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Recent advances in image acquisition and processing techniques, along with the

success of novel deep learning architectures, have given the opportunity to develop

innovative algorithms capable to provide a better characterization of neurological related

diseases. In this work, we introduce a neural network based approach to classify

Multiple Sclerosis (MS) patients into four clinical profiles. Starting from their structural

connectivity information, obtained by diffusion tensor imaging and represented as a

graph, we evaluate the classification performances using unweighted and weighted

connectivity matrices. Furthermore, we investigate the role of graph-based features

for a better characterization and classification of the pathology. Ninety MS patients

(12 clinically isolated syndrome, 30 relapsing-remitting, 28 secondary-progressive, and

20 primary-progressive) along with 24 healthy controls, were considered in this study.

This work shows the great performances achieved by neural networks methods in the

classification of the clinical profiles. Furthermore, it shows local graph metrics do not

improve the classification results suggesting that the latent features created by the neural

network in its layers have a much important informative content. Finally, we observe

that graph weights representation of brain connections preserve important information

to discriminate between clinical forms.

Keywords: multiple sclerosis, graph neural networks, graph-derived metrics, diffusion tensor imaging,

connectome

1. INTRODUCTION

Multiple sclerosis (MS) is the most frequent disabling neurological disease in young adults. While
its etiology remains unknown, MS is a chronic disease of the central nervous system, characterized
by inflammation, demyelination, and neurodegenerative pathological processes (Polman et al.,
2011). In 85% of the patients, disease onset is characterized by a first acute clinical episode
[called clinically isolated syndrome (CIS)], including optic neuritis, paresthesia, paresis, and
fatigue (McDonald et al., 2001), evolving into a relapsing-remitting (RRMS) course, and after a
delay varying between 15 and 20 years, into a secondary-progressive (SPMS) course, leading to
long-term disability. The remaining 15% of MS patients starts with the primary-progressive course
(PPMS) (Miller et al., 2005a,b). A revised version of this classification of the MS clinical courses has
been proposed in 2014 by Lublin et al. (2014). In this revision, two main forms of the disease are
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considered: the relapsing remitting MS (CIS and RRMS patients)
and the progressive MS (SPMS and PPMS patients), each one
being wether active or not active.

The course of the disease and the risk for developing
permanent disability are very different from one patient to
another and the prediction of long-term disability is still not
possible in a new MS patient. Today’s neurologist challenge
is to predict the individual patient evolution and response to
therapy based on the clinical, biological, and imaging markers
available from disease onset. Long-term clinical studies have
been conducted to determine the clinical predictors of disability
accumulation inMS (Degenhardt et al., 2009; Soldán et al., 2015).
In RRMS and SPMS, several negative prognostic factors were
identified such as the onset of progression, higher early relapse
rate, greater disability in the first 5 years, and shorter interval
to the second relapse. However, none of these predictors are
available at the beginning of the disease (Confavreux et al., 2003;
Confavreux and Vukusic, 2006; Scalfari et al., 2010).

Among the available information with a potential prognostic
value at the CIS stage, MRI remains the most promising. A
lot of efforts have been concentrated on the identification and
characterization of MS lesions (Brosch et al., 2015; Valverde
et al., 2017). While conventional T2 lesion load is moderately
correlated with the patient clinical status, it can predict the
increase of disability scores, such as the Expanded Disability
Status Scale (EDSS) and the Multiple Sclerosis Functional
Composite (MSFC) (Barkhof, 2002). Global brain atrophy
constitutes a potential marker, as it even exists at the early
stages of MS. However, its predictive value is still controversial,
probably due to its methodological limitations (Durand-Dubief
et al., 2012). Measurement of subcortical gray matter atrophy
could be of special interest if appropriate tools were available
in clinic (Hannoun et al., 2012). Indeed, atrophy in the
thalamus was recently reported to be an early marker of the
neurodegeneration processes occurring throughout the disease
progression (Azevedo et al., 2018). Regional atrophy in the
whole brain was also studied, showing a specific pattern of the
atrophy progression within the central nervous system, starting
in the posterior cingulate cortex before spreading in the whole
cortex (Eshaghi et al., 2018). More advanced MRI techniques,
such as brain volumetry, magnetization transfer imaging (MTI)
and diffusion-tensor imaging (DTI) are promising tools in that
perspective (Rovira et al., 2013). Reflecting more specifically the
demyelination and remyelination processes, have been shown
to predict deterioration of cognitive functions in patients with
early MS stages followed during 7 years (Deloire et al., 2011).
However, these advanced techniques are not always available
in clinical routine. In contrast, DTI becomes more available
in clinical environment and provides an effective mean for
the quantification of demyelination and axonal loss in CIS
patients (Sbardella et al., 2013). Furthermore, it has recently been
shown that diffusivity measurements in CIS patient’s cerebellar
white matter (decreased fractional anisotropy) can be predictive
of a shorter conversion into a clinically definite MS (Kugler and
Deppe, 2018). Therefore, we propose in this work a new approach
for the automatic classification of MS clinical profiles based on
brain DTI acquisition.

