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Background. The immunopathogenesis of tuberculosis-associated immune reconstitution inflammatory syn-
drome (IRIS) remains incompletely understood, and we know of only 1 disease site-specific study of the underlying
immunology; we recently showed thatMycobacterium tuberculosis culture positivity and increased neutrophils in the
cerebrospinal fluid (CSF) of patients with tuberculous meningitis (TBM) are associated with TBM-IRIS. In this study
we investigated inflammatory mediators at the disease site in patients with TBM-IRIS.

Methods. We performed lumbar puncture at 3–5 time points in human immunodeficiency virus (HIV)–infected
patients with TBM (n = 34), including at TBM diagnosis, at initiation of antiretroviral therapy (ART) (day 14), 14 days
after ART initiation, at presentation of TBM-IRIS, and 14 days thereafter. We determined the concentrations of 40
mediators in CSF (33 paired with blood) with Luminex or enzyme-linked immunosorbent assays. Findings were
compared between patients who developed TBM-IRIS (n = 16) and those who did not (TBM-non-IRIS; n = 18).

Results. AtTBMdiagnosis and 2weeks afterART initiation, TBM-IRISwas associatedwith severe, compartmental-
ized inflammation in the CSF, with elevated concentrations of cytokines, chemokines, neutrophil-associated mediators,
and matrix metalloproteinases, compared with TBM-non-IRIS. Patients with TBM-non-IRIS whose CSF cultures were
positive forM. tuberculosis at TBM diagnosis (n = 6) showed inflammatory responses similar to those seen in patients
with TBM-IRIS at both time points. However, at 2 weeks after ART initiation, S100A8/A9 was significantly increased
in patients with TBM-IRIS, compared with patients with TBM-non-IRIS whose cultures were positive at baseline.

Conclusions. AhighbaselineM.tuberculosisantigen loaddrivesan inflammatoryresponse thatmanifestsclinicallyas
TBM-IRIS in most, but not all, patients with TBM. Neutrophils and their mediators, especially S100A8/A9, are closely
associated with the central nervous system inflammation that characterizes TBM-IRIS.
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Because of the rapid scale-up of antiretroviral therapy
(ART) programs, tuberculosis-associated immune re-
constitution inflammatory syndrome (TB-IRIS) is a sig-
nificant contributor to the healthcare burden in high
TB/HIV coinfection settings [1–3]. Paradoxical TB-
IRIS presents as clinical deterioration after the initiation
of ART in patients who have improved or stabilized
with tuberculosis treatment before ART initiation [4].
This deterioration occurs in the context of a rapid res-
toration of Mycobacterium tuberculosis–specific im-
mune responses. Neurological TB-IRIS is the most
severe form of TB-IRIS, with an associated mortality
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of 13%–75% [3, 5–7], compared with the 3.2% estimate for all
forms of paradoxical TB-IRIS combined [8].

Although recent studies have advanced understanding of
TB-IRIS through the identification of several cellular, immuno-
logical, and genetic factors associated with the syndrome, the
immunopathogenesis remains incompletely defined, and no
diagnostic test exists [9]. Thus far, explorations of the immune
response in TB-IRIS pathogenesis have been of those measured
in blood, which is likely an incomplete representation of the
immune response in affected tissue—for example, the central
nervous system (CNS).

In this study, we investigated inflammatory mediators in ce-
rebrospinal fluid (CSF; 40 mediators) and blood (33 mediators)
from human immunodeficiency virus (HIV)–infected patients
with tuberculous meningitis (TBM) who started ART during
tuberculosis treatment. We compared serial findings between
patients who did and those who did not develop paradoxical
TBM-IRIS. The clinical findings of this cohort were described
elsewhere [3]; here we focus on the immunological aspects of
TBM-IRIS pathogenesis.

