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Autophagy-dependent and -independent 
modulation of oxidative and organellar stress 
in the diabetic heart by glucose-lowering drugs
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Abstract 

Autophagy is a lysosome-dependent intracellular degradative pathway, which mediates the cellular adaptation to 
nutrient and oxygen depletion as well as to oxidative and endoplasmic reticulum stress. The molecular mechanisms 
that stimulate autophagy include the activation of energy deprivation sensors, sirtuin-1 (SIRT1) and adenosine 
monophosphate-activated protein kinase (AMPK). These enzymes not only promote organellar integrity directly, 
but they also enhance autophagic flux, which leads to the removal of dysfunctional mitochondria and peroxisomes. 
Type 2 diabetes is characterized by suppression of SIRT1 and AMPK signaling as well as an impairment of autophagy; 
these derangements contribute to an increase in oxidative stress and the development of cardiomyopathy. Antihy-
perglycemic drugs that signal through insulin may further suppress autophagy and worsen heart failure. In con-
trast, metformin and SGLT2 inhibitors activate SIRT1 and/or AMPK and promote autophagic flux to varying degrees 
in cardiomyocytes, which may explain their benefits in experimental cardiomyopathy. However, metformin and 
SGLT2 inhibitors differ meaningfully in the molecular mechanisms that underlie their effects on the heart. Whereas 
metformin primarily acts as an agonist of AMPK, SGLT2 inhibitors induce a fasting-like state that is accompanied by 
ketogenesis, a biomarker of enhanced SIRT1 signaling. Preferential SIRT1 activation may also explain the ability of 
SGLT2 inhibitors to stimulate erythropoiesis and reduce uric acid (a biomarker of oxidative stress)—effects that are not 
seen with metformin. Changes in both hematocrit and serum urate are the most important predictors of the ability 
of SGLT2 inhibitors to reduce the risk of cardiovascular death and hospitalization for heart failure in large-scale trials. 
Metformin and SGLT2 inhibitors may also differ in their ability to mitigate diabetes-related increases in intracellular 
sodium concentration and its adverse effects on mitochondrial functional integrity. Differences in the actions of SGLT2 
inhibitors and metformin may reflect the distinctive molecular pathways that explain differences in the cardioprotec-
tive effects of these drugs.
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Background
Autophagy is an evolutionarily-conserved intracellu-
lar degradative pathway, which mediates the cellular 
adaptation to stressful conditions. Autophagy involves 
the enclosure of unwanted cytosolic constituents by an 

autophagosome membrane, and the contents of these 
vesicles are destroyed when they fuse with lysosomes [1]. 
When stimulated nonselectively, autophagy recycles cel-
lular components to generate ATP to support cells that 
are energy starved. Yet, autophagy can also be activated 
selectively in order to rid cells of accumulated debris, 
excessive stores of glucose and lipids, unfolded proteins, 
and dysfunctional or damaged organelles, which are sem-
inal to the pathogenesis of disease [1, 2].
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Triggers of and molecular pathways leading 
to autophagy
The primordial stimulus to autophagy is energy star-
vation—specifically, nutrient and oxygen deprivation. 
However, autophagic flux is also activated in response 
to a broad range of cellular stresses, including oxidative 
and endoplasmic reticulum stress. The most important 
sources of oxidative stress are dysfunctional mitochon-
dria and peroxisomes, the two major oxygen-consuming 
constituents in the cell [3]. Endoplasmic reticulum stress 
is caused by the accumulation of misfolded proteins, 
glycation endproducts or fatty acid intermediates [4]. 
Regardless of the triggering event, autophagy is part of 
a wide-ranging transcriptional and metabolic shift that 
promotes cellular and organismal survival by prioritiz-
ing maintenance over growth [5]. Autophagy underlies 
the effect of starvation to prolong life in a broad range of 
animal species; tissue-specific overexpression of single 
autophagy genes is sufficient to extend lifespan [6]. Con-
versely, impairment of autophagy has been implicated 
in the pathogenesis of many human illnesses, including 
metabolic, cardiovascular, neurodegenerative and auto-
immune diseases, and cancer [1, 2].