MRI data are usually represented as images. However,
new data representation approaches were developed based on
graph theory. Recently applied in neurosciences, graph-based
models opened new perspectives for the exploration of brain
structural and functional connectivity by means of graph-derived
metrics (Rubinov and Sporns, 2010). In this context, fewmachine
leaning approaches have been developed for the classification of
MS clinical forms. Stamile et al. (2015) applied Support Vector
Machines (SVM) to graph-based representation of the brain for
the classification of MS patients clinical courses. In particular,
Brain structural connectivity graphs were extracted from DTI
data and several experiments were performed to classify RR vs.
PP, RR vs. SP, PP vs. SP, and RR vs. PP vs. SP clinical profiles. Both
weighted and binary graphs have been considered and the best
performances were obtained with unweighted graphs for most of
the classification tasks. In Kocevar et al. (2016), a similar strategy
has been used. Six global features (graph density, assortativity,
transitivity, global efficiency, modularity, and characteristic path
length) were extracted from the structural connectivity graphs
to enhance the performance of the SVM classification of MS
clinical profiles. High level of accuracy were obtained in the HC
vs. CIS, CIS vs. RR, RR vs. PP, RR vs. SP, SP vs. PP, and CIS vs.
RR vs. SP tasks. This work demonstrated the better sensitivity
of the modularity and assortativity metrics to achieve the best
performances. These approaches provided remarkable results on
binary classification tasks but were unable to classify the four
possible MS profiles at once.

More recently, Neural Networks (NN) based approaches
showed promising results for the analysis and classification of
images in a wide range of applications (Goodfellow et al., 2016).

More specifically in the context of MRI analysis in MS,
Whang et al. exploited complex CNN to differentiate MS patients
from healthy controls with an accuracy greater than 98% based
on T1-weighted MRI (Wang et al., 2018). The same task
was addressed by Maleki et al. and Zhang et al. where CNN
achieved similar results (Maleki et al., 2012; Zhang et al., 2018).
In Ion-Mărgineanu et al. (2017) the authors demonstrated the
potential of using simple CNN to classify MS clinical courses.
In particular, they exploited features extracted from magnetic
resonance spectroscopic images combined with brain tissue
segmentations of gray matter, white matter, and lesions.

Since the first definition of Graph Neural Networks
(GNN) (Scarselli et al., 2009), a huge effort was made to
extend neural networks with the purpose of processing graph
structures data. By implementing a function that maps a graph
and its nodes into an m-dimensional Euclidean space, the GNN
model can directly process many types of graphs (e.g., acyclic,
cyclic, directed, and undirected). An extension of this approach
was proposed by Kipf and Welling (2016), which introduced
a Graph Convolutional Neural Network (GCNN) model that
is able to achieve promising results by properly managing
structured data and capturing hidden information from graphs.

In this work, we used the GCNN model to classify MS
patients into four clinical profiles [CIS, RR, SP, PP] using the
graph structural connectivity information. Beside the use of brain
connectivity graphs directly as an input to the NN, we also
investigate the potential role of graph local features in further
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improving classification performances. Finally, we perform our
experiments using both weighted and unweighted connectivity
matrices of the brain structure, in order to understand the role
played by edge weights in the classification process.

2. MATERIALS AND METHODS

Our method is divided in three steps: (i) structural connectivity
information is extracted from the images in order to produce a
graph representation of the MRI; (ii) a feature matrix is extracted
from each graph and local graph metrics are computed; (iii) the
adjacency matrix, together with the local graph features matrix,
is used as input for the GCNN to perform the classification task.

In the following, we illustrate how structural connectivity
information are extracted from the images in order to produce
a graph representation of the MRI. Then, we describe the NN
architecture used for the classification task. Finally, we provide a
description of the graph features considered in this work.

2.1. MRI Acquisition and Data Set
Description
The MS population consisted of 12 CIS, 30 RR, 28 SP, 20 PP
examined longitudinally every 6 months during 3 years and
then every year during 4 more years. A total of 580 exams
were processed for classification. In addition, 24 healthy controls
(HC) subjects, age, and sex matched with the MS patients,
were considered in the experiments. This prospective study was
approved by the local ethics committee (CPP Sud-Est IV) and
the French national agency for medicine and health products
safety (ANSM). Written informed consents were obtained from
all patients prior to study initiation. A description of clinical data
is reported in Table 1. Diagnosis and MS profile were established
according to the McDonald criteria (McDonald et al., 2001;
Lublin et al., 2014), while disability was assessed with Extended
Disability Status Scale (EDSS).

MR examinations were performed on a 1.5T Siemens Sonata
system (Siemens Medical Solution, Erlangen, Germany) using
an 8-channel head-coil. The MR protocol consisted in the
acquisition of a sagittal 3D-T1 sequence (1× 1× 1mm3, TE/TR
= 4/2000 ms) and an axial 2D-spin-echo DTI sequence (TE/TR
= 86/6900 ms; 2 × 24 directions of gradient diffusion; b =

1000 s.mm−2, spatial resolution of 2.5× 2.5× 2.5mm3) oriented
in the AC-PC plane.

2.2. Brain Structural Connectivity Graph
As previously described by Kocevar et al. (2016), the data
processing for the extraction of brain structural connectivity is
composed of three steps:

1. First, each voxel of the T1-weighted MR images is labeled
in four classes, depending on the corresponding tissue type
[white matter (WM), cortical GM, sub-cortical GM, cerebro-
spinal fluid (CSF)]. In order to perform the classification
a segmentation of the Cortical and sub-cortical parcellation
using FreeSurfer (Fischl et al., 2004) is performed on the T1
images. The segmentation is also used to define the graph
nodes (q= 84).

2. Second, the diffusion images are pre-processed by applying
correction of Eddy-current distortions (Jenkinson et al., 2012)
and skull stripping.

