSC Genome Browser
database using Bowtie2 version 2.1.0 (13), and the gene
expression level was further obtained by RSEM v1.2.15 (14).
LNCipedia (http://www.lncipedia.org) was performed for
lincRNA annotation, and Cufflinks was used to identify the
different expression lncRNAs (15). Trimmed mean of M-values
(TMM) was implemented to normalize the gene expression.
Then, the edgeR program (16) was used for further differential
expression analysis. Genes with p < 0.05 and more than 1.5-fold
changes were considered to be differentially expressed.

Functional Analysis of mRNAs
and lncRNAs
The Gene Ontology (GO) category analyses (GO, http://www.
geneontology.org/) (17) and the Kyoto Encyclopedia of Genes
and Genomes (KEGG) molecular pathway analyses (KEGG;
http://www.genome.ad.jp/kegg/) (18) were performed to
understand the biological functions of differentially expressed
mRNAs and lncRNAs. GO analysis for biological processes,
cellular components, and molecular function were implemented
March 2022 | Volume 12 | Article 843054
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using clusterProfile with p<0.05 as the cut-off value. Besides, a
pathway enrichment analysis of the differentially expressed genes
was performed using the pathways from Reactome database (19).
To identify the functional roles of differentially expressed gene
related to canonical pathways and upstream regulators, Ingenuity
Pathway Analysis (IPA, www.ingenuity.com/) was performed, and
Fisher’s exact test with false discovery rate (FDR) was used to
identify the significance (p<0.05).

Statistical Analysis
Comparisons between groups were analyzed with Student’s t-
tests. The results were regarded as statistically significant at p <
0.05. The statistical analysis was performed using the SPSS 23.0
(IBM‐SPSS Inc., Chicago, IL, USA). All graphs were built using
GraphPad Prism 8.0 software (GraphPad Software Inc., La Jolla,
CA, USA).
RESULTS

Baseline Clinical Characteristics
Based on the histopathological verification, a total of 20 plasma
samples consisting of 16 lung cancers (including 11
adenocarcinoma, 3 squamous cell carcinoma, and 2 small cell
lung cancer samples) and 4 matching negative control samples
(lung hamartoma) were detected in this study. The detailed
clinical characteristics of the four subgroups are summarized
in Supplementary Table S2.

The overall data analysis flow of our study is shown in
Supplementary Figure S1. Total RNA of four subgroups was
extracted and subjected to library construction and RNA
sequencing. After quality control, reads were mapped to
genome to analyze the expression of mRNAs and lncRNAs
using TopHat. Function enrichment analyses were used to
predict potential biological functions of the differentially
expressed genes.
Expression Profiles of mRNAs and
lncRNAs in Plasma of LUAD
Using edgeR to identify the aberrantly expressed mRNAs based
on the following criteria: ≥1.5−fold change (FC) upregulation or
<1.5−fold change downregulation in expression plus p<0.05. A
number of 5,685 mRNAs were detected, and a total of 806
differentially expressed mRNAs were identified in the peripheral
blood (Supplementary Table 3), of which 459 mRNAs were
upregulated and 347 mRNAs were downregulated (Figure 1). To
visualize the differentially expressed mRNAs, the heatmap
(Figure 1A) and volcano plot (Figure 1B) were analyzed.

Using Gene Oncology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis to investigate
the gene functions. The different expressed mRNAs were
significantly enriched in 637 biological processes (BP) terms,
92 molecular function (MF) terms, and 100 cellular component
(CC) terms. The results showed that differentially expressed
mRNAs were related to various biological processes, such as
Frontiers in Oncology | www.frontiersin.org 3
synapse organization, regulation of lipid metabolic process, post-
translational protein modification, and extracellular structure
organization signaling pathways (Figure 1C). GO analyses
suggested that these genes were associated with molecular
functions of cell adhesion molecule binding, antioxidant
activity, lipoprotein particle receptor binding, and other
important functions (Figure 1C). The top 3 CC terms were
cytoplasmic vesicle lumen, endoplasmic reticulum lumen, and
platelet alpha granule lumen, suggesting that these genes were
mainly localized in the cytoplasm (Figure 1C). KEGG pathway
analyses demonstrated that complement and coagulation
cascades, human T-cell leukemia virus 1 infection, and
proteoglycans in cancer were most enriched among the
differentially expressed genes (Figure 1D). Reactome pathway
analysis was performed to evaluate the underlying pathway, and
platelet activation relevant pathways, regulation of insulin-like
growth-factor binding proteins (IGFBPs), and post-translational
protein phosphorylation were most enriched (Figure 1E).

