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Bacterial vaginosis-associated bacterium 1 (BVAB1) is an as-yet uncultured bacterial

species found in the human vagina that belongs to the family Lachnospiraceae within

the order Clostridiales. As its name suggests, this bacterium is often associated with

bacterial vaginosis (BV), a common vaginal disorder that has been shown to increase

a woman’s risk for HIV, Chlamydia trachomatis, and Neisseria gonorrhoeae infections

as well as preterm birth. BVAB1 has been further associated with the persistence

of BV following metronidazole treatment, increased vaginal inflammation, and adverse

obstetrics outcomes. There is no available complete genome sequence of BVAB1,

which has made it difficult to mechanistically understand its role in disease. We present

here a circularized metagenome-assembled genome (cMAG) of BVAB1 as well as

a comparative analysis including an additional six metagenome-assembled genomes

(MAGs) of this species. These sequences were derived from cervicovaginal samples of

seven separate women. The cMAG was obtained from a metagenome sequenced with

long-read technology on a PacBio Sequel II instrument while the others were derived from

metagenomes sequenced on the Illumina HiSeq platform. The cMAG is 1.649Mb in size

and encodes 1,578 genes. We propose to rename BVAB1 to “Candidatus Lachnocurva

vaginae” based on phylogenetic analyses, and provide genomic and metabolomic

evidence that this candidate species may metabolize D-lactate, produce trimethylamine

(one of the chemicals responsible for BV-associated odor), and be motile. The cMAG

and the six MAGs are valuable resources that will further contribute to our understanding

of the heterogeneous etiology of bacterial vaginosis.
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INTRODUCTION

Bacterial vaginosis (BV) is a common vaginal infection affecting
approximately 30% of US reproductive-aged women, with both
African- and Mexican-Americans disproportionately afflicted
(Allsworth and Peipert, 2007; Koumans et al., 2007). Though
treatable with antibiotics, BV has a high rate of recurrence
(Bradshaw et al., 2006; Schwebke and Desmond, 2007). The
microbiological diagnosis of BV is established using Nugent
scoring of Gram-stained vaginal smears and is defined by a low
abundance of Lactobacillus spp. morphotypes and a wide array
of strict and facultative Gram-negative anaerobes (Nugent et al.,
1991). The clinical diagnosis of BV is made when 3 of the 4
Amsel’s criteria are met: vaginal pH > 4.5, homogenous vaginal
discharge, a positive whiff test, and the presence of clue cells
upon wet mount examination (Amsel et al., 1983). Aside from the
burdensome symptoms of vaginal discharge and fishy odor, BV
is also associated with increased risk to adverse health outcomes
including preterm birth (Leitich et al., 2003), increased risk
of sexually transmitted infections acquisition and transmission,
including HIV (Taha et al., 1998; Cherpes et al., 2003; Ness
et al., 2005; Atashili et al., 2008; Cohen et al., 2012) and pelvic
inflammatory disease (Ness et al., 2004).

A critical step along the path to understanding the ecology and

pathogenic potential of a bacterial species is the characterization

of its genome. Yet many of the bacteria associated with BV
have thus far been uncultivable, further complicating genome
sequencing efforts. BV-associated bacterium 1 (BVAB1) is one
such organism for which there is limited genetic information
available. BVAB1 was first identified by Fredricks et al. (2005)
using 16S rRNA gene amplicons Sanger sequencing of samples
associated with BV, and has eluded cultivation efforts since.
Based on the sequence of its 16S rRNA gene, BVAB1 belongs
to the family Lachnospiraceae (Muzny et al., 2014) and has
often been misidentified as belonging to the genus Shuttleworthia
(Lamont et al., 2011; Petrova et al., 2013). Interestingly, Gram-
negative curved rods designated Mobiluncus morphotypes on
Gram stain in Nugent scoring have been shown to likely be
BVAB1 (Srinivasan et al., 2013). Further, vaginal communities
in which BVAB1 16S rRNA gene sequence is detected have
been associated with vaginal inflammation and persistent BV
in African women (Lennard et al., 2018). BVAB1 remains
uncultured and aside from detection of this species via partial
16S rRNA gene amplicon sequencing, little is known about
its metabolism, pathogenic potential, or ecology in the vaginal
environment, especially during BV. Further understanding of
the genetic and physiological properties of BVAB1 will help to
dissect the complex etiology of BV. Previously, a 94 contig BVAB1
metagenome-assembled genome from short-read sequencing
was produced (Fettweis et al., 2019).