3. Third, MRtrix spherical deconvolution algorithm (Tournier
et al., 2012) is used to estimate main diffusion directions in
each voxel of diffusion images. Starting from the previous
tissue-class labeling, a probabilistic streamline tractography
algorithm is applied to generate fiber-tracks in voxels labeled

as WM voxels. Symmetrical connectivity matrix A ∈ N
q×q
+ is

then generated for each subject through the combination of
GM segmentation and WM tractography.

In detail, let 9 : N2
1 → N be the number of fibers connecting two

nodes i and j. Then, each element of the connectivity matrix A is
ai,j = 9(i, j). In particular, A represents the adjacency matrix of
the weighted undirected graph G = (V ,E,ω) where V (|V| = q)
is the set containing the segmented GM brain regions, E is the
graph edges set defined as:

E = {{i, j} | 9(i, j) > 0 ∀ 1 ≤ i, j ≤ q}

Finally, a weighted undirected graph G1 = (V1,E1,ω) is created,
starting from the undirected graph G = (V ,E,ω) by applying the
graph function ϒ : G → G1. The resulting graph contains only
the strongly connected regions with respect to a given threshold
τ ∈ R[0,1]. In particular, ϒ performs the following mapping:

V1 = V E1 = L(1, . . . ,T), T =
(q2 − q)τ

2

where L is the list of graph edges (E) sorted in ascending order of
weight. This results in a weighted undirected brain connectivity
graph that is used for this work.

2.3. Notation
For the description of our method, we introduce the following
notations. We denote scalar values with small letters (e.g., a), 1-
dimensional vectors with bold small letters (e.g.,aaa), matrices with
boldface capital letters (e.g., AAA) where A′ is the transpose of A.
G = (V ,E) is an undirected graph, where V is the set of vertex
and E is the set of edges. For each vertex v ∈ V let x ∈ Rd be
the associated feature vector. If not differently specified, given a
graph G = (V ,E) we denote by n = |V| the number of nodes of
the graph.

2.4. Graph-Based Neural Networks
Graph Convolutional Networks are neural network models that
directly encode graph structure. Let A ∈ R

|V|×|V| be the
adjacency matrix of a graph G = (V ,E) and X ∈ R|V|×d the
feature matrix associated with it. The Graph Convolution layer
with k output nodes is a function H :R

|V|×d × R|V|×|V| →

R
|V|×k, such that:

H(X,A) : = σ (ÂXW)

whereW ∈ Rd×M is a weight matrix, σ is a non-linear activation
function (e.g., ReLU) and Â is the re-normalized adjacency

matrix, i.e., Â : = D̃
−1/2

ÃD̃
−1/2

with Ã : = A+ I|V| (the identity
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TABLE 1 | Information on the data set for the different clinical profiles (HC,CIS, RR, SP, PP).

HC CIS RR SP PP

Number of patients (%Male/Female) 24 (42/57) 12 (50/50) 30 (20/80) 28 (61/39) 20 (45/55)

Age at first scan (years) 35.7 (10.1) 30.88 (6.4) 27.57 (7.8) 27.64 (7.6) 34.99 (6.1)

Disease duration (years) – 1.50 (1.54) 6.75 (4.81) 13.12 (5.84) 5.90 (2.60)

EDSS median (range) – 0.5 (0–4) 2.0 (0–4.5) 5.0 (3–7) 4.0 (2.5–6.5)

Total number of scans 24 63 190 199 126

matrix) and D̃ is the diagonal node degree matrix. Roughly
speaking, given an adjacency matrix A and a set of features x for
each node (row of A), the GC layer convolves the neighborhood
of every nodes to produce an embedding of these nodes.

The architecture proposed in this work is composed of one
Graph Convolution layer (k = 100) with ReLU activation function
followed by a Fully Connected Network with softmax activation
to handle the multi-class classification problem. Dropout (α =
0.3) is used to reduce overfitting.

2.5. Graph Local Features
Feature extraction is an important task for graph classification.
Indeed, while adjacency matrices represent exactly the structure
of the graph, features encode latent patterns, or measure
simple characteristics of graphs which could be useful for a
better characterization and classification. Particularly, in the
brain connectivity domain, several measures are able to detect
functional integration and segregation to quantify centrality of
individual brain regions or pathways, characterize patterns of
local anatomical circuitry, and to test resilience of networks to
insult (Rubinov and Sporns, 2010). These network measures
have binary and weighted variants, where weighted variants of
measures are typically generalizations of binary variants obtained
by considering edge weights in the computation. In this work
four local measures were identified1, according to the method
described in Rubinov and Sporns (2010). Below, we report a
detailed description of their weighted and unweighted version.
Nevertheless, we refer the interested reader to Rubinov and
Sporns (2010) for a complete description of the most commonly
used measures of local and global connectivity, as well as their
neurobiological interpretations.

2.5.1. Node Degree
The degree of a node is the number of connections of that node.
The weighted version of the metric (strength) also considers the
weights of the edges into account. Let N be the set of all nodes
in the network and aij the connection status between i and j, i.e.,
equals 1 if there is a link between these two nodes 0 otherwise.
The degree of an unweighted graph can be calculated as follows:

Di =
∑

j∈N

aij

The weighted version of the metric (strength) also considers the
weights of the edges into account. Let wij the connection weight

1Brain Connectivity Toolbox: https://sites.google.com/site/bctnet/

between i and j, the weighted degree of a weighted undirected
graph can be calculated as follows:

Dw
i =

∑

j∈N

wij

2.5.2. Clustering Coefficient
The clustering coefficient is the fraction of triangles around a
node and is equivalent to the fraction of node’s neighbors that are
neighbors of each other. Let ti be the number of triangles around
a node i computed as follows:

ti =
1

2

∑

j,h∈N

aijaihajh

The clustering coefficient per each node i is computed as:

CCi =
2ti

ki(ki − 1)

The weighed version of the clustering coefficient is obtained
by replacing the number of triangles ti with the sum of
triangle intensities:

CCw
i =

2

ki(ki − 1)

∑

j,k

(w̃ijw̃jkw̃ki)
1/3

where weights are normalized by the largest weight in the
network, w̃ij = wij/max(wij).