Nutrient and oxygen deprivation signaling promotes 
autophagic flux
The molecular mechanisms that can activate autophagy 
are complex (Fig.  1). Nutrient deprivation leads to 
increased expression and activity of master regulator 
enzymes, which include sirtuin-1 (SIRT1) and adeno-
sine monophosphate-activated protein kinase (AMPK) 
[7]. SIRT1 responds to levels of nicotinamide adenine 
dinucleotide and serves as a redox rheostat; its activation 
serves to support blood levels of glucose [8, 9]. AMPK is 

sensitive to the balance between ATP and ADP or AMP 
in the cytosol; its activation leads to the breakdown of 
energy stores, thereby promoting the generation of ATP 
[10]. Oxygen deprivation leads to increased expression 
and activity of hypoxia inducible factors (HIF-1α and 
HIF-2α), which promote the delivery and reduce the uti-
lization of oxygen [11].

SIRT1, AMPK, HIF-1α and HIF-2α are master regula-
tors of hundreds of genes and proteins that play a criti-
cal role in maintaining cellular homeostasis, and they can 
augment autophagy in cardiomyocytes and in diabetic 
hearts under stress [12–15]. The interplay of HIF-1α with 
beclin 1 promotes autophagosome formation [16], and 
phosphorylation of AMPK causes dissociation of the bec-
lin 1-Bcl2 complex [12] and enhances the maturation of 
autophagosomes and their fusion with lysosomes [17]. 
In contrast, SIRT1 and HIF-2α act primarily to enhance 
selective autophagy, i.e., SIRT1 promotes the clearance 
of damaged mitochondria [18], whereas HIF-2α stimu-
lates the degradation of dysfunctional peroxisomes [19]. 
Consistent with their intertwined functions, SIRT1 and 
HIF-2α augment and reinforce each other [20, 21].

Nutrient and oxygen deprivation signaling can mitigate 
oxidative stress and inflammation through mechanisms 
that are not autophagy‑dependent
Nutrient and oxygen deprivation signaling can influ-
ence oxidative stress and inflammatory pathways in ways 
that may be independent of their effects to promote 
autophagy (Fig.  1). Both SIRT1 and AMPK act directly 
to maintain mitochondrial network homeostasis [22–
24] and preserve peroxisome functionality [24, 25], and 
they enhance the activity of antioxidant enzymes [26]. 
Additionally, both SIRT1 and AMPK interact with a key 
subunit of NFκB to inhibit its actions, thereby attenuat-
ing activation of the NLRP3 inflammasome and muting 
inflammation-mediated cellular injury [27, 28]. HIF-2α 
shifts the cellular milieu towards an antioxidant state 
[29], and HIF-2α upregulation is accompanied by an 
anti-inflammatory macrophage polarization phenotype 
[30], potentially explaining why HIF-2α acts to mute the 
inflammatory response that underlies insulin resistance 
in obesity [31].

Therefore, acting through both autophagy-dependent 
or -independent mechanisms, the interplay of SIRT1 and 
HIF-2α plays a major role in ameliorating oxidative stress 
in the heart. Activation of SIRT1 decreases the produc-
tion of reactive oxygen species [32, 33], whereas genetic 
or pharmacological suppression of SIRT1 markedly aug-
ments oxidative stress [34, 35]. Similarly, degradation 
or inhibition of HIF-2α acts to undermine antioxidant 
mechanisms [29, 36, 37], whereas activation of HIF-2α 
by cobalt chloride reduces oxidative stress in cardiac 

Fig. 1 Effect of enhanced nutrient and oxygen deprivation signaling 
on autophagic flux, mitochondrial homeostasis and inflammasome 
activation. ATP: adenosine triphosphate
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and vascular tissues [38–40]. If the levels of SIRT1 and 
HIF-2α decline, the resulting increase in oxygen free rad-
icals acts to reactivate SIRT1 and HIF-2α signaling [41, 
42], thereby limiting oxygen-mediated cellular stress.

Suppression of autophagic flux and nutrient 
deprivation sensor signaling in type 2 diabetes
Type 2 diabetes is characterized by hyperglycemia and 
hyperinsulinemia and is typically accompanied by the 
intracellular accumulation of glycogen and lipids. The 
accumulation of glycation and fatty acid intermediates 
undermines mitochondrial and peroxisomal stability, 
leading to the production of reactive oxygen species and 
oxidative stress [43]. The overabundance of nutrients also 
promotes the formation of unfolded proteins and poten-
tially toxic lipid pools, which cause endoplasmic reticular 
stress [44, 45]. When these changes occur in the heart, 
the result is cardiomyocyte dysfunction and demise.