In this study, we characterize the first circularized
metagenome assembled genome (cMAG) of BVAB1 constructed
from a metagenome sequenced using the PacBio Sequel II
long read platform. In addition, we compare this cMAG to an
additional six metagenome-assembled genomes (MAGs). All
genomes originate from different women with symptomatic
or asymptomatic BV. Based on phylogenetic analysis of full-
length 16S rRNA gene sequences obtained from the genomic

assemblies, we propose to rename this bacterium “Candidatus
Lachnocurva vaginae”.

MATERIALS AND METHODS

Sample Collection
Vaginal samples used in this study were identified as containing
a high relative abundance (> 60%) of BVAB1 using 16S rRNA
gene amplicon sequencing of the V3–V4 regions as previously
reported (Holm et al., 2019). Cervicovaginal lavages from six
participants that were collected as part of the NIH Longitudinal
Study for Vaginal Flora (LSVF) (Klebanoff et al., 2004) by
washing the vaginal walls with 3mL sterile, deionized water,
aspiration from the vaginal vault via pipette and stored at
−80◦C, were included in this study. Gram stain smears were
prepared for Nugent scoring as previously described (Nugent
et al., 1991). DNAwas extracted from 200µL of lavage fluid using
the MagAttract Microbial DNA Kit (QIAGEN Inc., Germantown
MD) automated on a Hamilton Star robotic platform according
the manufacturer recommendations. DNA was eluted in a final
volume of 110µL nuclease-free water.

An additional swab sample collected as part of the UMB-
HMP study was used in this study (Ravel et al., 2013). The
swab was self-collected by a participant using a Copan Eswab re-
suspended into 1mL Amies transport medium (ESwab, Copan
Diagnostics Inc.), frozen at−20◦C for no more than a week, and
then transferred to−80◦C until analyzed. High molecular weight
DNA was extracted from this sample using the MasterPure DNA
purification kit (Lucigen) with two phenol/chloroform cleanups
prior to DNA precipitation. DNA extraction was quantified
on a TapeStation 2200 instrument run with a Genomic DNA
tape (Agilent).

Metagenomic Library Construction and
Sequencing on the PacBio Sequel II
Platform
The extracted DNA from the swab collected as part of the
UMB-HMP study (Ravel et al., 2013) was found to be of
sufficient concentration (5.49 ng/µL in 200 µL) for long-read
sequencing using the Pacific Biosciences Sequel II platform
(Pacific Biosciences). The sequencing library was prepared with
SMRTBell Template Prep Kit 1.0 and was size-selected on a
BluePippen (Sage Science) with a cutoff of 5 kb. The library was
barcoded and sequenced as part of a multiplexed run with four
other unrelated samples. Sequencing was performed on a PacBio
Sequel II instrument with an 8M cell loaded at 60 pM at the
Genomic Resource Center of the University Maryland School
of Medicine.