2.5.3. Local Efficiency
Let first define the global efficiency as the average of inverse
shortest path length. The local efficiency is the global efficiency
computed on the neighborhood of the node, and is related to the
clustering coefficient. It can be defined as follows:

Ei =
1

n

∑

i∈N

∑

j,h∈N,j 6=i aijaih
[

djh (Ni)
]−1

ki
(

ki − 1
)

where Ei is the local efficiency of node i, and djh(Ni) is the length
of the shortest path between j and h, that contains only neighbors
of i. By considering weights in the calculation, the formula can be
extended to the weighted version as follows:

Ewi =
1

2

∑

i∈N

∑

j,h∈N,j 6=i (wijwih

[

dw
jh (Ni)

]−1
)1/3

ki
(

ki − 1
)
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2.5.4. Betweenness Centrality
Betweenness centrality is the fraction of all shortest paths in
the network that pass through a given node. Nodes with high
betweenness centrality are considered hub nodes and determine
important regions in a network. In terms of brain networks
this measure helps to detect important anatomical or functional
connections. It is defined as follows:

BCi =
1

(n− 1)(n− 2)

∑

h,j∈N
h6=j,h6=i,j 6=i

ρhj(i)

ρhj

where ρhj is the number of shortest paths between h and j,
and ρhj(i) is the number of shortest paths between h and j that
pass through i. Betweenness centrality is equivalent on weighted
networks, provided that path lengths are computed on respective
weighted paths.

2.6. Statistical Analysis
To address the variability introduced by each patient, a linear
mixed-effects model was applied separately to each local graph
metric in each graph node:

Responseij = β0 + β1(Clinical phenotypei)

+β2(Scan Sessionij)+ b0i + ǫij (1)

In this model, the predicted response of interest for subject i at
time j is determined by fixed effects, represented by β1 and β2.
Subject-specific effects are represented by b0i, allowing a random
interception per subject i.

The linear mixed-effects models were fitted using the “lme4"
package in R (Bates et al., 2015) and the significance of the fixed
effects and the interaction term is tested applying the Kenward-
Roger approximation to estimate the degrees of freedom using
the “car” package (Fox and Monette, 2002).

When the clinical phenotype fixed effect was significant, a
post-hoc test was conducted to extract the estimate and the
significance of each between class difference. This step was
processed using “lsmeans” package in R (Lenth, 2016).

2.7. Experimental Settings
T1 and DTI images have been used to obtain a structural N ×

N connectivity matrix for each MRI. For each feature vector,
normalization was applied so that each value was in the real
range [0, 1].

The parameter τ was set to 0.35 according to the method
described in Kocevar et al. (2016). The model was trained using
Adam (Kingma and Ba, 2014) with learning rate 0.001 and early
stopping to prevent overfitting. Cross validation with 3-folds was
used to provide a more robust evaluation of the model. The
quality of the classificationwas compared bymeans of the average
F-Measure, Precision, and Recall (Powers, 2011) achieved during
the cross validation. Wilcoxon-Mann-Whitney test (Wilcoxon,
1945) was conducted to test the differences between the global
metrics measured between the patient’s groups.

3. RESULTS

In the experiments, we trained the GCNN to classify patients
given their brain connectivity adjacency matrix representation
and the corresponding vector of node descriptors. Furthermore,
we trained the GCNN using all the features together (all-graph).
Finally, we used a featureless approach, meaning that the no node
descriptor is provided.

3.1. Local Graph Metrics Analysis
We report results of the statistical analysis performed using
unweighted local graph metrics. Many significant differences
were found when comparing the betweenness centrality metric of
CIS vs. PP and SP as well as when comparing RR vs. PP and SP.
No differences were foundwhen comparing CIS vs. RR and PP vs.
SP. The same behavior was observed when comparing clustering
coefficient, degree, and local efficiency metrics. Moreover, no
significant differences were observed when comparing the local
efficiency metric of PP vs. RR, except for the left amygdala (p <

0.05). Finally, important differences in several regions were found
when comparing the local degree of CIS vs. SP and RR vs. SP. An
illustration of these results is reported in Figure 1.

Concerning the statistical analysis performed using weighted
local graph metrics, several significant differences were found,
again, when comparing the betweenness centrality, clustering
coefficient, degree, and local efficiency metrics in the CIS and
RR groups with respect to the PP and SP groups. No significant
differences were observed between CIS and RR except for the
degree of the left-caudate nucleus (p < 0.05). Concerning the
comparison between PP and SP groups, significant differences
were foundwhen comparing the betweenness centrality in the left
lateral-occipital region and the left precuneus (parietal lobe) and
clustering coefficient and efficiency in the right middle-temporal
region (p < 0.05). This latter region was also found to be the only
one differing between PP and SP groups in terms of clustering
coefficient (p < 0.05). Statistical analysis results performed using
weighted local graph metrics are reported in Figure 2.

Detailed results about our statistical analysis are reported as
Supplementary Material to this paper.