Although cells might be able to mitigate these meta-
bolic, oxidative and endoplasmic reticulum stresses 
by stimulating autophagic flux, the stimulation of  and 
capacity for autophagy is markedly impaired in states 
of energy surplus (Fig.  2) [46, 47]. Type 2 diabetes is 
accompanied by a decrease in the activation of SIRT1 
and AMPK and by a striking suppression of autophagy 
[48–50]; these changes have been implicated in the myo-
cardial injury and cardiomyopathy in type 2 diabetes 
[49–51]. Activation of SIRT1 alleviates oxidative stress, 
promotes autophagic flux, and prevents cardiomyocyte 
dysfunction and demise in diabetic hearts [13, 52–54]. 
Similarly, a high-fat diet acts to suppress (whereas glu-
cose deprivation activates) HIF-2α [55–57], whereas 
upregulation of HIF-2α reduces oxidative stress and pro-
motes autophagy in the heart [38, 39]. Thus, changes in 

nutrient and oxygen deprivation signaling can influence 
organellar stability, oxidative stress and inflammasome 
activation and modulate cellular dysfunction in diabetic 
hearts by mechanisms that are autophagy-dependent and 
-independent.

Interestingly, the energy surplus in type 2 diabetes may 
not only lead to the suppression of low-energy sensors, 
but changes in SIRT1, AMPK, HIF-1α and HIF-2α sign-
aling may also contribute to glucose intolerance. Stimu-
lation of SIRT1 and AMPK improves glycemic control, 
glucose transporter expression and insulin sensitivity 
[58–61], and intermittent hypoxia improves glycemia 
by causing upregulation of both AMPK and HIF-1α [61, 
62]. Activation of HIF-1α enhances glycolysis, whereas 
HIF-2α suppresses gluconeogenesis; [63, 64] addition-
ally, HIF-2α enhances insulin sensitivity and inhibits the 
actions of glucagon [64, 65]. The coordinated effects of 
hypoxia inducible factor signaling act to lower blood glu-
cose, while simultaneously mediating the adaptation of 
cells to hypoglycemia [66]. Interestingly, the benefits of 
enhanced SIRT1/AMPK/HIF signaling on glucose home-
ostasis are likely to be mediated (at least in part) through 
enhanced autophagic flux, which plays a critically impor-
tant role in promoting normal glucose utilization [67].

Effect of antihyperglycemic drugs on autophagic 
flux, nutrient deprivation signaling and cellular 
stress
Theoretically, any antihyperglycemic drug might increase 
the activity of low-energy sensors and promote 
autophagy simply by lowering blood glucose; however, 
the magnitude of the effect may be modest and be off-
set by other actions. Incretins and thiazolidinediones 
have been reported to enhance autophagy in experimen-
tal models [68–70], but they potentiate the release and/
or response to insulin, which acts to suppress autophagy 
[71]. These effects may help to explain why enhanced 
insulin signaling adversely affects the course of heart 
failure [72]. In addition, dipeptidyl peptidase 4 inhibi-
tors potentiate the actions of stromal cell-derived factor 
1, which signals through its receptor CXCR4 to depress 
autophagic flux [73, 74].

Two glucose-lowering drugs—metformin and SGLT2 
inhibitors—promote nutrient deprivation signaling and 
autophagic flux without enhancing insulin signaling 
(Fig. 3).

Effects of metformin on nutrient and oxygen deprivation 
signaling and autophagic flux in diabetic and nondiabetic 
hearts under stress
Metformin promotes autophagy in hearts under stress, 
and this action may contribute to the effect of the drug to 
ameliorate cardiomyocyte dysfunction and the evolution 
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Fig. 2 Derangements in energy deprivation signaling in type 2 
diabetes and its implications for the development of cardiomyopathy
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of experimental cardiomyopathy, in the presence or 
absence of diabetes [75–78]. The effect of metformin 
to promote autophagy is primarily related to its abil-
ity to act as an agonist of AMPK [76, 79], but signaling 
through AMPK is capable of ameliorating oxidative stress 
and cardiac inflammation in ways that are independ-
ent of changes in autophagic flux [80–83]. Additionally, 
metformin may produce cardioprotective effects that are 
independent of AMPK [84], potentially by suppressing 
the activity of the Akt/mTOR pathway [85].