Long Read Quality Filtering, Host-Read
Removal, and cMAG Construction
Raw reads were demultiplexed with lima (version 1.9.0) using
default parameters except for minimum barcode score set at
26 and a minimum read length of 50 bp after clipping of the
barcode was enforced. Both tools are part of the SMRTLink 6.0.1
software package with updated CCS version 3.4.1. Human reads
were detected using pbalign v0.4.1 (Pacific Biosciences) and the
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human genome build 38 (GRCh38.p12). Remaining reads were
corrected and assembled via Canu v1.7 and the “-pacbio-raw”
protocol (Koren et al., 2017). The largest resulting contig was ca.
1.6Mb in length, much larger than the second longest contig (ca.
600 kb). Four copies of the 16S rRNA gene were detected on this
contig and were identical to the existing BVAB1 16S rRNA gene
reference AY724739 Fredricks et al., 2005 (NEJM). The contig
had 6.5 kb of overlapping ends and was determined to be circular
by Canu. This contig was then manually circularized using
Geneious version 2019.2.1 (Galens et al., 2011), searched for the
dnaA gene, and rotated so that dnaA was the first gene (Kearse
et al., 2012). The circularized metagenome-assembled genome
(cMAG) was annotated using the IGS Prokaryotic Annotation
Pipeline (Galens et al., 2011). Translated gene sequences were
assessed against KEGG using the BlastKOALA algorithm for
insights into “Candidatus Lachnocurva vaginae” metabolism
(Kanehisa et al., 2016). Bacteriophages were detected using
PHASTER (Zhou et al., 2011; Arndt et al., 2016). Completeness
and contamination of the cMAG was analyzed using CheckM
version 1.0.18 (Parks et al., 2015) and the taxonomy_wf flag
specifying Order Clostridiales and rerun specifying Family
Lachnospiraceae. Metabolic reconstruction was examined with
the cMAG using the metabolic modeling function in KBase
(Arkin et al., 2018). Complete media for gapfilling and a Gram-
positive template were used.

Metagenomic Library Construction and
Sequencing on the Illumina HiSeq 4000
Platform
Metagenomic libraries for the six samples from the LSVF
study were prepared using the KAPA HyperPlus Kit (Kapa
Biosystems) with KAPA Single-Indexed Adapter Kit Set B. A
fixed volume (35 µL) of genomic DNA was used as input, and
libraries were prepared following the manufacturer’s protocol
with modifications based on their amount of input DNA as
in Supplemental Data Sheet 1. For samples with 0.5 or 0.2 ng

input DNA, the fragmentation enzyme was diluted 1:2 or 1:5
with water. All samples were fragmented at 37

◦

C for 5min.
Adapter concentrations varied according to the input DNA as
listed in Supplemental Data Sheet 1, and the adapter ligation
was carried out overnight at 4

◦

C for all samples. The post-ligation
cleanup was performed with 0.8x Ampure XP beads (Beckman
Coulter, Indianapolis IN) and 20 µL of sample was used in
library amplification. Amplification library cycles varied by input
DNA as listed in Supplemental Data Sheet 1. Post-amplification
cleanup was performed with 1x Ampure XP beads; libraries with
remaining adapter dimer peaks were cleaned a second time. The
final elution was in 25µL of nuclease-free water. Libraries were
run on a TapeStation instrument with a D1000 tape (Agilent)
to assess quality and concentration. Libraries were sequenced (8
libraries/lane) on an Illumina HiSeq 4000 instrument using the
150 bp paired-end protocol.

Short Read Quality Filtering, Host-Read
Removal, and Metagenomic-Assembled
Genome Reconstruction
Metagenomic reads were quality filtered using Trimmomatic
v0.36 (Bolger et al., 2014) to remove sequencing adapters
allowing for 2 mismatches, a palindromic clip threshold of 30,
and a simple clip threshold of 10. Bases with quality scores < 3
were removed from the beginning and end of reads combined
with a 4 bp sliding window which trimmed a read if the average
quality score within that window fell below 15. Reads < 75
bp in length were removed. Human reads were detected by
mapping to the human genome build 38 (GRCh38.p12) with
Bowtie 2 v2.3.4.1 and default settings (Langmead and Salzberg,
2012), and removed using samtools v1.9 (Li et al., 2009) and
bedtools v2.27.1 (Quinlan and Hall, 2010; Quinlan, 2014) (see
Supplemental Data Sheet 2 for specific scripts). Metagenomic
assemblies were produced using SPAdes genome assembler
v3.13.0 (Bankevich et al., 2012) with the careful setting. Resulting

TABLE 1 | Participants demographics and cervicovaginal lavage microbial compositions for samples used in metagenomic reconstruction of the “Ca. Lachnocurva

vaginae” circularized metagenome-assembled genome using long-read (*) and shotgun sequencing (*).