3.2. Classification Using Unweighted
Adjacency Matrix
We first trained the proposed GCNN model using unweighted
brain connectivity adjacency matrix representations. Results
obtained for each experiment are reported in Table 2 and
graphically illustrated in Figure 3. As observable, using local
graph-derived metrics as node descriptors combined with
unweighted graphs, does not provide sufficient information
for the classification, achieving an average F-Measure of
about 0.50. In particular, the worst performances were
obtained for the Degree metric (F-Measure = 0.39 ± 0.03)
while slightly better results were observed, on average,
with Clustering Coefficient, Betweenness Centrality, and
Efficiency. All the graph-metrics together provided, on
average, better results. Nevertheless, the most remarkable
results were observed with the featureless approach. In
this case, we obtained a significant improvement of the
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FIGURE 1 | Differences between groups found in statistical analysis performed using unweighted local graph metrics. Blue and Red regions represent negative and

positive differences, respectively.

performances (F-Measure = 0.80 ± 0.01), stating that
the brain structure itself is highly discriminative for the
clinical profiles.

3.3. Classification Using Weighted
Adjacency Matrix
We trained the proposed model using weighted brain
connectivity adjacency matrix representations. Results obtained
for each experiment are provided in Table 2 and reported

graphically in Figure 4. Interestingly, good results were achieved
(F-Measure > 0.60) with all the studied local graph-metrics.
Furthermore, a significant increase in performances was
observed when using all the studied features together. Again,
the best result was achieved using the featureless approach (F-
Measure = 0.92 ± 0.02), with an average F-Measure increasing
of 10% with respect to the unweighted version. In particular,
a general performance increase can be observed when using
weights information, as graphically shown in Figure 5. Indeed,
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FIGURE 2 | Differences between groups found in statistical analysis performed using weighted local graph metrics. Blue and Red regions represent negative and

positive differences, respectively.

for all the proposed experiments, except when we use all the
graph metrics together, a significant improvement is achieved.

3.4. Classification of Control Subjects vs.
MS Patients
In this section we explore the capability of the proposed models
to discriminate between HC and MS patients. More in detail,
we performed three main experiments. First, we trained the

proposed GCNN model at classifying patients at early stages of
the pathology (CIS and RR) from HC. Then, we trained the
model at classifying patients at progressive stages (SP vs. PP)
from HC. Finally, we performed a multiclass classification task
including all the clinical forms, i.e., HC vs. SP vs. PP vs. RR vs.
CIS. As for the other experiments in this study, we compared
performances using weighted and unweighted brain connectivity
adjacency matrix representations.
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TABLE 2 | Cross validation results in terms of F-Measure, Precision, and Recall (± standard deviation) averaged on 3-folds.

Identity D BC CC E All-graphs

UNWEIGHTED

F-Measure 0.80 (±0.01) 0.39 (±0.03) 0.50 (±0.03) 0.47 (±0.06) 0.51 (±0.02) 0.56 (±0.04)

Precision 0.81 (±0.01) 0.33 (±0.03) 0.54 (±0.08) 0.47 (±0.11) 0.56 (±0.06) 0.57 (±0.04)

Recall 0.80 (±0.01) 0.48 (±0.04) 0.55 (±0.04) 0.55 (±0.04) 0.56 (±0.03) 0.60 (±0.04)

WEIGHTED

F-Measure 0.92 (±0.02) 0.64 (±0.01) 0.68 (±0.01) 0.64 (±0.02) 0.62 (±0.03) 0.74 (±0.02)

Precision 0.93 (±0.02) 0.70 (±0.02) 0.69 (±0.01) 0.66 (±0.01) 0.64 (±0.05) 0.76 (±0.02)

Recall 0.93 (±0.02) 0.65 (±0.02) 0.69 (±0.01) 0.64 (±0.02) 0.63 (±0.03) 0.75 (±0.03)

Rows report achieved results using unweighted graphs with unweighted features (upper) and using weighted graphs with weighted features (lower) [Degree (D), Betweenness Centrality

(BC), Clustering Coefficient (CC), Local Efficiency (E), with all graph-metrics (all-graphs)] and without features (identity).

FIGURE 3 | Box plot in term of F-Measure for each different unweighted feature [Degree (D), Betweenness Centrality (BC), Clustering Coefficient (CC), Local Efficiency

(E), with all graph-metrics (all-graphs)] and without features (identity).

FIGURE 4 | Box plot in term of F-Measure for each different weighted feature [Degree (D), Betweenness Centrality (BC), Clustering Coefficient (CC), Local Efficiency

(E), with all graph-metrics (all-graphs)] and without features (identity).

3.4.1. HC vs. (CIS + RR)
HC vs. (CIS + RR) classification task is described in this
section. Results obtained using unweighted and weighted
connectivity representations are reported in Table 3. Results
are then compared graphically in Figure 6. As observable,
both weighted and unweighted local graph-derived metrics
provide sufficient information for distinguish between
HC and MS patients. However, weighted connectivity
matrices provide overall better results. Best performances
were achieved using no node descriptions and using all
graph-metrics together.

3.4.2. HC vs. (SP + PP)
HC vs. (SP + PP) classification task is described in this section,
in order to test the capability of the model in discriminating HC
from progressive MS. Results obtained using unweighted and
weighted connectivity representations are reported in Table 4.
Results are then compared graphically in Figure 7. Again, high
level of accuracy were obtained using weighted and unweighted
information and weighted connectivity matrices provide overall
better results. As for the HC vs. (CIS + RR) task, the highest
performances were achieved using no node descriptions and
using all graph-metrics together.
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FIGURE 5 | Average F-Measure comparison for weighted and unweighted approach for each feature [Degree (D), Betweenness Centrality (BC), Clustering Coefficient

(CC), Local Efficiency (E), with all graph-metrics (all-graphs)] and without features (identity). *Represents statistical significance between the two groups.