To further understand the underlying molecular roles, IPA
revealed the involvement of differentially expressed genes in
several canonical pathways, including coagualtion system,
epithelial adherens junction signaling, and phosphatase and
tensin homolog (PTEN) signaling. IPA upstream regulator
analysis revealed significant inhibition of several regulators
involved in transcription regulator (NFE2L2 and STAT3),
cytokine (OSM and IL6), growth factor (EGF and NRG1). The
analysis also predicted a major activation of transcription
regulator, MYC, which is a classical oncogene in LUAD, and
MYC expression has been shown to be associated with the
stemness of cancer cells (20). The network analysis showed
that MYC could regulate 52 terms, including BRCA1, SLC1A1,
and ITM2B (Figure 1F). The co-expression analysis revealed the
relationship between these differentially expressed mRNAs and
RN7SK and CPS1were the core genes (Supplementary
Figure S2A).

LncRNA expression profiles were normalized by TMM, and
following criteria were employed for the differential expression
analysis: p<0.05 and ≥1.5−fold upregulation or <1.5−fold
downregulation in expression was performed. A total of 8,578
lncRNAs were characterized between LUAD plasma and LUH
plasma and 1,762 lncRNAs (688 upregulation, 1,074
downregulation) were differentially expressed (Supplementary
Table S4) and (Figures 2A, B). RAB23, UGDH, and LINC01322
were the top 3 downregulated lncRNA; IDH2-DT, CALML3, and
LINC00982 were the top 3 upregulated lncRNA in LUAD
plasma compared with LUH group. Previous studies have
reported that the low expression of LINC00982 was associated
with pathway alteration and poor patient survival of LUAD (21).
The roles of LINC01322 and CALML3 in cancers were also
revealed by previous studies (22, 23).

The functions of differentially expressed lncRNAs were
predicted by GO and KEGG pathway annotations of their cis-
regulated genes. GO analysis indicated that targets were enriched
in 10 biological process (BP) terms and five molecular function
(MF) terms. The top 3 BP terms were regulation of DNA-binding
transcription factor activity, sensory organ morphogenesis, and
March 2022 | Volume 12 | Article 843054
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FIGURE 1 | Expression profiles of mRNAs in plasma between LUAD patients and LUH negative controls. (A) Heatmap of differentially expressed mRNAs in LUAD
patients and controls (group 1, LUAD plasma; group 3, LUH plasma). (B) Volcano plot of differentially expressed mRNAs (read, upregulated genes; green,
downregulated genes). (C) Enrichment analysis of GO terms and pathways of the differentially expressed mRNAs, comprising biological process (BP), molecular
function (MF), and cellular component (CC). (D) The top 10 KEGG terms for the differentially expressed mRNAs between two groups. (E) Reactome pathway analysis
was performed to evaluate the underlying pathway. (F) Ingenuity pathway analysis predicted MYC as a major activation of transcription regulator in LUAD.
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negative regulation of myeloid cell differentiation. The CC terms
reminded that these targets were localized to the cytoplasm.
Besides, the enrichment of MF terms mainly associated with
DNA-binding transcription activator activity (Figure 2C).
According to KEGG pathway analyses, the differentially
expressed lncRNAs are involved in some cancer-related
pathways, and cAMP signaling pathway, pathogenic Escherichia
coli infection, and fluid shear stress and atherosclerosis were most
enriched (Figure 2D). The co-expression analysis revealed the
relationship between these differentiallyexpressed lncRNAs, and
lnc-IDS-8:1 and LINC00887:4 were the core genes
(Supplementary Figure S2B).