Sample ID Age Race Microbiota Relative Abundances of

Vaginal Samples

(16S rRNA Gene –V3V4)

BV Status Nugent Score Vaginal

pH

Clinician-Observed

Discharge

Positive

Whiff Test

UAB071* 22 Black Asym 8 5 - Yes

Y3207 37 Black No 6 6.5 No No

Y2266 34 Black Asym 10 5.3 Mild visible—Gray/White Yes

Y2337 36 Black Asym 8 5.5 Mild visible—Gray/White Yes

Y3255 24 Black Asym 9 5.5 No Yes

Y2624 27 Black Asym 7 5.5 Mild visible—“Mucousy” Yes

Y2694 34 White Sym 7 5.5 Mild visible—Gray/White Yes

�, Ca. Lachnocurva vaginae; �, Gardnerella vaginalis; �, Megasphaera; �, Sneathia sanguinegens; �, Prevotella; �, Atopobium vaginae; �, Prevotella amnii;

�, Mageeibacillus indolicus; �, Other.

Other (gray, includes all taxa except the 8 most abundant taxa). Asym, asymptomatic BV; Sym, symptomatic BV.
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contigs were aligned to the cMAG using NUCmer with the –
mum setting and allowing for 5,000 bp breaklength, filtered
to remove aligned contigs < 100 bp, and minimum contig

coverage of 25%. MAGs were annotated with the Live Annotate
& Predict tool from Geneious version 2019.2.1 (Kearse et al.,
2012) using the “Ca. Lachnocurva vaginae” cMAG as annotation

FIGURE 1 | “Ca. Lachnocurva vaginae” is related to Shuttleworthia satelles; the full-length 16S rRNA gene sequences are 89–90% identical.
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source (sequence similarity of ≥ 95% required). Genes with
no similarity to the cMAG were annotated with Prokka v1.13
(Seemann, 2014). Phages were detected using PHASTER (Zhou
et al., 2011). A circle plot was constructed with the BLAST
Ring Image Generator v0.95 (Alikhan et al., 2011), and the
annotated cMAG.

Metabolomic Analysis
Metabolomics analysis was conducted as previously described
(Nelson et al., 2018) by Metabolon Inc. using 200 µL of each
LSVF lavage sample used in this study or 200 µL of a frozen
dry swab eluted in 1ml of PBS for the sample from the
UMB-HMP study (Ravel et al., 2013). The abundances of 561
compounds were quantified using Ultrahigh Performance Liquid
Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS).
Quantities were corrected for instrument block variability and
reported as normalized area-under-the-curve estimates. Figures
were generated using ggplot2 v3.2.0 (Wickham, 2009).

Comparative Genome and Phylogenetic
Analyses
Average nucleotide identities (ANI) were calculated using
FastANI v1.1 with fragment lengths of 1,000 bp, which
is about the mean length of coding sequences (Jain et al.,
2018). Maximum-likelihood phylogenetic trees of full-length
16S rRNA gene sequences alignments were generated with
MUSCLE v3.8.425 using default parameters (Edgar, 2004)
and FastTree v2.1.11 using the Generalized Time Reversible
model and default parameters (Price et al., 2009, 2010) in
Geneious v11.0.3 (Kearse et al., 2012). The tree was rooted
with Fusobacterium nucleatum (AJ133496) and Propionigenium
modestum (X54275) (Domingo et al., 2009), and members
of the genus Lachnoclostridium were included as neighbors
(Yutin and Galperin, 2013) as well as 16S rRNA genes from
Shuttleworthia satelles (NR_028827), and Lachnospiraceae
bacterium 2_1_46FAA (NR_025127). In addition, the cMAG
was submitted for taxonomic placement using the TrueBacID
tool from EZBioCloud (Yoon et al., 2017). cMAG and MAG
pseudomolecules were aligned and visualized using AliTV
v1.0.6 (Ankenbrand et al., 2017). Genes were ordered by gene
synteny of the cMAG. To examine homology to other reference
sequences, the cMAG was aligned to the NCBI protein reference