TABLE 3 | Cross validation results of HC vs. (CIS+RR) in terms of F-Measure, Precision, and Recall (± standard deviation) averaged on 3-folds.

Identity D BC CC E All-graphs

UNWEIGHTED

F-Measure 0.96 (±0.05) 0.93 (±0.06) 0.87 (±0.14) 0.89 (±0.11) 0.89 (±0.11) 1.0 (±0.0)

Precision 1.0 (±0.01) 0.97 (±0.03) 0.99 (±0.01) 0.99 (±0.01) 0.99 (±0.01) 1.0 (±0.0)

Recall 0.94 (±0.08) 0.91 (±0.09) 0.83 (±0.16) 0.85 (±0.14) 0.85 (±0.14) 1.0 (±0.0)

WEIGHTED

F-Measure 1.0 (±0.0) 0.96 (±0.01) 0.96 (±0.04) 0.98 (±0.01) 0.98 (±0.01) 1.0 (±0.0)

Precision 1.0 (±0.0) 0.98 (±0.02) 0.97 (±0.03) 1.0 (±0.0) 1.0 (±0.0) 1.0 (±0.0)

Recall 1.0 (±0.0) 0.95 (±0.03) 0.94 (±0.05) 0.96 (±0.03) 0.96 (±0.03) 1.0 (±0.0)

Rows report achieved results using unweighted graphs with unweighted features (upper) and using weighted graphs with weighted features (lower) [Degree (D), Betweenness Centrality

(BC), Clustering Coefficient (CC), Local Efficiency (E), with all graph-metrics (all-graphs)] and without features (identity).

FIGURE 6 | Average F-Measure comparison for weighted and unweighted approach [HC vs. (CIS+RR)] for each feature [Degree (D), Betweenness Centrality (BC),

Clustering Coefficient (CC), Local Efficiency (E), with all graph-metrics (all-graphs)] and without features (identity). *Represents statistical significance between the two

groups.

3.4.3. All Classes Classification
Finally a multiclass classification task is performed using all

the forms together. Results obtained using unweighted and
weighted connectivity representations are reported in Table 5.

Results are then compared graphically in Figure 8. All the graph-

metrics together provided, on average, better results. Higher
performances were observed performing a featureless approach.

3.5. Early vs. Progressive Forms
Comparison
In this section we explore the capability of the proposed models
to discriminate between CIS and RR and progressive MS clinical
forms. The proposed GCNNmodel was trained at distinguishing
between CIS-RR and SP-PP patients, in order to provide a better
understanding of the different pathophysiology of patients at
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TABLE 4 | Cross validation results of HC vs. (SP+PP) in terms of F-Measure, Precision, and Recall (± standard deviation) averaged on 3-folds.

Identity D BC CC E All-graphs

UNWEIGHTED

F-Measure 0.96 (±0.05) 0.93 (±0.06) 0.87 (±0.14) 0.89 (±0.11) 0.89 (±0.11) 1.0 (±0.0)

Precision 1.0 (±0.01) 0.97 (±0.03) 0.99 (±0.01) 0.99 (±0.01) 0.99 (±0.01) 1.0 (±0.0)

Recall 0.94 (±0.08) 0.91 (±0.09) 0.83 (±0.16) 0.85 (±0.14) 0.85 (±0.14) 1.0 (±0.0)

WEIGHTED

F-Measure 1.0 (±0.0) 0.96 (±0.01) 0.96 (±0.04) 0.98 (±0.01) 0.98 (±0.01) 1.0 (±0.0)

Precision 1.0 (±0.0) 0.98 (±0.02) 0.97 (±0.03) 1.0 (±0.0) 1.0 (±0.0) 1.0 (±0.0)

Recall 1.0 (±0.0) 0.95 (±0.03) 0.94 (±0.05) 0.96 (±0.03) 0.96 (±0.03) 1.0 (±0.0)

Rows report achieved results using unweighted graphs with unweighted features (upper) and using weighted graphs with weighted features (lower) [Degree (D), Betweenness Centrality

(BC), Clustering Coefficient (CC), Local Efficiency (E), with all graph-metrics (all-graphs)] and without features (identity).

FIGURE 7 | Average F-Measure comparison for weighted and unweighted approach [HC vs. (SP+PP)] for each feature [Degree (D), Betweenness Centrality (BC),

Clustering Coefficient (CC), Local Efficiency (E), with all graph-metrics (all-graphs)] and without features (identity).

TABLE 5 | Cross validation results of HC vs. SP vs. PP vs. RR vs. CIS in terms of F-Measure, Precision, and Recall (± standard deviation) averaged on 3-folds.

Identity D BC CC E All-graphs

UNWEIGHTED

F-Measure 0.82 (±0.03) 0.56 (±0.08) 0.54 (±0.01) 0.52 (±0.02) 0.53 (±0.03) 0.63 (±0.03)

Precision 0.83 (±0.02) 0.72 (±0.04) 0.58 (±0.03) 0.61 (±0.1) 0.59 (±0.03) 0.71 (±0.01)

Recall 0.81 (±0.03) 0.56 (±0.07) 0.53 (±0.01) 0.54 (±0.03) 0.52 (±0.04) 0.63 (±0.02)

WEIGHTED

F-Measure 0.94 (±0.02) 0.66 (±0.07) 0.7 (±0.03) 0.66 (±0.04) 0.68 (±0.0) 0.81 (±0.02)

Precision 0.94 (±0.02) 0.74 (±0.02) 0.75 (±0.03) 0.68 (±0.04) 0.7 (±0.02) 0.84 (±0.01)

Recall 0.93 (±0.02) 0.66 (±0.06) 0.68 (±0.02) 0.67 (±0.04) 0.68 (±0.02) 0.8 (±0.03)

Rows report achieved results using unweighted graphs with unweighted features (upper) and using weighted graphs with weighted features (lower) [Degree (D), Betweenness Centrality

(BC), Clustering Coefficient (CC), Local Efficiency (E), with all graph-metrics (all-graphs)] and without features (identity).

an early stage of the disease (CIS and RR) and patients with
progressive MS. Furthermore, performances using weighted and
unweighted brain connectivity adjacency matrix representations
were compared.

