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Abstract
The availability of high-throughput genomic data has led to several challenges in recent

genetic association studies, including the large number of genetic variants that must be con-

sidered and the computational complexity in statistical analyses. Tackling these problems

with a marker-set study such as SNP-set analysis can be an efficient solution. To construct

SNP-sets, we first propose a clustering algorithm, which employs Hamming distance to

measure the similarity between strings of SNP genotypes and evaluates whether the given

SNPs or SNP-sets should be clustered. A dendrogram can then be constructed based on

such distance measure, and the number of clusters can be determined. With the resulting

SNP-sets, we next develop an association test HDAT to examine susceptibility to the dis-

ease of interest. This proposed test assesses, based on Hamming distance, whether the

similarity between a diseased and a normal individual differs from the similarity between two

individuals of the same disease status. In our proposed methodology, only genotype infor-

mation is needed. No inference of haplotypes is required, and SNPs under consideration do

not need to locate in nearby regions. The proposed clustering algorithm and association

test are illustrated with applications and simulation studies. As compared with other existing

methods, the clustering algorithm is faster and better at identifying sets containing SNPs

exerting a similar effect. In addition, the simulation studies demonstrated that the proposed

test works well for SNP-sets containing a large proportion of neutral SNPs. Furthermore,

employing the clustering algorithm before testing a large set of data improves the knowl-

edge in confining the genetic regions for susceptible genetic markers.

Introduction
With the rapid advancements made in biotechnology, the volume and types of biological data
collected have grown at an accelerated rate. Such an enormous amount of data complicates the
analysis of genetic association studies, especially when dealing with complex diseases with
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single-marker tests, which are often hampered by the problems inherent in multiple testing
and by low power [1,2]. To alleviate such problems, current approaches either change the unit
of analysis to a group of markers and focus on reduction of data dimension, or select represen-
tative markers through several stages of analysis. The former philosophy of analysis is favored
by many researchers, mostly because a set of markers may jointly contribute to an effect differ-
ent from the additive effect of single markers. Existing multiple-marker analyses include candi-
date multiple-marker tests, haplotype association analysis, SNP-set analysis, and gene-set or
pathway analysis [3–5].

Candidate multiple-marker tests and haplotype analysis are usually employed when the
number of genetic markers is not large. For instance, Hotelling’s T2 statistic and linear or logis-
tic regression models with marker genotypes can include a moderately sized group of candidate
markers in one model. These analyses are sensitive to genotype or allele frequencies, and work
only for markers in the same, either protective or deleterious, direction [1]. As for haplotype
analysis, it can directly take into consideration the possible interplay between individual mark-
ers, such as the linkage disequilibrium (LD) between SNPs. Three common measurements for
LD are D, D0 and r2. The first two compare the difference between haplotype and allelic fre-
quencies; while the third quantity takes into account the allele frequencies in such differences.
Such haplotype analyses, however, may not be straightforward because of the ambiguity in the
determination of haplotype phase and the uncertainty in haplotype composition. In addition,
computational burden becomes increasingly difficult as the number of markers located in the
region of interest increases [6,7].

To explore the association between a wide genetic region and a disease, SNP-set analysis,
gene set analysis, and pathway analysis are all more flexible approaches, in the sense that they
are useful when analyzing a large pre-specified region based on investigators’ prior knowledge
or any available biological information [8,9]. These tools therefore can model the joint effect of
a group of variants that may be correlated with each other. These methods can be categorized
as SNP-set analysis, because, in a broad sense, the unit of analysis in SNP-sets can be any arbi-
trary cluster of SNPs, located either in neighboring genomic regions or in genes from a known
pathway [10].

To construct SNP-sets when no a priori knowledge is available, clustering algorithms may
be utilized as an exploratory tool to integrate the information contained in a large number of
SNPs. Unfortunately, most clustering algorithms are developed to summarize relationships
among quantitative measurements. Only a few studies have discussed how to cluster discrete
data like SNPs or to identify subsets of relevant SNPs [11,12]. These studies have applied simi-
larity measures, such as matching coefficients, modified Pearson’s coefficients, or Spearman’s
coefficients, to model the potential relationship between SNPs and epidemiological data. These
clustering methods are applied separately on case and control groups and, thus, may result in
different clusterings of SNP-sets for the two groups, leading to difficulties in interpretation.
The measures such as D0 and r2 for linkage disequilibrium can be utilized to group SNP vari-
ables as well. These are useful when haplotype information is available and when grouping loci
in regions close to each other is of interest.

Another similarity measure for categorical variables is Hamming distance [13], a distance
measure commonly employed in information theory to quantify similarity or dissimilarity
among discrete data. This metric measures the dissimilarity between two strings of equal
length, as a symmetric kernel between two vectors, and has been widely applied [14–16]. How-
ever, the properties of a clustering dendrogram constructed with the Hamming distance mea-
sure have not yet been investigated. Hamming distance calculates the number of dissimilar
components between two strings so that all component-wise information is retained and no
single marker needs to be removed. To determine if two groups of data should be clustered,
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Zhang et al. [16] tested if these two groups are equivalent based on the empirical distributions
of Hamming distance. Their method was found to be useful as long as data were of a size mod-
erate enough that convergence was be achieved in a reasonable amount of time. Another com-
mon algorithm, the k-mode, also tends to require a long running time and is sensitive to initial
values [15,17]. In cases where clustering long regions of SNPs is of interest, the two issues of
deciding when to merge SNP-sets and what procedure to use to compute distance remain
critical.

For association tests, Hamming distance was previously considered as a symmetric kernel
in tests proposed by Pinheiro et al. [18] and Wei et al. [19] in a test involving decomposition of
the similarity measure between subjects. Pinheiro et al. [18] used the between-group compo-
nent to define a test statistic and defined their Hamming distance as the proportion of discor-
dant SNPs. Their test statistic is insensitive in detecting differences between groups since the
value of the test statistic is often too small to achieve significance by bootstrap re-sampling.
Wei et al. [19] used a weighted Hamming distance as the kernel and a ratio of a between-group
statistic to a within-group statistic as the test quantity. They improved the nonparametric test
proposed by Schaid et al. [20] by taking into account the dissimilarity between individuals
from different treatment groups. Their between group statistic was the between group dissimi-
larity adjusted by a scalar of the within-group dissimilarity. This modification may not be com-
patible with heterogeneity between subjects of different traits, and thus its use may deserve
some reservations. Furthermore, they considered the weight as the negative logarithm of the
p-value from a single marker test, which may not be suitable when sample size is large or when
minor allele frequency is small.