METHODS

Setting and Participants
We conducted a prospective, observational study at a public sec-
tor hospital in Cape Town, South Africa, recruiting ART-naive
HIV-infected adults who presented with TBM during a 20-
month period. The details of the clinical methods have been
published elsewhere [3]. Both TBM and paradoxical TBM-
IRIS were diagnosed according to published case definitions
[4, 10]; ART-naive HIV-infected patients without meningitis
who presented with symptoms and/or signs necessitating a
lumbar puncture were enrolled as control participants. The
University of Cape Town Human Research Ethics Committee
approved the study, and written informed consent was obtained
from all patients or their relatives (Supplementary Data).

Procedure
Paired CSF and blood samples were collected from patients with
TBM at 3–5 time points, shown in Figure 1. Samples were col-
lected at 1 time point from control participants. Samples were
stored at −80°C and analyzed in batches as detailed below. The
primary outcome measure was CSF mediator concentrations, at
the time of TBM-IRIS presentation in patients who developed
TBM-IRIS and 2 weeks after ART initiation in those who did
not. The 2 weeks after ART initiation time point in patients
with TBM without IRIS (TBM-non-IRIS) was based on the me-
dian time (14 days after ART initiation) reported for TB-IRIS
development [4]. Secondary analyses included comparisons of
CSF and blood findings between (1) the combined TBM group
and controls, (2) patients with TBM-IRIS and TBM-non-IRIS

at TBM diagnosis and ART initiation, and (3) time points with-
in TBM-IRIS and TBM-non-IRIS groups.

Luminex Multiplex and Enzyme-Linked Immunosorbent Assays
Mediators analyzed in CSF and serum samples with Luminex
multiplex assays included tumor necrosis factor (TNF), interfer-
on (IFN)-γ, interleukin (IL)-2, interleukin 4, interleukin 10,
interleukin 13, interleukin 1β, interleukin 6 (IL-6), interleukin
12p40 (IL-12p40), interleukin 17 (IL-17), IFN-α2, CC chemo-
kine ligand (CCL) 2, CCL3, CCL4, CXC chemokine ligand
(CXCL) 1–3, CXCL8, granulocyte colony-stimulating factor
(G-CSF) and granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF). Matrix metalloproteinase (MMP) 1, 2, 3, 7, 9,
10, 12, and 13, and tissue inhibitors of MMP (TIMP) 1 and 2
were analyzed with Luminex multiplex assays in CSF and plas-
ma. Mediators measured with enzyme-linked immunosorbent
assays in CSF and serum samples included IL-12p70, interleu-
kin 17A (IL-17A), interleukin 21, 22, and 23, and CXCL10.

Figure 1. Flow diagram of time points when lumbar puncture and phle-
botomy were performed in patients with tuberculous meningitis (TBM).
Drug interventions are indicated at each time point (gray boxes). Proce-
dures were performed at a minimum of 3 time points: (1) TBM diagnosis,
(2) antiretroviral treatment (ART) initiation, and (3) 2 weeks after ART ini-
tiation or TBM immune reconstitution inflammatory syndrome (IRIS) presen-
tation, whichever occurred first. Patients in whom TBM-IRIS developed later
than 2 weeks after ART initiation underwent repeated procedures at TBM-
IRIS presentation. Unless lumbar puncture was contraindicated, procedures
were repeated in patients with TBM-IRIS 2 weeks after TBM-IRIS presen-
tation. At the start of the study, the first-line ART regimen for patients re-
ceiving tuberculosis treatment in South Africa was stavudine, lamivudine,
and efavirenz (started in 10 patients [63%] with TBM-IRIS and 10 [56%]
with TBM without IRIS [TBM-non-IRIS]). Later during the study, tenofovir
replaced stavudine, according to revised national guidelines (started in 4
patients [25%] with TBM-IRIS and 5 [28%] with TBM-non-IRIS). Five pa-
tients (2 [13%] with TBM-IRIS and 3 [17%] with TBM-non-IRIS), in whom
these regimens were contraindicated, received zidovudine, lamivudine, and
efavirenz.
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The CSF samples were also analyzed with enzyme-linked im-
munosorbent assays for interleukin 18 (IL-18) and neutro-
phil-associated mediators: cathepsin G, lipocalin 2, LL-37,
human neutrophil peptides 1–3, complement 5a (C5a), and
S100A8/A9 (Supplementary Data).