database (downloaded 1/28/2019), as well as the genomes of
Shuttleworthia satelles (NZ_ACIP00000000), Lachnobacterium
bovis (GCF_900107245.1), and Lachnospiraceae bacterium
2_1_46FAA (ADLB02000001.1) using BLAST v2.8.1+. The
top 3 hits were chosen by lowest e-value, highest percent
identity, and longest alignment length, in that order. Genomic
and pathogenicity islands were explored using IslandViewer4
(Bertelli et al., 2017).

RESULTS AND DISCUSSION

Participant Information
All six participants in the LSVF study were of reproductive
age and had high Nugent scores (6–10) (Table 1). Four were
diagnosed with asymptomatic Amsel-BV, one with symptomatic
Amsel-BV, and one was negative for Amsel-BV (Mckinnon et al.,
2019). The woman who participated in the UMB-HMP study
(Ravel et al., 2013) had a Nugent score of 8 and was diagnosed
with asymptomatic Nugent-BV. The vaginal microbiota of these
7 samples had>60% BVAB1 as defined by 16S rRNA gene V3-V4
amplicon sequencing (Ravel et al., 2013).

Phylogenetic Analysis
A phylogenetic analysis using the full-length 16S rRNA genes
extracted from all MAGs revealed BVAB1 belongs in the
Clostridales family Lachnospiraceae, and that S. satelles is the
closest known relative (Figure 1), though nucleotide identity is
only 89.2%. Similar results were obtained from EZBioCloud’s
TrueBacID (Supplemental Data Sheet 3). We therefore propose
a new candidate species for BVAB1: “Candidatus Lachnocurva
vaginae”, which represents the phylogenetic placement, the
curved morphology of the cells, and the source of this
cMAG. Considering the entire cMAG, the ANI between
“Ca. Lachnocurva vaginae” and the S. satelles draft genome
(NZ_ACIP00000000) was 81.85%. Relative to each other, “Ca.
Lachnocurva vaginae” 16S rRNA genes were >99.7% identical
and the cMAG and MAG average nucleotide identities were also
high (98.6–99.2%, Table 2).

Overall Genomic Features
The cMAG of “Ca. Lachnocurva vaginae” is 1,649,642 bp in
size with 31.8% GC content, encodes 1,578 genes and was

TABLE 2 | Average Nucleotide Identity (ANI) between the “Ca. Lachnocurva vaginae” circularized metagenome-assembled genome, each metagenome-assembled

genome, and the Shuttleworthia satelles draft genome NZ_ACIP00000000.

“Ca. Lachnocurva vaginae” MAG ID

Y2694_MAG_6 Y2624_MAG_5 Y3255_MAG_4 Y2337_MAG_3 Y2266_MAG_2 Y3207_MAG_1 UAB071

“C
a
.
L
a
c
h
n
o
c
u
rv
a

va
g
in
a
e
”