Results obtained using unweighted and weighted connectivity
representations are reported in Table 6. Results are then
compared graphically in Figure 9.

An overall increase in performances were observed respect to
the intra clinical form classification tasks previously performed.
Both weighted and unweighted local graph-derived metrics
provide promising results. Interestingly, weighted Degree allow

to achieve high level of accuracy; indeed, it is worth to note that
graph density decreases along with the progress of the pathology,
due to neurodegenerative processes. However, as for previous
experiments, the featureless approach provided better and more
stable results.

4. DISCUSSIONS

In this work, we proposed a novel graph-based neural network
method to classify MS patients according to their clinical
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FIGURE 8 | Average F-Measure comparison for weighted and unweighted approach [HC vs. SP vs. PP vs. RR vs. CIS] for each feature [Degree (D), Betweenness

Centrality (BC), Clustering Coefficient (CC), Local Efficiency (E), with all graph-metrics (all-graphs)] and without features (identity). *Represents statistical significance

between the two groups.

TABLE 6 | Cross validation results of (CIS+RR) vs. (SP+PP) in terms of F-Measure, Precision, and Recall (± standard deviation) averaged on 3-folds.

Identity D BC CC E All-graphs

UNWEIGHTED

F-Measure 0.91 (±0.1) 0.68 (±0.02) 0.77 (±0.02) 0.78 (±0.02) 0.77 (±0.01) 0.83 (±0.01)

Precision 0.92 (±0.1) 0.7 (±0.01) 0.78 (±0.01) 0.78 (±0.01) 0.78 (±0.02) 0.83 (±0.01)

Recall 0.91 (±0.0) 0.68 (±0.02) 0.77 (±0.02) 0.78 (±0.02) 0.77 (±0.02) 0.83 (±0.01)

WEIGHTED

F-Measure 0.97 (±0.01) 0.99 (±0.0) 0.85 (±0.01) 0.83 (±0.02) 0.84 (±0.02) 0.92 (±0.01)

Precision 0.97 (±0.01) 0.99 (±0.0) 0.85 (±0.01) 0.84 (±0.02) 0.85 (±0.02) 0.92 (±0.01)

Recall 0.97 (±0.01) 0.99 (±0.0) 0.85 (±0.01) 0.83 (±0.02) 0.84 (±0.02) 0.92 (±0.01)

Rows report achieved results using unweighted graphs with unweighted features (upper) and using weighted graphs with weighted features (lower) [Degree (D), Betweenness Centrality

(BC), Clustering Coefficient (CC), Local Efficiency (E), with all graph-metrics (all-graphs)] and without features (identity).

FIGURE 9 | Average F-Measure comparison for weighted and unweighted approach [(CIS+RR) vs. (SP+PP)] for each feature [Degree (D), Betweenness Centrality

(BC), Clustering Coefficient (CC), Local Efficiency (E), with all graph-metrics (all-graphs)] and without features (identity). *Represents statistical significance between the

two groups.

phenotype using brain structural connectivity information. To
this aim, we exploited a peculiar type of neural network
architecture designed to handle arbitrarily structured graphs. We
compared the impact of local graph metrics to the classification
performances, either using weighted and unweighted brain

connectivity representation. Furthermore, we performed a
statistical analysis on the local graph metrics (weighted and
unweighted) computed for each MS clinical form, attempting
to characterize differences in the groups, and eventually classify
patients. Notice that, conventional MRI information such as
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lesion and gray matter volumes did not allowed to accurately
classify patients into the four clinical forms, thus showing the lack
of specificity of these measurements to the pathophysiological
effects of the disease. Details about the analysis can be found in
the Supplementary Material.

Our attention focalized on the classification of the MS clinical
courses, differently from previous related works which mostly
focused on the differentiation between MS patients from HC
subjects (Maleki et al., 2012; Zhang et al., 2018; Zurita et al.,
2018; Charalambous et al., 2019). The task addressed in this work
has a strong clinical interest as the early clinical classification
and thus prognostic of MS patients is the major challenge
for neurologists today. Indeed, it is worth recalling that MS
etiology is still unknown and that each MS patient may follow
a different clinical course, resulting probably from the variety
of the underground pathological mechanisms. More in detail,
CIS and RR patients present comparable brain pathological
processes, mainly inflammation, while SP and PP patients
share neurodegenerative mechanisms. Indeed, as showed by the
statistical analysis, few differences were found when comparing
local graph metrics between these two pair of groups. As for the
CIS vs. RR comparison, these differences are mostly localized in
the sub-cortical regions, temporal and parietal lobes, highlighting
that early pathological processes start in central subcortical
structures. Also, these differences are more related to weighted
measures, thus showing that inflammation has a stronger impact
on large WM fiber bundles.