Statistical Analysis
Statistical analysis was performed using GraphPad Prism (ver-
sion 5; GraphPad) and R (version 3.0) software [11]. We com-
pared variables between groups using Wilcoxon rank sum tests.
Within groups, we compared variables between time points
and between blood and CSF compartments, using Wilcoxon
matched-pairs tests. Correlations were estimated using the
Kendall τ coefficient. We performed unsupervised agglomerative
hierarchical clustering on mediators in CSF samples, using com-
plete linkage and Euclidean distance measures. We assessed clus-
ter-wise stability with 2 resampling schemes (bootstrap and
subsetting; 100 resampling runs), and we computed the Jaccard
similarities [12, 13]. Throughout the analyses, we used an unad-
justed P value <.05 as a nominal threshold for statistical signifi-
cance, except for the correlation analysis, which provides P values
adjusted for the false discovery rate (Benjamini and Hochberg)
[14]. Owing to the large number of statistical tests, our P values
should be used for guidance in interpretation rather than finality
(see Supplementary Data for details on multivariate analysis).

RESULTS

Demographic and Clinical Results
The demographic characteristics and baseline blood results of
patients with TBM (n = 34) and controls (n = 14) are presented
in Table 1. Sixteen patients with TBM developed TBM-IRIS, a
median of 14 days (IQR, 4–20 days) after starting ART, and 18
did not [3]. Of note, 15 of 16 patients with TBM-IRIS and 6 of
18 with TBM-non-IRIS had M. tuberculosis cultured from CSF
samples at TBM diagnosis (P < .001). There were no significant
differences in CD4 cell counts and plasma HIV loads between
patients with TBM and controls (Table 1). The CD4 counts and
plasma and CSF HIV loads were reported elsewhere for these
TBM-IRIS and TBM-non-IRIS groups and did not differ signif-
icantly between groups either at baseline or during follow-up [3].

CSF Mediator Concentrations in Patients With TBM and Controls
Interleukin 2, 4, 13, 21, and 23, IL-12p70, MMP-12, and MMP-
13 were excluded from all analyses because of minimal or no
detection in CSF and blood samples (Supplementary Data).
Compared with controls with no meningitis at presentation,
patients with TBM had significantly higher (P < .05) CSF con-
centrations of 28 of 32 mediators; only CCL2 and IL-17 levels
were similar, and IL-18 and C5a had medians equal to 0 in both
groups (Supplementary Table 2). Conversely, concentrations of

only 6 of 25 mediators in blood differed between groups; IFN-γ,
IL-6, CXCL8, CXCL10, and MMP-3 concentrations were higher
(P < .05), and CCL2 concentrations were lower (P = .045) in
patients with TBM.

Highly Compartmentalized Inflammatory Responses
in TBM With or Without IRIS Development
Within the TBM group at the time of TBM diagnosis, cytokine
and chemokine concentrations were significantly higher in CSF
than in blood samples, with the exception of IL-12p40, which
showed comparable levels in blood and CSF, and CXCL1-3,
which showed a higher trend (P = .06) in blood (Supplemen-
tary Table 2). Conversely, levels of MMP-1–3, MMP-7, and
MMP-10 were significantly higher in blood than in CSF sam-
ples, and only MMP-9 and its inhibitor TIMP-1 were increased
in CSF relative to blood (P < .001). Within the control group,
blood cytokine, chemokine, MMP, and TIMP concentrations
were either similar to or higher than CSF concentrations, with

Table 1. Baseline Characteristics of Patients Presenting With
Tuberculous Meningitis and Controls Without Meningitis

Characteristic

Median Value (IQR)a

P
Valueb

Patients With TBM
(n = 34)