M
A
G

ID

Y2624_MAG_5 99.2 – – – – – –

Y3255_MAG_4 99.0 99.01 – – – – –

Y2337_MAG_3 98.95 98.99 98.97 – – – –

Y2266_MAG_2 99.06 99.01 98.93 99.05 – – –

Y3207_MAG_1 98.98 98.95 99.07 98.99 99.06 – –

UAB071 99.15 99.00 98.92 99.09 99.13 98.98 –

Shuttleworthia satelles 80.80 81.90 81.51 81.63 81.30 81.86 81.85
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estimated to be 99.1% complete and 0% contaminated at the
order level and 90.9% complete and 0% contaminated at the
family level. The relatively low completion estimate at the
family level was due to 22 missing marker genes out of 312
(Supplemental Table 2). Mean coverage of the cMAG assembly
by long reads was 124X (range: [26–285]). The “Ca. Lachnocurva
vaginae” MAGs constructed using the short-read Illumina HiSeq
4000 metagenomic sequence data were 1.48–1.62Mb in size
(mean: 1.57Mb) with a number of contigs ranging from 26 to
152 (mean N50: 99,943 bp) and 31.6% GC (Table 3). Genome

annotation indicated the presence of four complete rRNA operon
copies (Figure 2) and 42 tRNA genes in the cMAG. As expected,
partial rRNA operons were identified in the Illumina-based
MAGs (Supplemental Image 1).

Genomic Features of “Ca. Lachnocurva
vaginae”
Metabolic modeling and reconstruction of the “Ca.
Lachnocurva vaginae” cMAG contained 122 genes, 480

TABLE 3 | “Ca. Lachnocurva vaginae” MAG assembly characteristics.

“Ca. Lachnocurva

vaginae”

MAG ID

No.

CDS

Total Length (Mb) N50 %GC No. Contig No. tRNAs No. 5S rRNA No. 16S rRNA No. 23S rRNA

UAB071 1,578 1.64 – 31.8 1 42 4 4 4

Y3207_MAG_1 1,463 1.60 42,408 31.6 152 41 1 1 1

Y2266_MAG_2 1,322 1.48 297,822 31.3 26 22 1 1 0

Y2337_MAG_3 1,492 1.62 60,576 31.6 143 42 0 0 0

Y3255_MAG_4 1,433 1.59 80,762 31.5 49 38 1 1 0

Y2624_MAG_5 1,459 1.61 168,048 31.8 31 43 2 2 2

Y2694_MAG_6 1,379 1.52 156,872 31.5 30 28 1 1 0

FIGURE 2 | Circle plot of the “Ca. Lachnocurva vaginae” circularized metagenome-assembled genome (cMAG). Circles are from inside to outside: Circle 1: cMAG

position; Circle 2: GC content, 3: GC skew, 4: forward-direction coding sequences, 5: reverse-direction coding sequences, and 6: phage detected in cMAG (green

bars) and rRNA operons (red bars).
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reactions, 581 metabolites, and no mass imbalance was
found. Of the 1,578 genes detected, 255 genes had best blast
matches of 80% sequence identity covering > 80% of the
query gene. Of these, 165 matches were within the order
Clostridiales, and 90 were not (Supplemental Image 2).
Genes encoding transporters for mannose, fructose, and
L-ascorbate were identified in all MAGs (Figure 3 and
Supplemental Table 1, LCVA_199-201, LCVA_1491-1494),
as were complete pathways for glycolysis, pyruvate oxidation,
and the non-oxidative phase of the pentose phosphate pathway.
Mannose was noticeably absent, or below the limit of detection,
in the metabolome of all the samples, but present in other
BV-like samples that did not contain a high relative abundance
of the candidate species (Figure 4). We found “Ca. Lachnocurva
vaginae” to have the genetic capability to uptake and metabolize
mannose (LCVA_1184), suggesting mannose could also be a
carbohydrate source for the candidate species (Figure 3).