Concerning the SP vs. PP comparison, very few differences
were found in the occipital, parietal, and temporal lobes,
reflecting the similarity effect of the neurodegenerative process.
Significant differences were mainly observed when comparing
early stages of the disease (CIS,RR) with more severe clinical
forms (SP,PP). As previously observed in literature (Kocevar
et al., 2016; Charalambous et al., 2019), indeed, a general
reduction in network efficiency, density and clustering coefficient
was observed in SP relative to RR patients due to severe brain
damages. Finally, is interesting to notice the similarity between
differences found in local efficiency and clustering coefficient
(weighted). This result is in agreement with a recent study
(Strang et al., 2018), where these two metrics were found to be
asymptotically linearly correlated in functional connectivity and
various benchmark graphs.

However, despite difficulties in discriminating among groups
using statistical markers, the proposed approaches achieved
promising results. The proposed GCNN architecture was able to
achieve good results operating with a relatively small number
of parameters (about 42,000 trainable weights) compared with
classical convolutional networks models working on images.
Indeed, it is worth to note that the proposed method works
on adjacency matrices of 84 nodes, significantly reducing the
number of input units with respect to models directly operating
on MR images (Maleki et al., 2012; Zhang et al., 2018).

Interestingly, the main results were obtained using only
the connectivity matrices, without graph-metrics as node
descriptor. The brain structure, indeed, seems to contain highly
discriminative properties characterizing the clinical profiles.
Some of these properties are already mentioned in literature.
According to the statistical analysis performed in Kocevar

et al. (2016), for example, significant differences were found
when comparing several graph metrics in progressive courses,
reflecting the neurodegenerative mechanisms acting in the
brain. However, as shown in our experiments, none of these
properties used as node descriptors were effectively exploited
by the neural network to discriminate the groups. By contrast,
interesting improvement in classification performances were
observed when using all the graph metrics together. The result is
in agreement with a previous study (Kocevar et al., 2016) where
the combination of global graph-derived metrics provided the
best results in the CIS vs. RR, RR vs. PP, CIS vs. RR vs. SP
classification tasks. This may be explained considering that each
local descriptor can provide useful information for a particular
clinical course. Thus, exploiting them all together allows a better
characterization of MS pathological alterations.

Interesting results were also observed when evaluating the
capability of the network in classifying “early" stages of the
pathology vs. “progressive" stages. The proposed model was
able to perform the binary classification task achieving high
level of accuracy. Remarkable results were obtained considering
the weighted Degree, which allowed the model to achieve
the best performance. Indeed, it is worth to note that graph
density decreases along with the progress of the pathology,
due to neurodegenerative processes (Kocevar et al., 2016;
Charalambous et al., 2019).

Experiments including control patients were also reported
in this paper. The proposed architecture was trained at
discriminating between HC and early stages of the pathology
(CIS and RR), and between HC and progressive stages (PP and
SP). The model was able to achieve high performances. HC
subjects were also used to perform a multiclass classification
task using all the forms together. All the graph-metrics together
as well as the featureless approach provided, on average, better
results, confirming our previous observations. These results are
somehow straightforward. Related studies have already shown
several differences comparing brain structure representation of
control subjects with respect to MS patients (Zurita et al.,
2018; Charalambous et al., 2019), due to pathological alterations.
Such effects, cause HC networks to be more dense and
well organized compared to MS, thus allowing an accurate
discrimination (Kocevar et al., 2016). However, even if expected,
these further analyses confirm the capability of the model to
detect and exploit brain structure differences.

Finally, one of themain observation is related to the significant
role played by edge weights in the classification task. As shown in
our results, weights information allowed significant performance
improvements in almost all the experiments. This achievement
suggests that, despite comparable alterations in white matter
network structure among groups may lead to misclassification in
some cases, the fiber bundles’ strength provides a complementary
information helpful to improve the overall accuracy.

5. CONCLUSIONS

In this work, we proposed a graph-based method to classify
MS patients according to their clinical forms. Graph theory
has been applied to describe brain network topology and
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Graph Convolutional Neural Networks have been used for the
classification of MS clinical courses.

Thanks to a robust experimental activity, we showed the
capability of GCNN to classify MS patients using the whole graph
structure. In order to have a clear picture, we also enriched our
analysis by combining the graph structure information with local
graph-based metrics. Three major results were achieved by this
analysis:(i) NNs are able to achieve high classification results
using only the connectivity matrix (ii) local graph metrics do
not improve the classification results suggesting that the latent
features created by the NN in its layers have a much important
informative content (iii) graph weights representation of brain
connections preserve important information to discriminate
between clinical forms. This result suggests that with graph
binarization a lot of useful information may be lost.

It is worth to note that a limitation of this study is
the small number of patients. However, we minimized these
potential biases by using K-Fold cross-validation to generalize
classification results. Further, the small number of each patient
profile may not reflect the general population and induce biases
in graph metrics results. As for future work, we aim at improving
our method using a whole trail of longitudinal data collected for
each patient as input for the model. In order to carry out this task,
novel models proposed in literature may be taken into account.
In this context, Recurrent Neural Networks (Medsker and Jain,
1999) have achieved remarkable results in dealing with short-
long temporal relations (Graves and Jaitly, 2014; Donahue et al.,
2015; Fragkiadaki et al., 2015) and can be effectively extended
to handle graph data (Jain et al., 2016; Manessi et al., 2017; Jin
and JaJa, 2018), achieving promising results. Another interesting
perspective would be to perform a deep clinical analysis in order
to understand the potential interest of such methods to better
characterize the disease progression and thus better predict the
patient evolution.
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