Controls
(n = 14)c

Age, y 33 (28–44) 34 (27–38) .95

Female, No. (%) 15 (44) 9 (64) .34
Body mass index 20.0 (18.3–22.7) 20.5 (19.9–27.3) .17

Blood values

Sodium, mmol/L 129 (123–131) 135 (133–137) <.001
Hemoglobin, g/dL 11.4 (8.8–13.1) 12.4 (10.8–13.4) .10

C-reactive protein,
mg/L

40 (6–78) 5 (1–8) .005

CD4 count, cells/µL 113 (69–199) 129 (75–180) .91

HIV load, log10 5.46 (4.82–5.89) 4.87 (4.44–5.44) .06

CSF values
Lymphocyte count,
×106/L

177 (87–339) 6 (2–13) <.001

Neutrophil count,
×106/L

20 (2–42) 0 (0–0) <.001

Protein, g/L 1.94 (1.29–3.06) 0.51 (0.38–0.87) <.001

Glucose, CSF/blood
ratio

0.30 (0.17–0.5) 0.53 (0.5–0.74) <.001

Abbreviations: CSF, cerebrospinal fluid; HIV, human immunodeficiency virus;
IQR, interquartile range; TBM, tuberculous meningitis.
a Values represent medians (IQRs) unless otherwise specified.
b P values were calculated for comparisons between groups, using the
Wilcoxon rank sum test for continuous variables and the Fisher exact test for
categorical variables. Differences were considered statistically significant at
P < .05.
c Diagnoses in controls included HIV-associated psychosis (n = 4), tension
headache (n = 4), generalized tonic-clonic seizures (n = 2), meningioma
(n = 1), stroke (n = 1), depression (n = 1), and HIV-associated neurocognitive
disorder (n = 1).
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the exceptions of G-CSF, IFN-α2, CCL2, CCL3, and CXCL8
concentrations, which were higher in CSF. Consistent with
the combined TBM group, a highly compartmentalized inflam-
matory response was seen in both subgroups when the TBM
group was divided into those who did and those who did not
subsequently develop TBM-IRIS (Figure 2, Supplementary
Figure 1, and Supplementary Tables 3–5).

CSF Mediator Concentrations and Dynamic Changes Over Time
in TBM-IRIS Compared With TBM-Non-IRIS
At the time of TBM diagnosis, patients who subsequently devel-
oped TBM-IRIS, compared with those who did not, showed

significantly increased CSF T-helper 1 cells (IFN-γ and IL-18)
and other proinflammatory cytokines (TNF, IL-6, interleukin 1β,
G-CSF, and GM-CSF), IFN-α2, chemokines (CCL2–4, CXCL1-3,
CXCL8, and CXCL 10), neutrophil-associated mediators (human
neutrophil peptides 1–3, lipocalin 2, C5a, and S100A8/A9),
MMP-1, MMP-7, MMP-10, TIMP-1 and TIMP-2 (Figure 2
and Supplementary Table 3). Figure 3 and Supplementary
Table 6 show the changes in CSF mediator concentrations
over time for patients with TBM-IRIS or TBM-non-IRIS. In
both groups there was a significant decrease in most mediators
tested in CSF during tuberculosis treatment before initiation of
ART. However, IL-12p40 and IL-17A showed a significant

Figure 2. Box plots of mediator concentrations over time in cerebrospinal fluid of patients who developed tuberculous meningitis (TBM) immune recon-
stitution inflammatory syndrome (IRIS) (red) and those who did not (blue). The assay limits of detection have been substituted for 0 values. The left y-axis is
a log10 scale, and the right y-axis indicates time points of sample collection. Within graphs, boxes with horizontal lines represent interquartile ranges (IQR)
and medians, and vertical line represent 95% confidence intervals. Data points for outliers (≥1.5 × IQR) are included. (See Supplementary Tables 3–5 for
P values of analyses between groups.) For patients with TBM-IRIS, the “2 wk after antiretroviral therapy (ART)” time point indicates findings at TBM-IRIS
presentation, which occurred a median of 14 days (interquartile range, 4–20 days) after initiation of ART. Concentrations of all mediators were measured as
picograms per milliliter, with the exception of cathepsin G, which was measured in units per milliliter. Abbreviations: C5a, complement 5a; CCL, CC che-
mokine ligand; CXCL, CXC chemokine ligand; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte-macrophage colony-stimulating factor;
HNP, human neutrophil peptide; IFN, interferon; IL, interleukin; MMP, metalloproteinase; TIMP, tissue inhibitor of MMP; TNF, tumor necrosis factor.
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increase from baseline in patients with TBM-IRIS, but not those
with TBM-non-IRIS, before initiation of ART.