Although metformin has been postulated to interact 
with SIRT1 [86] several lines of evidence suggest that its 
capacity to promote SIRT1 signaling is modest and is not 
likely to mediate the cardioprotective effects of the drug. 
As expected from an AMPK agonist, metformin sup-
presses gluconeogenesis [87], but drugs that act through 
SIRT1 stimulate gluconeogenesis [10]. SIRT1 activation 
is also expected to promote erythropoiesis (since SIRT1 
stimulates HIF-2α [20]); yet, metformin decreases the 
hematocrit [88], presumably because signaling through 
AMPK acts to suppress HIF-2α [89].

Effects of SGLT2 inhibitors on nutrient and oxygen 
deprivation signaling, autophagic flux and organellar 
dysfunction in cardiomyocytes
SGLT2 inhibitors cause loss of calories in the urine, 
and as a result of the induction of a starvation-like state 
[90], SGLT2 inhibitors stimulate the activity of SIRT1 
[91–94] the principal sensor of glucose depletion. SGLT2 
inhibitors also upregulate another nutrient deprivation 
sensor, peroxisome proliferator-activated receptor-γ 

coactivator-1α (PGC-1α) [95, 96], the downstream tar-
get of SIRT1 and a master regulator of mitochondrial 
biogenesis (Fig.  3). In addition, certain SGLT2 inhibi-
tors (e.g., canagliflozin) directly activate AMPK; [97–99] 
empagliflozin and dapagliflozin may also promote AMPK 
activity, although not necessarily by a direct action or to 
a meaningful degree [92, 97–102]. The effects of SGLT2 
inhibitors on hypoxia inducible factors in the heart have 
not been evaluated to date.

The action of SGLT2 inhibitors to stimulate SIRT1 
(alone or in concert with other nutrient deprivation sen-
sors) may explain the ability of these drugs to maintain 
mitochondrial membrane potential, preserve mitochon-
drial structure, restore the capacity of mitochondria to 
generate ATP, and mitigate mitochondrial fragmenta-
tion and DNA injury [101–104]. These benefits may be 
achieved by a direct salutary effect of SIRT1/AMPK/
PGC-1α signaling on existing mitochondria; through 
autophagic clearance of injured mitochondria; and by 
promoting the biogenesis of healthy mitochondria (Fig. 3) 
[18, 22–25, 105, 106]. SGLT2 inhibitors have been shown 
to promote autophagic flux in diabetic hearts, thereby 
muting inflammation [100]. The autophagy-dependent 
and -independent action of SGLT2 inhibitors to maintain 
organellar health likely underlies their ability to amelio-
rate the course of experimental diabetic and nondiabetic 
cardiomyopathy [107–109].

Interestingly, intracellular sodium concentration is 
increased in cardiomyocytes derived from diabetic hearts 
[110, 111]; this perturbation may compromise the capac-
ity of mitochondria to generate ATP and reduce the 
generation of reactive oxygen species [112, 113]. It is 
therefore noteworthy that SIRT1/AMPK signaling modu-
lates the activity of transporters so as to promote sodium 
efflux out of cells [49, 114–116]; the resulting decrease 
in intracellular sodium concentrations improves mito-
chondrial function and antioxidant defense mechanisms, 
thereby preventing cell death [112]. Interestingly, SGLT2 
inhibitors have been shown to decrease intracellular 
sodium concentration in cardiomyocytes [117]. Although 
this finding has been attributed to an effect on sodium-
hydrogen exchange in the heart, an effect of SGLT2 
inhibitors on the exchanger has yet to be demonstrated. 
Instead, the effect of these drugs on cytosolic sodium 
may possibly be the result of AMPK/SIRT1 signaling.