Expression Profiles of mRNAs and
lncRNAs in Plasma of LUSC
With thresholds of log2 FC>1.5 and p<0.05, a number of 3,907
mRNAs were detected, and a total of 170 downregulated (such as
CTAGE8,WDFY3, and LSM8) and 86 upregulated mRNAs (such
Frontiers in Oncology | www.frontiersin.org 5
as SLC38A10, FAM120A, and PRR12) between LUSC and LUH
were identified in the peripheral blood (Supplementary Table
S5). The different mRNAs are displayed in a heatmap
(Figure 3A) and volcano plot (Figure 3B), and the results
indicated that mRNAs were obviously distinguishable between
the two groups.

With the cutoff as p<0.05, the differentially expressed mRNAs
were significantly enriched in 125 GO terms (78 in BP terms, 36
in MF terms, and 11 in CC terms). GO BP terms showed
coenzyme metabolic process, regulation of histone methylation,
and regulation of vascular endothelial growth factor production
were most related (Figure 3C). CC terms indicated that products
of these genes were mostly located at contractile fiber part and
myofibril (Figure 3C). As for MF terms, the cellular activities
were related to DNA-binding transcription activator activity, ion
channel binding, and nuclear receptor activity (Figure 3C).
KEGG pathway analyses showed that differentially expressed
mRNAs were significantly involved in 23 pathways, and Th17
A
B

DC

FIGURE 2 | Expression profiles of lncRNAs in plasma between LUAD patients and LUH controls. (A) Heatmap of differentially expressed lncRNAs in LUAD patients
and controls (group 1, LUAD plasma; group 3, LUH plasma). (B) Volcano plot of differentially expressed lncRNAs. (C) Enrichment analysis of GO terms and
pathways of the differentially expressed lncRNAs. (D) KEGG pathway analysis of the differentially expressed mRNAs between two groups.
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FIGURE 3 | Expression profiles of mRNAs in plasma between LUSC patients and LUH negative controls. (A) Heatmap of differentially expressed mRNAs in LUSC
patients and controls (group 2, LUSC plasma; group 3, LUH plasma). (B) Volcano plot of differentially expressed mRNAs (read, upregulated genes; green,
downregulated genes). (C) Enrichment analysis of GO terms and pathways of the differentially expressed mRNAs. (D) The top 10 KEGG terms for the differentially
expressed mRNAs between two groups. (E) Reactome pathway analysis was performed to evaluate the underlying pathway. (F) Ingenuity pathway analysis
predicted TGFB1 as a major activation of transcription regulator in LUSC.
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cell differentiation, central carbon metabolism in cancer, and
synaptic vesicle cycle were most enriched among them
(Figure 3D). Reactome pathway analyses indicated that these
targets were significantly enriched in platelet degranulation
relevant pathways, regulation of pyruvate metabolism, and
recruitment, and ATM-mediated phosphorylation of repair
and signaling proteins at DNA double-strand breaks pathways
were most enriched (Figure 3E). Using IPA, the most significant
canonical pathways on the differentially expressed genes were
revealed, such as DNA double-strand break repair, oncostatin M
signaling, and Wnt pathway. Besides, the analysis of the
upstream regulators indicated that several significant inhibition
regulators involved in transcription regulator (TP53 and
EOMES), miRNA (mir-155, mir-25), and ligand-dependent
nuclear receptor (NR3C2). A biological network predicted a
major activation of growth factor, Transforming growth factor
beta (TGFB1) (Figure 3F) is an important member of the
transforming growth factor beta (TGF-b) family and plays
pleiotropic roles in cancer progression (24). The co-expression
analysis revealed the relationship between these differentially
expressed mRNAs, and ZNF629 was the core gene
(Supplementary Figure S2C).

Based on the above screening criteria in Section 2.1, the
expressed lncRNAs detected by edgeR in matched LUSC and
LUH plasmas showed distinct expression patterns. A total of
7,462 lncRNAs were characterized, and 946 were differentially
expressed (242 upregulation and 704 downregulation) in
plasmas with LUSC compared with negative controls (p<0.05,
fold change≥1.5 or <1.5) (Supplementary Table S6). Heatmap
and volcano plots for the expression of these lncRNAs are shown
in Figures 4A, B. The top 3 downregulated lncRNAs in LUSC
were H2BFWT, MBTD1, and MALAT1, and the top 3
upregulated lncRNAs were Linc01663, TFF3, and SNRNP35.
MALAT1, as a highly conserved lncRNA in mammals (25), is
related to cancer development and progression (26). In addition,
Weber et al. have reported MALAT1 could be detected in
peripheral blood and serve as a promising biomarker for early
diagnosis of NSCLC (27).