At TBM-IRIS presentation (compared with 2 weeks after
ART initiation in patients with TBM-non-IRIS), patients with
TBM-IRIS showed significantly higher CSF concentrations for
almost all mediators (31 of 32), except IFN-α2 (Figure 2 and

Supplementary Table 5). Antiretroviral therapy was associated
with marked rises in CSF inflammatory mediator concentra-
tions in patients with TBM-IRIS, despite adjunctive corticoste-
roid therapy (13 of 16 patients were still receiving prednisone),
such that concentrations reached similar or higher levels at
TBM-IRIS presentation, approximately 2 weeks after ART

Figure 3. Representative examples of changes over time of cerebrospinal fluid (CSF) mediators in patients who developed tuberculous meningitis (TBM)
immune reconstitution inflammatory syndrome (IRIS) (n = 16) (red) and those who did not (n = 18) (blue). For patients with TBM-IRIS, the “2 wk after ART
[antiretroviral therapy]” time point indicates findings at TBM-IRIS presentation. Some patients with TBM without IRIS (TBM-non-IRIS) showed an increase in
mediator concentration and the ratio of metalloproteinase (MMP) 9 to tissue inhibitor of MMP tissue inhibitor of MMP (TIMP) 1 after starting ART; these
patients had CSF cultures positive for Mycobacterium tuberculosis at TBM diagnosis. Abbreviations: CXCL, CXC chemokine ligand; HNP, human neutrophil
peptide; IL, interleukin; TNF, tumor necrosis factor.
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initiation, compared with those at TBM presentation (Supple-
mentary Table 6A). Conversely, in TBM-non-IRIS no signifi-
cant CSF changes were observed between the start of ART
and 2 weeks thereafter (Supplementary Table 6B). Moreover,
comparing findings between samples taken 2 weeks after start-
ing ART to those from TBM diagnosis in TBM-non-IRIS, a sig-
nificant decrease was noted in CSF concentrations of G-CSF,
GM-CSF, CCL3, CCL4, TNF, IFN-γ, IL-6, CXCL8, CXCL10,
lipocalin 2, S100A8/A9, MMP-10, and TIMP-1. This suggests
that the rise in CSF mediators observed in TBM-IRIS 2 weeks
after ART reflected IRIS development, not simply the effects of
ART prescription.

Samples taken 2 weeks after TBM-IRIS presentation were
available for analysis in 10 of 16 patients with TBM-IRIS;
death (n = 1) or contraindications to lumbar puncture (n = 5)
precluded CSF sampling in the others. Compared with mediator
concentrations at TBM-IRIS presentation (when prednisone
was restarted or the dose increased), the only significant chang-
es in CSF mediators were decreased concentrations of G-CSF
(P = .04) and LL-37 (P = .02), 2 weeks after TBM-IRIS.

Modest Between-Group Differences in Blood Compared
With CSF Samples
At TBM diagnosis, blood concentrations were similar between
TBM-IRIS and TBM-non-IRIS with the exception of IFN-α2
(P = .03), CXCL8 (P = .005), and MMP-1 (P = .04) concentra-
tions, which were higher in patients with TBM-IRIS (Supple-
mentary Figure 1 and Supplementary Table 3). The CXCL8
concentration remained elevated in TBM-IRIS at the start of
ART (P = .02; Supplementary Figure 1 and Supplementary
Table 4). Two weeks after the start of ART, concentrations of
TNF, IFN-γ, CCL4, and MMP-7 (.01 <P <.05 for all) and
CXCL8 and CXCL10 (.001 <P <.01 for both) were elevated in
blood samples from the TBM-IRIS group compared with the
TBM-non-IRIS group, and TIMP-2 was higher in the TBM-
non-IRIS group (P = .046; Supplementary Figure 1 and Supple-
mentary Table 5).