In regression models, other statistical tests based on different similarity measures have been
proposed for use in association studies. Tzeng et al. [21,22] proposed a gene-trait similarity
regression to detect associations between genetic variants and disease traits. They first derived
a weighted cross product of trait residuals, and then regressed this product on genetic similar-
ity. For a binary disease trait with no covariate information available, this is like comparing the
average genetic similarity within a specific group, say the affected, with an average of the
genetic similarity within the control group and the genetic similarity across groups. That is, the
latter average considers both within-group and cross-group similarity. This latter average con-
siders both the within and cross group similarity. Alternatively, Wessel and Schork [22] pro-
posed regressing a genetic dis-similarity matrix of squared “distance” on a design matrix of
phenotypes such as gene expressions to test for associations. They considered seven different
distance metrics, including ibs and haplotype similarity, with various weights. For dichoto-
mous phenotypes, this approach compares the average dissimilarity (the distance) within the
affected group with the average dissimilarity within the normal group. It does not consider the
cross-group dissimilarity. For case-control studies, the dissimilarity between a pair of individu-
als with different disease traits may exhibit larger deviation and thus reveal greater information
about disease susceptibility, especially when evaluated on a causal set of markers. Therefore,
such cross-group dissimilarity should be included in analysis, and should be considered sepa-
rately from the within group dissimilarity.

The aim of our study is to develop a methodology of utilizing the Hamming distance metric
to measure the distance between two sets of vectors containing discrete observations, in order
to first perform clustering and then to use this clustering to conduct association studies. In the
clustering stage, we modify the hierarchical clustering algorithm with average linkage for con-
tinuous data and develop a Hamming distance-based algorithm to determine SNP-sets. The
procedure we develop is based on the rational that the more individuals carrying the same
genotype with respect to two given SNPs (or two SNP-sets), the more similar these two SNPs
(or sets) should be considered, which is exactly what the Hamming distance does by assigning
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them a smaller value. This Hamming distance dissimilarity measure can be considered as a
function of ibs, or a special case of rare-allele-weighting similarity proposed by Wessel and
Schork [23]. We also extend this idea to evaluate whether two SNP-sets should be considered
close enough to be clustered together. In the second stage of our study, in which we investigate
whether a given SNP-set obtained in the clustering stage is associated with the disease of inter-
est, we propose a test statistic that compares the “distance” (or difference) between individuals
with regard to their SNP profile for the given SNP-set. If the SNP-set is not associated with the
disease, then the expected distance between a case and a normal subject should be the same as
that between two individuals of the same disease status. Therefore, the focus of the second
stage is on analyzing the difference between subjects in the disease and non-disease groups
rather than the difference between SNPs. In contrast to the tests used by Pinheiro et al. [18]
andWei et al. [19], our proposed method does not depend on ANOVA decomposition and,
instead, we simply compare the “distance” within groups and the “distance” across groups. The
spirit of our test is similar to earlier tests in the use of similarity measures such as the “allele-
match” kernel [18–23], but differs in its focus on comparing within-group and cross-group dis-
similarity. Our statistic thus differs from those previously proposed. In addition, we place more
emphasis on our statistic’s operational characteristics in a variety of settings. We also assess the
performance of the proposed method under different settings of sample size, case-to-control
ratio, and noise-to-signal ratio (the proportion of the number of causal SNPs to the number of
non-disease-related SNPs). Applications are illustrated and simulation studies are conducted
to evaluate the performance of the clustering algorithm and the association test.

Methods

Clustering SNP-sets with a Similarity Measure
Let C1 and C2 be the two SNP-sets under study, where the sets contain K1 and K2 SNPs, respec-
tively. For each SNP indexed k, the vector Sk denotes the genotypes of N individuals. In other
words,

Sk ¼ ðS1k; S2k; . . . ; SNkÞt

is a SNP genotype vector of length N, where Sik is the genotype of the i-th individual at the kth
SNP and k = 1, 2, . . ., K (K = K1 + K2). All genotypes of the K1 SNPs in cluster C1 can be
expressed in the form of an N × K1 matrixM1 with elements Sik. Similarly, the genotype matrix
M2 for cluster C2 is of dimension N × K2. Fig 1 shows a schematic diagram of these two
clusters.

Distance (dis-similarity) between SNP-sets. We define d(C1, C2) the dissimilarity
between two SNP-sets C1 and C2 as the average dissimilarity of all possible pairs Sl and Sm
from C1 and C2, respectively,

dðC1;C2Þ ¼
1

K1 � K2

X
Sl 2 C1

Sm 2 C2

dHðSl;SmÞ;

where dH(Sl, Sm) denotes the number of discordant components between two SNP strings, i.e.
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the number of individuals whose genotypes on SNP l and SNPm differ,

dHðSl;SmÞ ¼
XN
i¼1

IðSil 6¼ SimÞ:

The subscript H stands for Hamming distance. Note that some may prefer to compute the
proportion, instead of the counts, of discordant components. These two definitions however
are equivalent. This similarity measure is indicated in Fig 1 as well.

The quantity d(C1, C2) measures the average “dissimilarity” between all possible pairs of
SNPs with one from each set. A large value indicates a greater degree of dissimilarity between
these two sets, whereas a small value implies “resemblance” between two sets and may lead to
an action of clustering. In matrix terminology, d(C1, C2) evaluates the average distance between
a column Sl inM1 and a column Sm inM2.