It is important to recognize that the effects of SGLT2 
inhibitors to promote SIRT1/AMPK signaling are not 
cardiac specific. The loss of calorie in the urine triggers a 
system-wide starvation prosurvival transcriptional para-
digm in a broad range of tissues [91]. Specifically, glyco-
suria stimulates SIRT1 in the liver and promotes hepatic 
gluconeogenesis, even though SGLT2 is not expressed 
in hepatic tissues [92]. SGLT2 inhibitors ameliorate the 

Fig. 3 Mechanisms underlying the effects of glucose-lowering drugs 
to influence the development of cardiomyopathy. The possibility that 
glycosuria produced by SGLT2 inhibitors can promote renal urate 
excretion is not shown. AMPK: adenosine monophosphate-activated 
protein kinase; PGC-1α: peroxisome proliferator-activated receptor-γ 
coactivator-1α; SIRT1: sirtuin-1
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structural and functional derangements in the heart, 
liver, kidney, adipose tissue and skeletal muscle that are 
seen in states of energy overabundance [92, 118, 119], 
even though there are no measurable levels of the target 
protein in most of these tissues.

Distinctions between metformin and SGLT2 inhibitors 
with respect to energy deprivation signaling 
and cardioprotection
There is compelling evidence from large-scale trials that 
SGLT2 inhibitors reduce the risk of cardiovascular death 
and hospitalization for heart failure in patients with and 
without diabetes [120, 121]. In contrast, there is uncer-
tainty whether metformin exerts such benefits in the 
clinical setting. Metformin has been associated with 
a reduction in heart failure events in some (but not all) 
epidemiological studies [122–125]; however, in these 
reports, metformin was compared with antihyperglyce-
mic drugs that can increase the risk of heart failure. Fur-
thermore, in these studies, it seems likely that metformin 
was preferentially prescribed to patients at low risk of 
heart failure [126], since physicians have worried that 
the drug may trigger lactic acidosis. Given the observa-
tional nature of these analyses and the lack of evidence 
from randomized controlled trials, the true effect of met-
formin on the development of heart failure in patients 
with type 2 diabetes remains unclear [127].

However, metformin and SGLT2 inhibitors differ with 
respect to their actions to promote nutrient and oxygen 
deprivation signaling (Fig. 3). Metformin exerts its effects 
primarily through the activation of AMPK; in contrast, 
several lines of evidence suggest that SGLT2 inhibi-
tors exert their effects principally through SIRT1 and its 
downstream effectors, and not AMPK [95–99]. Due to 
the loss of calories in the urine, SGLT2 inhibitors recapit-
ulate a starvation-like state, which signals more through 
SIRT than AMPK [128–130], since SIRT1 (and not 
AMPK) mediates the effects of caloric restriction to pro-
long survival [131]. Additionally, both fasting and SGLT2 
inhibition are accompanied by hyperketonemia, and 
there is a close association between ketogenesis and the 
activation of SIRT1 [132–134] Ketogenesis depends on 
gluconeogenesis, which is stimulated by SIRT1 [1, 10] but 
inhibited by AMPK and metformin [135, 136]. The other 
major pathway leading to the formation of ketone bod-
ies—fatty acid oxidation—also requires SIRT1 [137–139]. 
Finally, pretreatment with metformin does not attenu-
ate the ability of empagliflozin (which does not directly 
activate AMPK [97, 98]) to reduce the risk of heart failure 
hospitalizations [140]. Therefore, in contradistinction to 
metformin, it appears that SGLT2 inhibitors preferen-
tially activate SIRT1, rather than AMPK.

Differences in the pattern of nutrient deprivation sign-
aling with metformin and SGLT2 inhibitors may also lead 
to different effects on intracellular sodium. As noted ear-
lier, SGLT2 inhibitors reduce levels of cytosolic sodium 
in cardiomyocytes, an effect that may yield direct bene-
fits on mitochondrial capacity and stability [112, 117]. In 
contrast, metformin does not ameliorate the heightened 
intracellular sodium concentrations seen in diabetic car-
diomyocytes [110, 111, 141].