In the GO and KEGG processes, the enrichment analysis was
performed on the function of lncRNA aided by its regulated
gene. As shown in Figure 4C, the top rank of differentially
expressed lncRNAs functions is listed. The impact on BP, such as
regulation of DNA demethylation, transferrin transport, and
pyroptosis process involved in development, indicated that
these lncRNAs have potential biological functions, especially in
tumor progression (28, 29). The top 3 MF terms were
methylation-dependent protein binding, RNA polymerase II
activating transcription factor binding, and protein tyrosine
kinase binding, and the CC terms reminded these targets were
localized to the cytomembrane and endoplasmic reticulum. In
terms of KEGG pathway analyses, the results suggested that viral
carcinogenesis signaling pathway, phagosome and parathyroid
hormone synthesis, section, and action were most enriched
among the differentially expressed genes (Figure 4D). The co-
expression analysis revealed the relationship between these
differentially expressed lncRNAs, and lnc-SRGAP2C-16:1 and
Frontiers in Oncology | www.frontiersin.org 7
lnc-FAM86B2-58:12 were the core genes (Supplementary
Figure S2D).

Expression Profiles of mRNAs and
lncRNAs in Plasma of SCLC
The RNA-seq results showed that a number of 3,284 mRNAs
were detected, and 231 mRNAs in the SCLC group were
significantly different from those in the LUH group (thresholds
of log2 FC>1.5 and p<0.05) (Supplementary Table S7), of which
38 mRNAs were upregulated and 193 mRNAs were
downregulated (Figures 5A, B).

Gene Ontology (GO) analyses revealed that the top 3
associated pathways of molecular functions were structural
constituent of ribosome, cell adhesion molecule binding, and
cadherin binding (Figure 5C). GO cellular component analyses
indicated that products of these genes were mainly associated
with cell adhesion. In terms of GO biological processes,
differentially expressed mRNAs functions affected the protein
targeting to membrane, protein localization to endoplasmic
reticulum, and nuclear-transcribed mRNA catabolic process.
The KEGG pathway analysis results are shown in Figure 5C.
For the target genes of differentially expressed mRNAs, Hippo
signaling pathway, ferroptosis, and Apelin signaling pathway
were the most significant pathways for enrichment (Figure 5D).
Reactome analyses showed that eukaryotic translation elongation
pathways, peptide chain elongation and L13a-mediated
translational silencing of Ceruloplasmin expression were most
enriched (Figure 5E).

We further explored the canonical pathway analysis by IPA.
The result revealed the involvement of several canonical
pathways, including EIF2 signaling, mTOR signaling, and iron
homeostasis signaling pathway. IPA upstream regulator analysis
predicted a series of regulators involved in transcription
regulator (MYCN and NFE2L2), growth factor (TGFB1 and
NRG1), and transporter (SYVN1). In the network analysis, it
can be observed that a major activation of transcription
regulator, RUNX3, has a close interaction with a series of
factors, such as CCND1, LIFR, COL12A1 (Figure 5F). The co-
expression analysis revealed the relationship between these
differentially expressed mRNAs, and RNA28S5 was the core
gene (Supplementary Figure S2E).

As for lncRNA expression profiles, the screening criteria are
listed in Section 2.1. A total of 298 differentially expressed lncRNAs
were finally characterized in the plasma of patients with SCLC, of
which 104 lncRNAs were upregulated and the remaining lncRNAs
were downregulated (Supplementary Table S8). Heatmap
(Figure 6A) and volcano plot (Figure 6B) were used to analyze
the statistical significance of differently expressed lncRNAs between
the two groups. Several significant differently expressed lncRNAs
have been reported in previous studies. The downregulation of
LINC01537 and TMEM106A was observed in lung cancer
development, which was involved in tumor metabolic
reprogramming or EMT (30, 31).