Merging Procedure, Handling Ties and Dendrogram Construction. When there are J
clusters, {C1, C2,. . ., CJ}, the distances d(Ci, Cj) of all possible combinatorial selections of paired
clusters (CJ

2 ¼ J � ðJ � 1Þ=2 pairs in this case) will be computed and the pair with the smallest
distance will be merged into a new SNP-set, leading to J−1 clusters.

In case of a tie, the following rules are applied. If more than one pair shares the same mini-
mum distance and these pairs involve non-overlapping sets, then each pair will be combined
into a new set. When overlapping sets exist, the grouping strategy will depend on the way they
overlap. For instance, if more than a pair from CA, CB and CC show the same minimum dis-
tance, then a random pair, say (CA, CB), will be combined, leaving CC to be grouped in the
next stage. However, if CA has the same minimum distance with each of the other two distinct
clusters CB and CC, but CB and CC are not close to each other, then a union, either CA[CB

or CA[CC, will be selected at random to form a new cluster. This procedure guarantees that
the number of clusters will be reduced by at least 1 in each stage. Therefore, if the clustering
procedure starts with K SNPs, then this proposed procedure will proceed until all K SNPs
are grouped into one final cluster to complete an agglomerative hierarchical clustering
dendrogram.

Determination of Clusters. If J is the pre-specified number of clusters that investigators
believe to exist for all SNPs under study, then these clusters can be identified by examining the
dendrogram in a top-down order. When no knowledge about J is available, we trace for each

Fig 1. Schematic diagram of SNP clusters.

doi:10.1371/journal.pone.0135918.g001
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SNP the clusters it visits sequentially and allocate the SNP to a cluster that shows the largest
degree of dissimilarity with others. The steps of the procedure are as follows:

1. Trace History of Clusters: For each column vector SNP Sk, trace all nk clusters in the dendro-
gram that the SNP ever belonged to, and order these clusters from the smallest to largest
fCkð1Þ;Ckð2Þ; . . . ;Ckðnk Þg, where Ckð1Þ � Ckð2Þ � . . . � Ckðnk Þ.

2. Calculate Node Heights in Dendrogram: Calculate for Sk the “height” Hk(i) of each node of
its corresponding clusters,

Hkð1Þ ¼ dðCkð1Þ;Ckð2Þ � Ckð1ÞÞ
..
.

Hkðnk�1Þ ¼ dðCkðnk�1Þ;CkðnkÞ � Ckðnk�1ÞÞ

In the dendrogram,Hk(i) is the vertical length of a new node measured from the bottom,
when the cluster Ck(i) becomes Ck(i+1). Therefore,Hkð1Þ < Hkð2Þ < � � � < Hkðnk�1Þ for
SNP Sk. This quantity indeed measures the “distance” between two sets. Note that Ck(i+1) −
Ck(i) denotes the difference in SNPs between sets Ck(i+1) and Ck(i), Ck(i+1) − Ck(i) = {Sl: Sl 2
Ck(i+1) and Sl =2 Ck(i)}. A toy example for computingHk(i) is presented in S1 Text.

3. Assign Cluster: Compute the maximum “relative height” between successive nodes,

DðSkÞ ¼ max
i¼2;...;nk�1

fHkðiÞ � Hkði�1Þg;

whereHk(i) is the node height as defined above. This “relative height” is indeed the vertical dis-
tance between nodes. If D(Sk) =Hk(i) −Hk(i−1) for some integer i, then Ck(i) is the cluster
selected for SNP Sk.

The result of the procedure is that every SNP will be assigned to a cluster where the size of
each cluster may vary, and the number of clusters is now determined. The resulting clusters
can then be used in the next stage, i.e. the association test. A hypothetical data set and dendro-
gram presented in additional file (S1 Text) illustrate calculation of the measures Hk(i) and D
(Sk).

If one prefers to work on a smaller number of clusters containing, for instance, only 5% of
the SNPs for further investigation, then these SNPs and corresponding clusters can be retrieved
by selecting SNPs whose corresponding D(Sk) are greater than the 95% quantile of {D(S1), D
(S2),. . ., D(Sk)}. The resulting number of clusters, say J, for these SNPs can then be used. Alter-
natively, one can utilize gap statistics or similar quantities [24–26] to determine the number of
clusters. These statistics have been developed to determine the optimal number of clusters
from continuous observations [27].

Association Tests with SNP-sets
Testing whether a SNP-set is associated with a disease of interest is equivalent to testing
whether the set can distinguish different disease phenotypes. In other words, the unit of analy-
sis now becomes the subjects, and the Hamming distance between paired subjects across all
markers is to be evaluated. That is, the focus now is on the difference with respect to all markers
between two paired individuals. If the SNP-set is independent of the disease, then any two indi-
viduals should carry similar markers in this SNP-set, regardless of disease status. The expected
difference in genetic markers between a case and a control should be similar to that between
any two cases or between any two control subjects. In contrast, if the set is composed of
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susceptible SNPs, then the expected difference between a case and a control would be large, at
least larger than that between any two cases or between any two controls. Here the dissimilarity
is evaluated by the heterogeneity across all SNPs in this set for any two individuals, and Ham-
ming distance is the metric considered. Notice that now the dissimilarity is evaluated between
subjects’ SNP strings (the row vectors in Fig 1), not between SNP column vectors.

Notation and Statistics. Let C be the SNP-set of interest where C contains K SNPs. Let
x1;x2; . . . ;xN1

denote the genotype row vectors of the N1 subjects in the control (normal)

group and y1;y2; . . . ;yN2
denote those of the N2 subjects in the case (disease) group, where

both xi and yi are of the form (Si1, Si2,. . .,SiK) with the same Sik defined earlier. Then, the SNP
genotype matrix R1 for the normal group is of dimension N1×K, the matrix R2 for the case
group is of dimension N2×K, and the distance is measured between any two row vectors. Note
that the stacks of R1 and R2 column-wise are the same as the stacks ofM1 andM2 row-wise
when the same SNP-sets are involved,

R1

R2

 !
¼

x1

..

.

xN1

y1

..

.

yN2

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

¼

S11 S12 � � � S1K

S21 S22 � � � S2K

..