The D-lactate dehydrogenase gene (LCVA_41), but not an
L-lactate dehydrogenase gene was also observed in all MAGs.
This result was unexpected, as the production of D-lactate in the
vaginal environment is thought to be a key and somewhat unique
feature of certain Lactobacillus spp. (Witkin et al., 2013; France
et al., 2016). Metabolomic data for each sample were explored
for the presence of lactate to provide evidence supporting this
genomic finding. While lactate was observed in most samples, its
abundance was substantially lower than that from representative

samples that were dominated by Lactobacillus crispatus, a known
D-lactate producer (Figure 4). Thus, either the enzyme exhibits
lower activity in “Ca. Lachnocurva vaginae” or is instead used
in the reverse reaction to consume Lactobacillus spp.-produced
D-lactate to produce pyruvate. This is a strategy described for
another vaginal anaerobic Gram-negative coccus, Veillonella
parvula, which is able to grow on lactate as the sole source of
carbon (Gronow et al., 2010), and would possibly contribute to
an increase in vaginal pH, thereby creating a more favorable
growth environment. However, for lactate to convert to pyruvate
in anaerobic bacteria, an electron-bifurcating complex with an
electron transfer flavoprotein alpha and beta subunit (EtfAB)
would be necessary to make the reaction favorable (Weghoff
et al., 2015). An EtfAB homolog was not observed in the
“Ca. Lachnocurva vaginae” cMAG, suggesting that another
mechanism may be involved. Instead, succinate was the most
abundant short chain fatty acid in the communities from
which “Ca. Lachnocurva vaginae” MAGs originated (Figure 4).
Not surprisingly, succinate has been associated with bacterial
vaginosis, a condition in which “Ca. Lachnocurva vaginae” is
often found (Srinivasan et al., 2015). Interestingly, all “Ca.
Lachnocurva vaginae” MAGs lacked genes for all steps of the
tricarboxylic acid cycle, indicating it is unable to produce
succinate via this pathway. It is possible that “Ca. Lachnocurva
vaginae” produces metabolite(s) other species in the community
can convert into succinate or produces it via a yet to be

FIGURE 3 | Genomic features of “Ca. Lachnocurva vaginae”. Genes coding for the following functions were observed: Methyl-accepting chemotaxis (MCP) and

subsequent flagella assembly, Sec-SRP secretion systems, choline import, and metabolism to trimethylamine (TMA), bacteriocin production and export, mannose,

fructose, and L-ascorbate transport and metabolism, and D-lactate dehydrogenase.
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FIGURE 4 | Metabolomic signatures for biochemicals of interest in vaginal community state type (CST) IV-A (high abundance of “Ca. Lachnocurva vaginae”), CST I

(dominated by Lactobacillus crispatus), and CST IV-B (high abundance of Gardnerella vaginalis).

FIGURE 5 | Gram stains of LSVF samples containing >70% “Ca. Lachnocurva vaginae” and used in this study. Morphologically “Ca. Lachnocurva vaginae” is a

curved rod. Images are labeled with the sample ID.

determined pathway. While “Ca. Lachnocurva vaginae” does not
seem to be able to produce succinate, it has the genetic machinery
to produce acetate from pyruvate (i.e., ackA and pta LCVA_939

and LCVA_1006). We were, however, unable to detect acetate in
the metabolome through the methods used, as it is too small of
a molecule.

A full suite of genes required for flagella assembly was
observed in all MAGs, as well as genes required for methyl-
accepting chemotaxis (LCVA_205, LCVA_992, LCVA_1053,

LCVA_1122) and for the downstream signal process that
mediates flagellar response, cheY (LCVA_362, LCVA_688) (Bren
and Eisenbach, 2000). Flagella have yet to be visually observed on
“Ca. Lachnocurva vaginae” and were not observed in the source
samples used for this study (Figure 5).

We found the cMAG and some MAGs to also include genes
that encode protection against antibiotics including the tetO gene
(LCVA_1310, also observed in MAG Y3255) and drug efflux
pumps for macrolides (macB LCVA_500, also observed inMAGs
Y2337 and Y2266) and fluoroquinolones (LCVA_1202, present
in all MAGs). A gene for hemolysin, tlyA,was also observed in all
MAGs (LCVA_1031), suggesting direct interaction between “Ca.
Lachnocurva vaginae” and host tissues.