The functional enrichment of GO and KEGG analysis is
shown in Figures 6C, D. In BP terms, regulation of embryonic
organ development, regulation of DNA-binding transcription
March 2022 | Volume 12 | Article 843054

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Circulating RNAs of Lung Cancer
factor activity, and regulation of bone mineralization involved in
development were most enriched. The cis-regulated genes of
differently expressed lncRNAs were mainly associated with
intercellular bridge and sarcoplasm, according to the cellular
component analysis. In addition, the most enriched MF terms,
such as chromatin binding, ubiquitin−protein transferase
activity, and activating transcription factor binding indicated
that these lncRNAs may participate in ubiquitination or protein
binding in post-transcription control. In terms of KEGG
pathway analyses, the results suggested that RNA transport,
PD-L1 expression, and PD-1 checkpoint pathway in cancer
were most enriched among the differentially expressed genes.
The co-expression analysis revealed the relationship between
these differentially expressed lncRNAs, and lnc-CCNB1IP1-1:4
and lnc-WDR38-1:1 were the core genes (Supplementary
Figure S2F).
Frontiers in Oncology | www.frontiersin.org 8
Common Dysregulated mRNAs and
lncRNAs in Lung Cancer
We further investigated the common mRNAs of differential
genes among three groups above. There are 11 common
mRNAs in total (Figure 6E), including CEP250 (centrosomal
protein 250 kDa), ZNF891 (zinc finger protein 891), NFAT5
(nuclear factor of activated T cells 5, tonicity-responsive),
SLC2A1 (solute carrier family 2 member 1), TRIM38 (tripartite
motif containing 38), PDE4A (phosphodiesterase 4A, cAMP-
specific), GLYCTK (glycerate kinase), AFF2 (AF4/FMR2 family,
member 2), WNK3 (WNK lysine-deficient protein kinase 3),
BRWD3 (bromodomain and WD repeat domain containing 3),
and ZCCHC2 (zinc finger, CCHC domain containing 2).

Then, we found the common lncRNAs among these three
groups, and there are 51 lncRNAs in total (Figure 6F).
Intriguingly, some lncRNAs were generated from common
A
B

DC

FIGURE 4 | Expression profiles of lncRNAs in plasma between LUSC patients and negative controls. (A) Heatmap of differentially expressed lncRNAs in LUSC
patients and LUH patients (group 2, LUSC plasma; group 3, LUH plasma). (B) Scatter plot of differentially expressed lncRNAs. (C) Enrichment analysis of GO terms
and pathways of the differentially expressed lncRNAs. (D) KEGG pathway analysis of the differentially expressed mRNAs between two groups.
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FIGURE 5 | Expression profiles of mRNAs in plasma between SCLC patients and LUH negative controls. (A) Heatmap of differentially expressed mRNAs in SCLC
patients and controls (group 4, SCLC plasma; group 3, LUH plasma). (B) Volcano plot of differentially expressed mRNAs (read, upregulated genes; green,
downregulated genes). (C) Enrichment analysis of GO terms and pathways of the differentially expressed mRNAs. (D) The top 10 KEGG terms for the differentially
expressed mRNAs between two groups. (E) Reactome pathway analysis was performed to evaluate the underlying pathway. (F) Ingenuity pathway analysis
predicted RUNX3 as a major activation of transcription regulator in SCLC.
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FIGURE 6 | Expression profiles of lncRNAs in plasma between SCLC patients and negative controls. (A) Heatmap of differentially expressed lncRNAs in SCLC
patients and LUH patients (group 4, SCLC plasma; group 3, LUH plasma). (B) Volcano plot of differentially expressed lncRNAs. (C) Enrichment analysis of GO terms
and pathways of the differentially expressed lncRNAs. (D) KEGG pathway analysis of the differentially expressed mRNAs between two groups. Venn diagram showed
the common significant mRNAs (E), lncRNAs (F), and canonical pathways (G) in three groups (LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma;
SCLC, lung small cell cancer; LUH, lung hamartoma).
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mRNAs above, such as lnc-TRIM38-2:2. Finally, we investigated
the common canonical pathways, and 207 pathways were found
(Figure 6G). The result of several canonical pathways includes
molecular mechanisms of cancer, role of tissue factor in cancer,
STAT3 pathway, PI3K/AKT signaling, and so on, which are vital
for the progression of cancers.