. ..
. ..

.

SN1 SN2 � � � SNK

0
BBBBBB@

1
CCCCCCA

¼ ðS1; . . . ;SKÞ ¼ ðM1 : M2 Þ

The distance between the case and the control group is defined as the average dissimilarity
between these two groups,

T ¼ 1

N1 � N2

X
i 2 f1; . . . ;N1g;
j 2 f1; . . . ;N2g

dHðhðxiÞ; hðyjÞÞ;

where h(xi) = (h(Si1), h(Si2),. . .h(SiK))
t = (si1, si2,. . .,siK)

t. The function h transforms the original
genotype Sik into a binary variable h(Sik) = sik = 1 if the subject i carries the minor allele at the

k-th SNP, and 0 if not. Now the Hamming distance dHðhðxiÞ; hðyjÞÞ ¼
XK
k¼1

Iðsik 6¼ sjkÞ com-

putes the number of SNPs for which one of the paired individuals i and j carries the minor
allele while the other does not. Note that the incorporation of minor alleles in the evaluation of
distance follows the rationale discussed in Wessel and Schork [23] that two individuals sharing
minor alleles may reveal more similarity in their genomes than do two individuals sharing
common alleles. Other functional forms can certainly be assumed for h if some other relation-
ship is preferred.
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The average dissimilarity within groups is

U ¼ 2

N1ðN1 � 1Þ þ N2ðN2 � 1Þ

X
i; j 2 f1; . . . ;N1g

i < j

dHðhðxiÞ; hðxjÞÞ þ
X

l;m 2 f1; . . . ;N2g
l < m

dHðhðylÞ; hðymÞÞ
2
664

3
775:

Note that a T substantially larger than U implies a substantial difference in SNP-set configu-
ration between the case and the control group. In other words, the difference T−Umay provide
evidence of disease association. The p-value for this test statistic T−U can be determined via a
permutation test.

Clustering with Case and Control Subjects. One issue needs to be addressed when the
association test adopts the SNP-sets obtained from the proposed Hamming distance-based
clustering algorithm. To identify influential SNP-sets, the clustering algorithm for case-control
studies should be carried out on both the case and control groups together, rather than on a
single group. Taking the first four SNPs in Table 1 for example, two clusters C1 = {S1, S2} and
C2 = {S3, S4} would be constructed based on 10 individuals (5 cases and 5 controls) since d(S1,
S2) = 0 = d(S3, S4). This is because the Hamming distance dissimilarity algorithm groups
together those SNPs which exhibit a similar pattern in both case and control groups. This
includes the neutral SNPs S1 and S2 which display an identical pattern (1,1) in all 10 subjects.
These two SNPs provide no information of relevance to disease association. In contrast, the
other SNP-set {S3, S4} contains more information, because all cases carry (0,0) for {S3, S4}
while all controls carry (1,1). The pattern in the case group alone is the same as that in the con-
trol. In other words, among these two clusters {S1, S2} and {S3, S4}, it is the latter that provides
information for association. In addition, the latter set is identified only when case and control
subjects are all included in the clustering algorithm. If only the control individuals are used for
clustering, the cluster {S1,S2,S3,S4} would be identified with neutral SNPs included.

Results

Simulation Studies of SNP Clustering
To evaluate the proposed SNP clustering algorithm, we first simulated correlated SNPs and
independent SNPs, mixed them, and then examined whether these correlated SNPs would be
clustered together by the proposed algorithm. The correlated SNPs were generated with a

Table 1. Toy data for SNP clustering. For the purpose of illustration, the coding here for genotypes is
binary.

Cluster C1 Cluster C2

S1 S2 S3 S4

Case 1 1 1 0 0

Case 2 1 1 0 0

Case 3 1 1 0 0

Case 4 1 1 0 0

Case 5 1 1 0 0

Control 1 1 1 1 1

Control 2 1 1 1 1

Control 3 1 1 1 1

Control 4 1 1 1 1

Control 5 1 1 1 1

doi:10.1371/journal.pone.0135918.t001
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simulation algorithm for multivariate binary variables proposed by Emrich and Piedmonte
[28]. Ten correlated SNPs with minor allele frequencies (MAFs) fixed at 0.2, 0.225, 0.25, 0.275,
0.3, 0.325, 0.35, 0.375, 0.4, and 0.425 were considered, and their pairwise correlation coefficient
was fixed at 0.55 or 0.3. These were then mixed with 10 or 100 other independent SNPs with
MAFs ranging from 0.05 to 0.5. That is, the mixing ratios of correlated to independent variates
were either 1:1 or 1:10. The genotypes of 2000 subjects were then generated based on these
MAFs. The number of replications was 1000.

Under each setting, we performed the clustering algorithm and examined if the 10 corre-
lated SNPs were grouped together. With pairwise correlation set at 0.55, the 10 correlated
SNPs always formed a unique cluster under the mixing ratio of 1:1 and 1:10. When the correla-
tion was 0.3, the percentage of this correct clustering pattern was 97.7% and 100% for the mix-
ing ratios of 1:1 and 1:10, respectively. As for the remaining 23 (1000–977 = 23) replications,
the 10 correlated SNPs were still clustered together but simultaneously mixed with an average
of 3 ± 2 independent SNPs in the same cluster. Fig 2 displays the dendrograms of four typical
replications.

Simulation Studies of the SNP Association Test
To demonstrate the performance of the proposed Hamming distance-based SNP-set associa-
tion test, several conditions were considered in simulation studies, including deleterious, pro-
tective, or mixed effects; and various signal-to-noise ratios. We considered a protective SNP-
set containing six SNPs with odds ratios (OR) all less than 1, a deleterious SNP-set of six SNPs
with OR>1, and a mixed set containing three protective and three deleterious SNPs. The values
of the ORs and MAFs in the control subjects are listed in Table 2. In addition to the six causal
variants (signals), other non-associated SNPs with MAFs in the range (0.05, 0.5) were also gen-
erated as neutral variants (noise). The number of neutral SNPs ranged between 6 and 90, lead-
ing to signal-to-noise ratios between 1:1 and 1:15. The numbers of cases and controls were
either 100 each, or 200 each. The coding for each individual was 1 or 0 for carrying the minor
allele or not. Each simulation setting contained 1000 replications with p-values derived from
1000 permutation tests.