CSF Neutrophil Counts and S100A8/A9 in Patients With TBM-IRIS
and Culture-Positive Patients With TBM-Non-IRIS
Unsupervised hierarchical clustering of patients with TBM
by CSF mediators showed that patients with TBM-non-IRIS
whose CSF cultures were positive forM. tuberculosis at TBM di-
agnosis tended to cluster at all time points with patients with
TBM-IRIS (Figure 4 and Supplementary Table 7). Patients
with TBM-non-IRIS who were culture positive showed media-
tor profiles more similar to patients with TBM-IRIS than to cul-
ture-negative patients with TBM-non-IRIS, at TBM diagnosis
(Supplementary Table 8) and some of these patients also had
increasing concentrations of mediators after starting ART
as shown in Figure 3. Supplementary Table 9 shows the

similarities between CSF findings in culture-positive patients
with TBM-non-IRIS and those with TBM-IRIS and the differ-
ences between culture-positive and culture-negative patients
with TBM-non-IRIS, 2 weeks after starting ART. Neutrophil
counts and S100A8/A9 distinguished culture-positive patients
with TBM-non-IRIS from patients with TBM-IRIS; neutrophils
differentiated them at baseline (median [IQR], 3 [0–14] vs 38
[11–117] cells × 106/L; P = .02) and 2 weeks after ART initiation
(2 [0–11] vs 52 [17–244] cells × 106/L; P = .003), and S100A8/
A9 differentiated them 2 weeks after ART (15 346 [0–19 152]
vs 33 500 [27 000–48 000] pg/mL; P = .001). Correlation analyses
showed no biologically significant correlations between neutro-
phil and lymphocyte counts and mediator concentrations in
CSF samples from patients with TBM-IRIS or TBM-non-IRIS
over time (Supplementary Data).

DISCUSSION

To our knowledge, this is the only comprehensive analysis to
date of serial CSF and blood immune mediators in TBM-
IRIS. Neutrophils, lymphocytes, and total protein concentra-
tions [3], as well as all analyzed mediators (except IFN-α2),
were elevated in patients with TBM-IRIS 2 weeks after ART ini-
tiation, compared with patients with TBM-non-IRIS. This
widespread up-regulation of diverse mediators of diverse cellu-
lar functions suggests that both innate and adaptive immune re-
sponses are involved in TBM-IRIS pathogenesis.

Adjunctive corticosteroid treatment is associated with
reduced short-term mortality in HIV-uninfected patients with
TBM [15] and with symptomatic improvement in TB-IRIS [1].
In our study, increased CSF inflammation was observed after
ART initiation in patients with TBM-IRIS despite corticosteroid
therapy. Furthermore, a decrease of only 2 mediators was ob-
served 2 weeks after corticosteroids were increased in dosage
or restarted at TBM-IRIS presentation. Previous studies in pa-
tients with TBM also found little effect of corticosteroids on
CSF cytokine or chemokine concentrations [16]. The CSF con-
centrations of MMP-9 were shown to decrease in patients re-
ceiving dexamethasone compared with controls early during
TBM treatment, and it was postulated that this may represent
a mechanism by which corticosteroids improve outcome in
these patients [17]. However, in our study MMP-9 concentra-
tions did not change after initiation of tuberculosis treatment
(plus corticosteroids) in patients with either TBM-IRIS or
TBM-non-IRIS, and they increased significantly after ART ini-
tiation in the TBM-IRIS group. These findings suggest that im-
munomodulatory treatment options more potent and specific
than corticosteroids need to be explored for the prevention
and/or management of TBM-IRIS.