Validation of mRNAs and lncRNAs in
LUAD and LUSC
We chose ZNF891, ERCC4 (excis ion repair cross-
complementation group 4), ZNF33A (zinc finger protein 33A),
AFF2 (AF4/FMR2family,member2), and lnc-ALB-1:6, lnc-DPH5-
1:6, andLINC01376:1 toverify ourfindings inLUAD.The results of
ZNF891, ZNF33A, ERCC4, and lnc-DPH5-1:6 were in accordance
with the findings (Figure 7). However, the expression of AFF2, lnc-
FBXO33-2:3, and LINC01376:1 was opposite to the previous
findings, which may be due to the relatively small number of
validation samples. Furthermore, no significant difference was
observed for lnc-ALB-1:6.

Moreover, ZNF891, EIF3I (eukaryotic translation initiation
factor 3, subunit I), TRIM13 (tripartite motif containing 13),
USP27X (ubiquitin specific peptidase 27, X-linked), lnc-SLC9A3-
6:1, lnc-GPR27-5:1, lnc-PFKP-38:1, and lnc-PGS1-1:12 were
Frontiers in Oncology | www.frontiersin.org 11
selected to verify our findings in LUSC. ZNF891, EIF3I, TRIM13,
lnc-SLC9A3-6:1, lnc-PFKP-38:1, and lnc-PGS1-1:12 were
downregulated as we supposed (Figure 8). However, no
significant difference was observed for USP27X or lnc-GPR27-5:1.
DISCUSSION

In the present study, the expression profiles of mRNAs and
lncRNAs in plasma samples from lung cancer patients and
benign pulmonary disease patients were compared based on RNA
sequencing. The results indicated the different types of lung cancer
presented distinguishing features of mRNAs and lncRNAs in the
plasma of patients. Using a series gene function analysis, these
different expression RNAs may be involved into various
physiological processes, especially in cancer progression, which
suggested the potential value of “liquid biopsy” in cancer diagnosis.

Tumor-derived mRNAs exist abundantly in blood and other
biologicalfluids,whichare related to tumorigenesis andprogression
(32). March-Villalba et al. found the that hTERT mRNA levels in
plasma were associated with clinicopathological parameters of
prostate cancer, which performed a better diagnostic and
prognostic accuracy than the PSA assay (33). MiRNAs are a class
A

B

FIGURE 7 | Validation of the differentially expressed mRNAs and lncRNAs in LUAD. (A) Validation of the differentially mRNAs (ZNF891, ERCC4, ZNF33A, and AFF2),
(B) validation of the differentially lncRNAs (lnc-FBXO33-2:3, lnc-ALB-1:6, lnc-DPH5-1:6, and LINC01376:1) (LUAD, lung adenocarcinoma; ZNF891, zinc finger protein
891; ERCC4, excision repair cross-complementation group 4; ZNF33A, zinc finger protein 33A; AFF2, AF4/FMR2 family, member 2; relative fold change of each
sample was calculated using the mean GAPDH expression of control group as reference).
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of single-strandednon-codingRNAs,whichare18–23nt insizeand
widely expressed in eukaryotes. The biological function ofmiRNAs
is involved in the regulation of downstream target genes at the post-
transcriptional level. Previous studies have proved the close
relationship between miRNA abnormal expression patterns and
tumorigenesis (34).Moreover, different panels ofmiRNAs in blood
and other biological fluids presented specific expression in some
cancers (35). Ying et al. described a five-miRNA panel for early
detection of lung cancer with a 90.7% specificity (36). Compared
with miRNAs, lncRNA is a novel type of non-protein coding
transcripts, which is longer than 200 nucleotides (37). Emerging
evidence indicated that lncRNAsarenot “transcriptionalnoise” and
play a crucial role in regulating chromatin dynamics, gene
expression, growth, differentiation, and development (38). A large
number of lncRNAs are involved in oncogenic process and tumor
metastasis, which implied the potential promise for lncRNAs as
novel biomarkers in cancers. Studies found that miRNAs and
lncRNAs were stably presented in blood, and they showed a
closed expression pattern relationship between primary tumors
and plasmas of patients (32).