Fig 3 shows the type I error and power of the Hamming distance-based association test
(HDAT) for 200 subjects under different settings with the significance level 0.05. The proposed
test was compared with the U-statistic by Wei et al. [19] and SKAT [29]. In general, all three
tests had small type I errors at the nominal level. The weighted U-statistic had a very large type
I error in comparison with the unweighted U-statistic, thus we considered only the latter in the
following simulation comparisons. HDAT had larger power than the U-statistic and SKAT.
The power remained above 80%, even when the signal-to-noise ratio reached 1:15, implying a
consistent and reliable performance. The U-statistic and SKAT are more sensitive to the signal-
to-noise ratio, especially when the number of individuals is not large, only 100 cases and 100
controls (Fig 3F).

Coronary Artery Disease fromWTCCC
The data, obtained from aWellcome Trust Case Control Consortium (WTCCC) study [30],
included 1926 subjects with coronary artery disease (CAD) and 2938 controls. Previous studies
have shown a strong association between 9p21.3 and CAD [30–32], hence the 940 SNPs (with
minor allele frequency> 0.001) on the 9p21.3 region were considered as an illustration for the
Hamming distance-based clustering algorithm and association test.

First, our proposed clustering algorithm derived 123 clusters containing at least three
SNPs, and 49 clusters containing two SNPs. No cluster was composed of a single SNP. The

Testing and Clustering of SNP-Sets

PLOS ONE | DOI:10.1371/journal.pone.0135918 August 24, 2015 9 / 24



Fig 2. Hierarchical clustering dendrograms based on one simulated dataset. The data contained 10 correlated SNPs (S1, S2, . . ., S10) and 10 or 100
independent SNPs (N1, . . ., N10 or N1, . . ., N100). (A) Ten correlated SNPs with correlation of 0.55 and ten independent SNPs. (B) Ten correlated SNPs with
0.55 correlation and 100 independent SNPs. (C) Ten correlated SNPs with 0.3 correlation and ten independent SNPs. (D) Ten correlated SNPs with 0.3
correlation and 100 independent SNPs.

doi:10.1371/journal.pone.0135918.g002

Table 2. Values of ORs andMAFs in simulation studies.

Effects OR MAF in controls

Protection 0.83, 0.71, 0.62, 0.56, 0.48, 0.40 0.20, 0.26, 0.33, 0.37, 0.40, 0.45

Risk 1.20, 1.40, 1.60, 1.80, 2.10, 2.50 0.40, 0.36, 0.33, 0.28, 0.24, 0.20

Mixture 0.83, 0.59, 0.40, 1.20, 1.70, 2.50 0.22, 0.35, 0.43, 0.40, 0.30, 0.20

doi:10.1371/journal.pone.0135918.t002
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Fig 3. Type I error and power in simulations. Type I error (A, C, E) and power (B, D, F) of the Hamming distance-based association test HDAT (red line),
theU-statistic (blue line) and SKAT (green line) for the SNP-set association test under different noise-to-signal ratios, and effect sizes. The X-axis stands for
the numbers of neutral SNPs in (A), (C) and (E), but the noise-to-signal ratios in (B), (D) and (F). The effects of causal SNPs are deleterious in (A) and (B),
protective in (C) and (D), and mixture in (E) and (F). The simulation included 100 cases and 100 controls.

doi:10.1371/journal.pone.0135918.g003
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dendrogram for all 940 SNPs is displayed in S1 Fig. The association test based on Hamming
distance, HDAT, was then conducted on these clusters. The top 11 clusters with the smallest p-
values (from 5000 permutations) are listed in Table 3. The dendrogram of these 11 SNP-sets is
reproduced in Fig 4 with different colors. Note that most clusters contain SNPs with effects of
the same direction, either protective or deleterious, as indicated in Table 3, except the sixth and
the ninth set, which contain different but weak effects. After performing a Bonferroni correc-
tion for multiple tests, the first set with four deleterious SNPs remains significant (p<0.0005 in
5000 permutations). Alternatively, selecting the top 5, or top 10%, relative heights D(Sk) to
determine the clusters for the subsequent association test results in the same SNP-set being
significant.

This significant cluster contains 4 SNPs, rs7865618, rs523096, rs564398, and rs518394, all
in theMTAP gene, which has been reported to be involved in homocysteine metabolism [30–
32]. This SNP-set spans 11.9kb and includes only protective SNPs. Their minor alleles all carry
significant protective effects (p-values for single marker tests all< 1e-5). In addition, these var-
iants have been investigated in the laboratory and found to be significantly associated with dis-
ease in other GWAS [31].

For the 172 (= 123+49) clusters identified by the Hamming distance based clustering algo-
rithm, we also applied Wei et al.’s [19], SKAT [28], and HDAT with 1000 permutations. Only
three sets reached significance with all three association tests. These three sets were the top
three SNP-sets identified by HDAT, also listed in the top of Table 3. Because Wei et al.’s
method is time consuming, here we only performed 1000 permutations in the test of each
SNP-set. This number is not large enough to carry out a Bonferroni correction for this CAD
study. The purpose is simply to demonstrate the similar findings reached under the three tests.

We also applied the k-mode [15] and Zhang et al.’s [16] method to cluster these 940
SNPs. It took 5.88 hours for the k-mode to perform clustering, but only 26.5 minutes for our

Table 3. The compositions and size of the top 11 SNP-sets with the smallest p-values. SNPs in bold-
face indicate protective effect from single-marker test (OR<1) and the rest indicate deleterious effect (OR>1).