As reported elsewhere for extrapulmonary tuberculosis, in-
cluding TBM [18], pleural [19], and pericardial tuberculosis
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Figure 4. Unsupervised hierarchical clustering of tuberculous meningitis (TBM) at TBM diagnosis (A), initiation of antiretroviral therapy (ART) (B), and TBM
immune reconstitution inflammatory syndrome (IRIS) presentation or 2 weeks after ART initiation (patients with non-TBM-IRIS) (C). IRIS status indicates
patients who developed TBM-IRIS (red) and those who did not (blue). Culture status indicates cerebrospinal fluid cultures positive (black) or negative (green)
for Mycobacterium tuberculosis at TBM diagnosis. Values plotted are natural log + 1. Corresponding concentrations in picograms per milliliter are indicated
on the color key. Concentrations of all mediators were measured in picograms per milliliter, with the exception of cathepsin G, measured in units per milliliter;
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[20], a highly compartmentalized inflammatory response in CSF
was seen in patients with TBM. Relatively fewer differences be-
tween TBM-IRIS and TBM-non-IRIS groups were observed for
mediators in blood compared with the differences observed in
CSF. Corticosteroids do modulate blood inflammatory responses
in persons coinfected with tuberculosis and HIV persons [21, 22]
and probably further attenuated differences between TBM-IRIS
and TBM-non-IRIS groups after TBM presentation after the
start of tuberculosis treatment and corticosteroids.

High baseline CSF mycobacterial load (reflected by M. tuber-
culosis culture positivity) is a risk factor for subsequent TBM-
IRIS in patients with TBM [3]. This is similar to findings in
cryptococcal meningitis (CM) IRIS, wherein high CSF fungal
loads (reflected by quantitative culture) at CM diagnosis also pre-
dict subsequent IRIS [23]. Findings of previous studies suggested
that, unlike the highly inflammatory baseline presentation being
predictive of TBM-IRIS, paradoxical CM-IRIS is predicted by a
paucity of inflammation at CM diagnosis, as evidenced by a
lack of CSF leukocytes and/or normal protein level [23, 24] and
lower CSF concentrations of cytokines and chemokines (ie, IL-6,
interleukin 8, TNF, and IFN-γ) [24]. These differing findings in
TBM and CM suggest that more than one pathogenic mecha-
nism underlies neurological forms of IRIS. More recent studies
in CM-IRIS have demonstrated a chemokine profile before

ART in CSF that predicts subsequent IRIS risk, including higher
CCL2/CXCL10 and CCL3/CXCL10 ratios [25]. Furthermore, in
the same cohort of patients with CM, markers of activation and/
or function expressed by natural killer cells and monocytes were
compartmentalized in the CNS relative to blood before ART ini-
tiation, supporting a role for the innate immune system at the dis-
ease site in CM pathogenesis [26].

In this study, patients with TBM-non-IRIS whose CSF cul-
tures were positive forM. tuberculosis at TBM diagnosis tended
to have higher baseline mediator concentrations than culture-
negative patients with TBM-non-IRIS and showed recurrent in-
flammation after ART initiation, reaching levels of magnitude
comparable to those in TBM-IRIS 2 weeks after ART initiation.
These increases in mediator concentrations were not seen in
culture-negative patients with TBM-non-IRIS. Drug regimens
in TBM are based on the same principles as pulmonary tuber-
culosis, rather than being informed by results of randomized
controlled trials in TBM [27]. Our data support research into
antimicrobial regimens containing higher-than-normal-dose
rifampicin as well as a fluoroquinolone [28, 29]. Given that my-
cobacterial load drives inflammation during ART, improving
early mycobacterial clearance from the CNS by using a more
potent TBM drug regimen in HIV-infected patients with
TBM may decrease the risk of TBM-IRIS.