SIRT1 signaling may explain the results of statistical 
mediation analyses of the heart failure benefit seen 
in large‑scale clinical trials
The likely role of SIRT1 in mediating the effects of SGLT2 
inhibitors is noteworthy, since SIRT1 (but not AMPK) 
can stimulate HIF-2α [20, 21], the primary transactiva-
tor of the gene for erythropoietin synthesis [142]. Inter-
estingly, SGLT2 inhibitors have been strongly linked 
to the enhanced production of erythropoietin and to 
an increase in red blood cell mass in clinical trials [121, 
143–145]. More importantly, activation of HIF-2α can be 
expected to exert its own effects to promote autophagy 
and mute cellular stress and inflammation [19, 29–31]. 
In contrast, as a result of AMPK agonism, metformin 
suppresses the activity of HIF-2α [89], and thus, the 
drug decreases the hematocrit [88]. The potential differ-
ences in HIF-2α signaling between SGLT2 inhibitors and 
metformin may be clinically relevant, since (in statisti-
cal mediation analyses) the erythrocytosis produced by 
SGLT2 inhibitors is the most powerful predictor of the 
ability of these drugs to reduce the risk of serious heart 
failure events in large-scale clinical trials [144, 145].

Interestingly, in the mediation analyses of large-scale 
cardiovascular outcomes trials, the effect of SGLT2 
inhibitors to decrease serum uric acid is also a major 
independent predictor of the drug-related reduction in 
serious heart failure events [144, 145]. Previous work 
attributed the urate-lowering effects of SGLT2 inhibi-
tors to an effect of these drugs to simultaneously inhibit 
glucose and uric acid reabsorption in the proximal renal 
tubule [146], since glycosuria may directly enhance frac-
tional excretion of uric acid [147]. However, urate is also a 
biomarker of oxidative stress in the stressed myocardium 
[148–150], i.e., the increase in reactive oxygen species 
in patients with diabetes leads to activation of xanthine 
oxidase, the enzyme that catalyzes the synthesis of uric 
acid [151]. Interestingly, the depletion of nicotinamide 
adenine dinucleotide (NAD+) in diabetes not only causes 
upregulation of xanthine oxidase but also downregula-
tion of SIRT1 [152, 153]. There is an inverse relationship 
between the activities of SIRT1 and xanthine oxidase. 
Upregulation of xanthine oxidase suppresses SIRT1 [154] 
and inhibition of xanthine oxidase activates SIRT1 [155]; 
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thus, serum levels of uric acid are inversely related to the 
activity of SIRT1 in states of energy overabundance [156]. 
Therefore, by enhancing SIRT1-mediated suppression 
of oxidative stress or by a direct consequence of SIRT1 
activation [157–159], SGLT2 inhibitors may suppress the 
activity of xanthine oxidase and reduce serum uric acid 
[145, 160]. Thus, activation of SIRT1 may explain the 
observed statistical link between the urate-lowering and 
cardioprotective effects of SGLT2 inhibitors. In contrast, 
metformin (which does not enhance signaling through 
SIRT1) increases serum uric acid [161].

Conclusions
Heart failure is the most common and serious cardiovas-
cular complication of type 2 diabetes, possibly because 
diabetes increases oxidative and endoplasmic reticulum 
stress in cardiomyocytes, with its attendant risks of cellu-
lar dysfunction and demise. The increase in cellular stress 
in the diabetic heart is related to suppression of nutrient 
deprivation signaling, which normally acts to maintain 
organellar function and promote the removal of dys-
functional mitochrondria and peroxisomes through the 
lysosome-dependent housekeeping process of autophagy. 
The downregulation of SIRT1 and AMPK has been 
shown to cause cardiomyopathy in experimental models 
of diabetes, whose features are characterized by oxidative 
stress and organellar dysfunction.

Both metformin and SGLT2 inhibitors activate SIRT1 
and AMPK, which may explain their effect to alleviate 
cellular stress and ameliorate the course of experimen-
tal cardiomyopathy, benefits that are likely mediated 
through their actions to restore mitochondrial function, 
both directly and indirectly, through their actions to 
promote autophagy. However, the evidence supporting 
a heart failure benefit is substantially more compelling 
with SGLT2 inhibitors than with metformin. Further-
more, SGLT2 inhibitors may have important mechanistic 
advantages over metformin in producing cardioprotec-
tion. Specifically, they may preferentially enhance SIRT1 
and HIF-2α (as reflected by ketogenesis and erythrocy-
tosis), alleviate sources of oxidative stress (as reflected by 
serum uric acid levels), and reduce intracellular sodium 
concentration in cardiomyocytes—effects that are not 
seen with metformin. Therefore, differences in their 
action on nutrient deprivation pathways may underlie 
differences between metformin and SGLT2 inhibitors in 
their ability to reduce heart failure events in the clinical 
setting.
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