SNP-
set

List of SNPs Number of
SNPs

p-
valuea

1 rs7865618, rs523096, rs564398, rs518394 4 0.0002b

2 rs9919037, rs7039459 2 0.0010

3 rs10117244, rs10811586, rs6475555, rs1414243, rs3900787,
rs10811590, rs1345024, rs1414229, rs10757257

9 0.0040

4 rs4366163, rs3118240, rs3126950 3 0.0064

5 rs10811318, rs16937885 2 0.0078

6 rs4366163, rs922243, rs3118240, rs10966811, rs1461325,
rs3126950

6 0.0186

7 rs7856353, rs2383134, rs16937883, rs6475409, rs6475410,
rs10811318, rs16937885

7 0.0596

8 rs1926679, rs10511745, rs10966462, SNP-A-4233637c 4 0.0730

9 rs16907782, rs2891188, rs16907685 3 0.0770

10 rs3931609, rs10811624, rs7851125, rs9298826, rs6475580,
rs7040895, rs7860126, rs7866533, rs7846904, rs10217379,
rs16938541, rs4375086, rs6475567

13 0.0866

11 rs6475434, rs10811350, rs6475442 3 0.0902

a: p-values were obtained from 5000 permutations.
b: This set remains statistically significant after Bonferroni correction.
c: No rs number was found for this SNP and thus it was labeled with an Affymetrix ID.

doi:10.1371/journal.pone.0135918.t003

Testing and Clustering of SNP-Sets

PLOS ONE | DOI:10.1371/journal.pone.0135918 August 24, 2015 12 / 24



Hamming distance clustering algorithm to complete the computation, while Zhang’s method
failed to converge because the data size was too large. The first row in Table 4 lists the respec-
tive computational times.

HDAT on LD Blocks. Alternatively, with Haploview, we constructed 145 LD blocks con-
taining at least two SNPs based on the same 940 SNPs. These blocks were determined based on
the correlation among neighboring loci; where SNPs of deleterious and protective effects can
both appear in the same block. All 145 blocks were tested with HDAT. S1 Table lists ten blocks
with smaller p-values. These blocks were significant with p<0.05 but none reached significance
after Bonferroni correction. Two SNPs (rs523096, rs518394) in the first LD block also appeared
in the first SNP-set of the Hamming distance clusters in Table 3.

Hamming Distance Clusters and LD Blocks. For reference, we displayed in S2 Fig the
linkage disequilibrium measure r2 for the Hamming distance clusters. The 4 SNPs in our first
Hamming distance cluster, though highly correlated with each other (D0>0.96, r2>0.87), were
separated into two different LD blocks, due to another SNP (rs10758264) locating between
them and its weak LD with these 4 SNPs. Another example for the difference between LD
blocks and Hamming distance clusters is the SNP-set 6 in Hamming distance clusters. Inside
this cluster, SNP rs10966811 is not in close linkage with other SNPs (r2 in 0.21~0.46, D0 in
0.51~0.83), and thus not contained in the LD block 2 (The LD block numbered 2 in S1 Table).
Only 4 close SNPs (rs1461325, rs3126950, rs4366163, rs3118240) from this Hamming distance
cluster are included in the LD block 2. In addition, the spans of these clustered SNP-sets can
vary greatly. For instance, the SNP-set 11 ranges 3.4 kilobase pairs; while the SNP-set 6 ranges
183.6 kb. These sets may serve as a complementary option or reference if one decides to com-
bine or prune LD blocks.

In contrast to the test with all SNP-sets, we applied the gap statistic to determine the number
K of clusters under every clustering algorithm discussed above. However, based on the gap sta-
tistic, no best value for K was selected in the range of 1 to 250. Again, such large data size

Fig 4. Dendrogram for the 11 selected SNP-sets. Labels indicate the SNPmarkers and different colors
indicate different SNP-sets.

doi:10.1371/journal.pone.0135918.g004
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induces extensive computation and hence cannot be accommodated by most traditional
methods.

Simulation Studies for Combined Procedures
The statistical significance of any association test on a large SNP-set can only imply a possible
relationship between this whole set and the disease of interest. A finer range or locations of the
susceptible genes may still remain unknown. With the Hamming distance clustering algorithm,
a larger set can be divided into several smaller SNP-sets whose significance can provide more
information as where these susceptible genetic markers may locate. In this simulation, we
investigated if the performance of any of the association tests (HDAT, U statistic, and SKAT)
can be improved by testing on the Hamming distance clusters.

The same procedures for generating the genotypes in the simulation studies for SNP associ-
ation tests were adopted. The numbers of cases and controls were 100 each, and the number of
replications was 1000. In each replication, the beginning SNP-set containing 6 signal (risk)
SNPs and 90 neutral SNPs was constructed and tested with every one of the three tests. The
powers were 77%, 63%, and 67%, respectively. We refer to these as the overall powers.

For the purpose of comparison, each one of the large sets underwent the Hamming distance
clustering algorithm first, followed by each of the three tests on every one of the resulting clus-
tered SNP-sets. We then examined if any clustered SNP-sets containing signal SNPs were suc-
cessfully detected with statistical significance, as well as the number of signal SNPs detected in
each replication. The solid lines in Fig 5 show that, for any of the three association tests, carry-
ing out the test on Hamming distance clustered sets can reach a power larger than 90% (95%
for HDAT, 93% for U statistic, and 96% for SKAT) in identifying at least one susceptible SNP
marker, and larger than 70% (82% for HDAT, 73% for U statistic, and 80% for SKAT) in iden-
tifying at least three markers. If the overall power was taken as the baseline (dotted line in Fig
5), then testing on the clustered sets can provide more information on genomic range of at
least 4 SNPs for each one the three tests.

Note also that, combining the clustering and HDAT (red solid line) has a slightly better per-
formance than combining the clustering and SKAT (green solid line). The Hamming clustering
algorithm improved SKAT more (77% vs. 0.82% for HDAT and 67% vs. 80% for SKAT),
because SKAT is sensitive to the ratio of noise to signal SNPs (shown in earlier section and
Fig 3). The type I errors for the three combination tests were all reasonable (5.2%, 5.5%, and
5.0%, respectively).