Figure 4 continued. neutrophils and lymphocytes were measured as cells × 106 per liter. Abbreviations: C5a, complement 5a; CCL, CC chemokine ligand;
CXCL, CXC chemokine ligand; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; HNP, human neutrophil
peptide; IFN, interferon; IL, interleukin; MMP, metalloproteinase; TIMP, tissue inhibitor of MMP; TNF, tumor necrosis factor.
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Although initial studies explored the role of lymphocytes
in TB-IRIS pathogenesis, increasing evidence implicates the in-
nate immune system as an important contributor [9], and it is
proposed that neutrophils mediate the pathology in tuberculosis
[30].Based on these results and the association we found between
CSF neutrophils and TBM-IRIS [3], we investigated neutrophil-
associated mediators in the CSF of our cohort. All measured neu-
trophil-associated mediators were increased 2 weeks after initia-
tion of ART in the TBM-IRIS compared with the TBM-non-IRIS
group. Unlike the other neutrophil-associated mediators but sim-
ilar to neutrophils, S100A8/A9 was also increased in patients with
TBM-IRIS compared with those with TBM-non-IRIS with base-
line CSF M. tuberculosis culture positivity 2 weeks after ART ini-
tiation, when TBM-IRIS usually presents. Given these findings,
we hypothesize that S100A8/A9 contributes to the recurrent
CSF inflammation that manifests as clinical deterioration in pa-
tients with TBM-IRIS. S100A8/A9 is a protein complex that
seems to have prominent immune regulatory properties, such
as neutrophil chemoattraction and stimulation [31]. Several stud-
ies have shown that serum S100A8/A9 concentrations are
increased in HIV-uninfected patients with pulmonary tuber-
culosis compared with controls, and that they are correlated
with radiographic severity [32, 33]. In a murine model of tuber-
culosis, IL-17–induced S100A8/A9 was a key factor in neutrophil
accumulation and exacerbated lung inflammation by inducing
proinflammatory cytokines [33]. Given that IL-17 may therefore
be important in TBM-IRIS pathogenesis, but considering the low
concentrations previously found in vivo in patients with tubercu-
losis [20, 34], we measured IL-17A with a high-sensitivity assay.
The CSF IL-17A concentrations increased significantly over
time in patients with TBM-IRIS, reaching concentrations more
than 8-fold that of TBM diagnosis at TBM-IRIS presentation,
whereas the opposite trend occurred in patients with TBM-
non-IRIS. These findings support previous suggestions that IL-
17 may be important in TB-IRIS pathogenesis [34].

Although this is the first comprehensive analysis hitherto of
the disease site coupled with blood immune mediators in TB-
IRIS, we acknowledge certain limitations. We did not include
HIV-uninfected patients with TBM as controls, and we exclud-
ed patients with neurological deterioration before ART initia-
tion. We were therefore unable to compare the inflammatory
response in TBM-IRIS to that of the “paradoxical reaction”
characterized by neurological deterioration, which can occur
in both HIV-infected and HIV-uninfected patients with TBM
after the start of tuberculosis treatment [35]. This is a descrip-
tive study of mediators in patients with TBM; cellular contribu-
tions to mediator production in CSF and blood were not
determined by functional experiments.

Our findings have several important implications. First, oral
corticosteroid therapy during TBM treatment is insufficient to
prevent, or rapidly reduce, the inflammatory response that

characterizes TBM-IRIS; in addition to investigations through
randomized trials of different corticosteroid doses and routes
of administration in the management of TBM-IRIS , alternative
immunomodulatory therapies should be explored for the pre-
vention and treatment of the disease. Second, although the
adaptive immune system seems to be activated in TBM-IRIS,
the sequence of immunological events in the CNS suggests a
major contribution of the innate response in this condition. Ce-
rebrospinal fluid neutrophils, which may be driven through an
IL-17– and S100A8/A9-dependent pathway, are associated with
the most severe CNS inflammation manifesting as TBM-IRIS;
these findings are likely to direct future research into TB-IRIS
immunopathogenesis and management strategies.
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