Additionally, choline transporters, as well as the cutC and
cutD genes were detected in all MAGs (LCVA_1194 and
LCVA_1193, respectively). The cut genes metabolize choline and
produce trimethylamine (TMA) (Martinez-Del Campo et al.,
2015). Aside from transport of exogenous choline, another
potential source of choline would be via phospholipase D
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hydrolysis of phosphotidyl choline into choline as seen in gut
bacteria (Chittim et al., 2019), however no genes encoding
such activity were found in the cMAG of “Ca. Lachnocurva
vaginae”. Comparing the translated cutC amino acid sequence
from “Ca. Lachnocurva vaginae” to those reported by Martinez-
Del Campo et al. (2015), we observed three of the five active
sites conserved in “Ca. Lachnocurva vaginae” (Cys489, Glu491,
Gly821, data not shown) indicating that it is likely functional.
TMA is one of the substances believed to be responsible
for the fishy odor associated with BV (Brand and Galask,
1986; Wolrath et al., 2002), however it is rarely detected
in metabolomics analyses as it is highly volatile, unless it
is performed on freshly collected samples (Wolrath et al.,
2002).

Two intact bacteriophages were detected in the cMAG
(Figure 2). Partial matches to the same phages were observed in
all MAGs (Supplemental Image 1). Best BLAST hits indicated
that both bacteriophages belong to the Siphoviridae family
of double-stranded viruses (NC_009552, NC_011167) which
can exhibit both lytic and lysogenic phases. Bacteriophages
of this family have previously been reported in the vaginal
species Lactobacillus jensenii (Martin et al., 2010). Genomic
islands were detected at multiple sites (Supplemental Table 1

and Figure 2). Analysis of proteins encoded in the largest
island (65.5 kb, coordinates 1,331,959–1,391,037, LCVA_1280-
1330) showed similarity to proteins from Shuttleworthia satelles,
and other taxa from the Clostridiales (Supplemental Table 3

and Supplemental Image 2) and several transposons and
integrases, as well as tetracycline resistance proteins (TetO,
LCVA_1310), and ABC transporters. We ruled out the
presence of genomic islands due to mis-assembly by analyzing
the long-read coverage spanning the 5′ and 3′ ends of
genomic islands. More than 100 long PacBio reads of
a means size of 9 kb span the junctions of all detected
genomic islands. Further, mean coverage of the genomic
islands was similar to that of the mean cMAG coverage
of 124X. Portions of these islands were observed in the
other MAGs assembled in this study (Supplemental Image 1

and Supplemental Table 1). The stringency of the mapping
would not recover reads to regions of sequence diversity,
thus these results may indicate this “Ca. Lachnocurva vaginae”
likely contains multiple regions of genetic fluidity or diversity.
However, the missing regions in MAGs may also be an artifact
of metagenomic assembly.

CONCLUSION

We present here a circularized MAG of “Ca. Lachnocurva
vaginae” and six MAGs of the candidate species, previously
known as BVAB1, an important member of the human vaginal
microbiota associated with bacterial vaginosis and other adverse
outcomes. Short-read metagenomic assembles do not perform
well and lead to sub-optimal assemblies with missing regions,
whereas long read metagenomic assemblies are promising and
can generate circularized metagenome assembled genomes, as
shown in this study. Our inability to culture this bacterium

has limited our understanding of its ecological role in the
vaginal environment and its relation to women’s health. We
have shown that “Ca. Lachnocurva vaginae” has the genomic
potential for motility and chemotaxis, and is likely capable
of resisting several antibiotics via drug efflux systems. Our
analysis indicates this candidate species may contribute to
the fishy odor characteristic of bacterial vaginosis through the
production of TMA from choline. This crucial genomic data
could be used in metabolic modeling experiments to define a
culture medium suitable for the cultivation of “Ca. Lachnocurva
vaginae”, a critical step to further understand its role in the
vaginal microbiome.
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