Table 4. Numbers are the run time (average and standard deviation of 10 repetitions) under the Ham-
ming distance-based clustering algorithm (HD), k-mode, and Zhang’smethod for the three applica-
tions. For the first three applications, the run time was assessed with single-threaded computation; while the
time for the last application was under parallel computation and single-threaded computation in R.

Application HD k-mode Zhang

CAD in WTCCC(940 SNPs, 4864
subjects)

26.5±0.88 min. 539±122 min. —

ENCODE(7538 SNPs, 269 subjects) 43±0.6 sec. 1400±376
sec.

—

Soybeans(35 attributes, 47 beans) 0.11±0.01 sec. 0.77±0.16
sec.

2.34±0.05
sec.

CAD in WTCCC(4000 SNPs, 4864
subjects)

18.27 hours (parallel) — —

52.44 hours (single-
threaded)

— —

doi:10.1371/journal.pone.0135918.t004
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This experiment implies, in addition to the better performance of HDAT over the other two
tests, that the Hamming distance clustering algorithm can help to identify smaller SNP-sets for
association tests like U statistic and SKAT, and thus improves the ability to confine or localize
genetic regions for future studies.

Discussion
The proposed SNP clustering algorithm based on the Hamming distance dissimilarity measure
not only works faster than current existing methods, it is also free from the constraint that
SNP-sets are formed by neighboring SNPs. This algorithm can also be used to determine
whether several given SNP-sets should be clustered together. Additionally, this clustering algo-
rithm can separate protective from deleterious genetic variants, resulting in SNP-sets contain-
ing components with effects of the same direction. The ability to produce such sets would be

Fig 5. Power calculation for combining Hamming distance clustering algorithm and association test. Solid lines are for clustering+HDAT (red),
clustering+U-statistic (blue) and clustering+SKAT (green); while dotted lines are for the tests on the original complete set (termed as the overall power).

doi:10.1371/journal.pone.0135918.g005
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useful as some association tests work only for SNPs with effects of the same direction. When
illustrating this algorithm, we started with original SNP genotypes to gradually form SNP-sets
of various sizes. In other words, this proposed procedure can be employed directly on SNP-sets
that are pre-determined based on certain functional characteristics. For instance, if different
known relationship, such as inhibition or activation, between members is to be specified in this
clustering procedures, then the coding should be modified accordingly. One example would be
to replace {0, 1, 2} with {1, 2, 3} for tumor suppressor genes (or protective loci) and {-1, -2, -3}
for oncogenic markers.

Other applications of this algorithm are the construction of population structures and clus-
tering of multi-categorical variables.

Construction of Population Structures
The Hamming distance-based clustering algorithm can be used as a tool to elucidate the under-
lying population structure from genomic SNP data. We illustrate this property with data from
HapMap ENCODE database [33–34] containing a total of 7538 SNP genotypes from 269 sub-
jects (90 Yorba, 44 Japanese, 45 Han Chinese, and 90 CEU Utah residents with northern and
western European ancestry). The clustering procedure was applied on the 7538×269 SNP
matrix, and the column variables (individuals) were clustered. Fig 6 displays the results where
different colors represent different populations. Three clusters were identified, one for CEU,
one for Japanese and Chinese together, and one for Yorba. These three clusters are fairly dis-
tinct from each other. However, these SNPs cannot clearly differentiate Japanese from Chinese.
The heatmap of the corresponding Hamming dis-similarity matrix is displayed in Fig 7. The
pattern between groups does differ from the pattern within any group (squares in diagonal
direction in Fig 7). The proposed clustering algorithm took 43 seconds to construct three clus-
ters; while the k-mode took 23 minutes. For Zhang’s method, the size was again too large to
compute (computation times in the second row of Table 4).

Accommodation of Multi-categorical Variables
In previous sections, when it is of interest to cluster SNPs or SNP-sets, we used the same coding
system (1/0 coding indicating with and without minor alleles, or 0/1/2 for the number of
minor alleles) for all SNPs. However, if this clustering algorithm is used to cluster variables of
different levels, then the Hamming distance-based algorithm can be extended easily. In other
words, the algorithm can handle variables with different numbers of categories. The following
soybean data include 47 individual soybeans, each being 1 of 4 classes, and 35 variables (attri-
butes) related to the appearance, growing environment and date of bloom of each bean, with
the number of levels for each variable ranging from two to seven [35]. Using the original levels
for each variable, the clustering algorithm successfully identified the four actual classes of clus-
ters (Fig 8A). In contrast, two beans would be mis-clustered when the binary coding (0 for the
first level and 1 for the rest) was used (Fig 8B).

Computational Burden
In previous sections we have proposed a clustering algorithm and an association test, both
based on Hamming distance measure. The clustering algorithm focuses on the similarity
between SNP vectors (the column vector Sk), where each vector contains the genotypes of a
specific SNP for all subjects. The test, in contrast, examines the similarity between subject vec-
tors (the row vector), where each vector denotes the genotypes of all SNPs for a specific indi-
vidual. The computational burden, therefore, depends on the number of variables to be
compared for similarity; it is the number of SNPs in the case of the clustering algorithm and
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Fig 6. Dendrogram for the HapMap ENCODE database.Different colors represent different populations,
red for CEU, blue for Japanese, green for Chinese, and purple for Yorba.

doi:10.1371/journal.pone.0135918.g006
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the number of subjects in the case of the test. The order of the computational complexity is dis-
cussed in S2 Text. Here we examined first the run time for Hamming distance clustering algo-
rithm. In Table 4, it is clear that clustering 940 SNPs took longer (26.5 minutes) than clustering
the ENCODE 269 subjects (43 seconds). If the number of variables to be clustered increases to
4000, such as the case of clustering 4000 SNPs from 4864 subjects (the last row in Table 4),
then the computation takes 52.45 hours for single-threaded computation in an ordinary desk-
top computer with Intel Core i7-4770 processor (3.40 GHz) and 32 GB RAM. With such vol-
ume of data, we then carried out 7-CPU parallel computation with packages doSNOW and
foreach in R, leading to 18.27 hours (Table 4). Next, we investigated how sensitive the run time
for HDAT is as we change the number of subjects to be compared and the number of permuta-
tions in the test. For illustration, we selected randomly 1000 subjects from the WTCCC study,
along with their first 5000 SNP genotypes in 9p or all SNPs on chromosome 9, and next per-
formed HDAT with either 1000 or 5000 permutations with parallel computation. Table 5 lists
the corresponding run time under each scenario. When all 19948 SNPs on chromosome 9 were
included, it took 121.56 seconds for 1000 subjects and 72 minutes for 4864 subjects to complete
the test, with the number of permutations set at 1000. The increase in the number of subjects
has a greater influence on the computational burden. When handling data of a larger scale like
GWAS, either performing parallel computations, adopting C-alike programming languages, or
considering graphics processing unit (GPU) computing will surely enhance substantially the
computational performance.