In our study, comparedwith lung hamartoma, 806mRNAs and
1762 lncRNAswere significantly differentially expressed in patients
with LUAD; 256 mRNAs and 946 lncRNAs were significantly
Frontiers in Oncology | www.frontiersin.org 12
differentially expressed in patients with LUSC. SCLC, accounting
for 15% of lung cancers, is aggressive at early stage with a tendency
of widespread metastases (39). SCLC is rarely resected by surgery,
and the tissue is insufficient for further molecular investigation.
Thus, exploring SCLC serological characteristics is needed. Our
analysis indicated the expression features of mRNAs and lncRNAs
in the plasma of SCLC patients.

eIF3i, also calledp36andeIF3b, is locatedat chromosome1p35.2as
a putative subunit of eIF3 (eukaryotic initiation factor 3) (40). It has
been reported that eIF3i plays an important role in pre-initiation
complex formation and mRNA translation initiation (41). Ahlemann
et al. demonstrated that in vitro eIF3i overexpression activated the
mTOR signals and promoted the mRNA translation process and
protein synthesis (42). Importantly, studies indicated that eIF3i is a
proto-oncogene, and its expression has been proven to be upregulated
in a series of cancers (43–45). The ectopic eIF3i overexpression is
associated with the transformation of intestinal epithelial cells, and its
level contributes to colon oncogenesis by upregulating the synthesis of
cyclooxygenase-2 and activating theWnt/b-catenin signaling pathway
(45). In this study, eIF3i was significantly upregulated in the plasma of
LUSC patients. Previous studies have not reported the role of eIF3i in
lung cancer; the results of this studymay remind that eIF3i serves as a
potential biomarker for LUSC.
A

B

FIGURE 8 | Validation of the differentially mRNAs and lncRNAs in LUSC. (A) Validation of the differentially expressed mRNAs (ZNF891, ERCC4, ZNF33A and AFF2),
(B) validation of the differentially expressed lncRNAs (lnc-FBXO33-2:3, lnc-ALB-1:6, lnc-DPH5-1:6, and LINC01376:1) (LUSC, lung squamous cell carcinoma;
ZNF891, zinc finger protein 891; EIF3I, eukaryotic translation initiation factor 3, subunit I; TRIM13, tripartite motif containing 13, USP27X, ubiquitin specific peptidase
27, X-linked; relative fold change of each sample was calculated using the mean GAPDH expression of control group as reference).
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PDE4 enzymes are members of cyclic nucleotide
phosphodiesterases (PDEs) family, and PDE4A is a subtype of
PDF4 that regulates the cAMP level by promoting the
degradation of cAMP to AMP (46). PDE4A has been reported
to be involved in the regulation of tumor suppressor genes in
tumors and hematological malignancies (47, 48). In line with
previous observation, our finding revealed that PDE4A was
overexpressed in SCLC plasma. This may be caused by the
regulation of PDE4A in VEGF-mediated epithelial-to-
mesenchymal transition (EMT) during tumor progression (49).

MALAT1 (metastasis associated lung adenocarcinoma
transcript 1) is more than 8,500 nt and located at chromosome
11q13 (50). It was first characterized in NSCLC and played an
important role in the prediction of metastasis (51). The highly
conserved MALAT1 attracted the attention of researchers, and a
series of studies have shown that MALAT1 was associated closely
with tumor proliferation and invasion by interacting with several
famous cancer-related signaling pathways (26, 52). Considering
our results, we provide further evidence that overexpression of
MALAT1 in plasma of LUSC patients may serve as a potential
biomarker for diagnosis or treatment evaluation of LUSC.

In conclusion, our study performed a systematic description
of mRNA and lncRNA profiles from the plasma of lung cancer
patients and elucidated their functional modes based on a series
of analysis. The current results suggest the potential value of cell-
free RNAs for non-invasive “liquid biopsy.” These significant
plasma biomarkers could be further explored for the diagnosis
and prognosis of lung cancers.
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