Extension to Rare Variants
In addition to the common causal variants, this test may be extended to rare causal variants.
When dealing with rare variants, the small frequency of individuals carrying the minor allele
greatly impacts the difference between the two statistics T and U. Taking a deleterious causal
rare variant for example, since it is rare only a small proportion of individuals in the case group
will carry this variant, making the value of the Hamming distance measure Ucs in the case
group similar to T. To increase the statistical power in this case, inclusion of a larger group of
controls would correspond to a within-group Hamming distance Ucn that would balance Ucs,
making U (the weighted combination of Ucs and Ucn) move away from T. Fortunately, when
the allele represents risk, it becomes easier to find more controls than cases. Such recruitment

Fig 7. Heatmap of the corresponding Hamming dis-similarity matrix for the HapMap ENCODE
database. Different colors represent different populations, red for CEU, blue for Japanese, green for
Chinese, and purple for Yorba.

doi:10.1371/journal.pone.0135918.g007
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would not be hard. The influence of the increase in control samples can be observed in the dif-
ference in magnitude between the blue lines in Fig 9A and 9B. Similarly, when the causal rare
variant is protective, then only a small proportion of subjects in the control group will carry
this variant, leading Ucn and T to share a similar magnitude. Therefore, following the same
argument above, a larger sample size in the case group will enlarge the difference between U
and T. This effect on T−U when relatively more cases are involved in the study can be seen by

Fig 8. Dendrogram for the soybean data. The four colors are for the 4 true classes. (A) The original
categories are used as the coding for each variable. (B) The binary coding is considered for each variable.

doi:10.1371/journal.pone.0135918.g008
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comparing the red lines in Fig 9A and 9C. Our team is currently working on this topic with
modifications on variant-specific weights.

Conclusions
As discussed in previous sections, our clustering algorithm saved more computational time
than existing methods. For large data size, our algorithm easily outperforms the others (first
two rows in Table 4). Even for data of smaller size like the soybean data, our algorithm took
only 0.1 second, while k-mode took 1 second and Zhang’s took 2 seconds (the third row in
Table 4). Another advantage of our proposed clustering algorithm is that applying the Ham-
ming distance-based algorithm with both control and case observations before conducting an
association test can produce SNP-sets containing SNPs with effects of the same direction. The
homogeneity of SNP effects may warrant further biological validation studies, and will ensure
statistical power in certain association analyses [36].

Our second proposal, the association test HDAT, can accommodate a large number of
SNPs in one test, while allowing for SNPs in the same set to share the same effect or to have
mixed effects. If this test is to be used on a pre-defined SNP-set in which the effects may be
mixed, this association test can outperform other tests, especially when the majority of SNPs
are neutral. When sample size reaches 400, all three tests perform equally well (S3 Fig), regard-
less of the noise-to-signal ratio. This HDAT can be used on other previously defined SNP sets.
For instance, this test can be applied on haplotype blocks that have been constructed based on
D0 or r2 from linkage disequilibrium analysis. In other words, the test can be employed along
with other clustering algorithms. The R code for clustering SNP-sets and testing for disease
association is available at http://homepage.ntu.edu.tw/~ckhsiao/HammingDistance/HD.htm.

This research was concerned mainly with common variants. Certain issues remain to be
resolved. First, when rare variants are of major interest, we have recommended to include dif-
ferent numbers of cases and controls for the association test. Much of the detailed allocations
and adjustment for minor allele frequencies are currently under study. Second, if admixture
populations exist in association studies, it is not known whether one should cluster the subjects
before or after the association test. Intuitively, handling the population stratification first before
conducting HDAT on the case and control groups of the same population should be recom-
mended. However, the stratified populations to be tested may be of smaller sizes, resulting in
unstable findings. A balance between the problem of population stratifications and the choice
of sample size for statistical power should be evaluated. Third, the association test considered
in this article only deals with genetic markers. No covariates have been discussed. If the covari-
ates are available and can be transformed into categorical variables, then they can be considered

Table 5. Numbers are the run time (in seconds, s, or minutes, m) of HDAT, using parallel computation
in R, under different numbers of subjects, SNPs, and permutations.

Run time with 1000 or 5000
permutations

No. of subjects No. of SNPs 1000 5000

1000 5000 33 sec. 76 sec.

1000 19948 122 sec. 163 sec.

4864 1000 504 sec. 2473 sec.

4864 5000 19 min. 44 min.

4864 19948 72 min. 107 min.

doi:10.1371/journal.pone.0135918.t005
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as pseudo markers and their similarity can be measured with Hamming distance. Such treat-
ment, however, may not work on continuous explanatory variables. Our next research will
extend the Hamming distance measure to covariates, so that effects of the genetic markers as
well as other environmental factors can be examined via regression models.

Fig 9. Expected values of the test statistic. Expected values of the test statistic under different MAFs in controls, ORs, and case-to-control ratios based on
one single SNP. (A) Case-to-control ratio is 1:1 (1000:1000). (B) 1:1.5 (1000:1500). (C) 1.5:1 (1500:1000). Red solid line for protective SNPs with OR = 0.5,
red dashed line for OR = 0.8, blue solid line for OR = 2, and blue dashed line for OR = 1.25.

doi:10.1371/journal.pone.0135918.g009
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