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1.  INTRODUCTION

Malaria disease is majorly caused by the protozoan of the 
Plasmodium types, which comprise the Plasmodium malariae spe-
cies, the Plasmodium falciparum species, the Plasmodium ovale 
species and the Plasmodium vivax species, usually transmitted 
via the infected female Anopheles mosquitoes [1–6]. The global 
burden of the deadly P. falciparum malaria has declined greatly, but 
the decline has not been universal, and areas of higher burden per-
sist in many African countries [3]. According to the 2017 World 
malaria report, the P. falciparum was the most prevalent species of 
malaria parasite in the African region, which accounted for approx-
imately 99.8% of the estimated severe malaria cases, followed by 
the South-Eastern Asia 62.8%, the Eastern Mediterranean 69% and 
the Western Pacific regions 71.9% [3]. From the report, it was also 
noted that P. vivax was the predominant parasite in the American 
region. For example, in Venezuela and the Eastern Mediterranean 
regions, controlling over 70% of all the malaria cases [5–9].

However, among the sub-Saharan African countries, Nigeria has 
the highest share of the global burden of malaria disease [3]. More 
than 95% of the malaria cases in Nigeria are caused by P. falci-
parum [10–12], mostly occurring in children under the age of 
5 years [3,10,12]. At present almost more than 70% of the Nigerian 
population live in endemic areas [13,14]. An important partway to 
understanding malaria distribution patterns and planning effective 
intervention strategies is the identification of important influenc-
ing factors to malaria prevalence and transmission [8,15].

A challenge in studying malaria risk in Nigeria is the heteroge-
neity of the prevalence, which is attributed to high variability in 
climate conditions as well as the landscape [2,16]. Few published 
studies in Nigeria have linked malaria prevalence to several influ-
encing factors, including climate and environmental conditions 
[2,10,11,13,15,17–20], socioeconomic factors [15,21–23], geo-
graphical factors [10,13–15,18,24], and control strategies as well 
as prevalence of other febrile illnesses [22,25–27]. Additionally, 
several authors in other malaria endemic countries have investi-
gated the correlation between malaria and important meteorologi-
cal variables as observed in Venezuela [6–9], in Zimbabwe [28], in 
Zambia [29,30], in Côte D’Ivoire [31], in Ghana [32], in Burundi 
[33], in Ethiopia [34,35] and many more. It was found that malaria 
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A B S T R AC T
Although malaria burden has declined globally following scale up of intervention, the disease has remained a leading cause 
of hospitalization and deaths among children aged under-5 years in Nigeria. Malaria is known to be related to climate and 
environmental conditions. Previous research has usually studied the effects of these factors, neglecting possible correlation between 
them, high correlation among variables is a source of multicollinearity that induces overfitting in regression modelling. In this paper, 
a factor analysis was first introduced to circumvent the issue of multicollinearity and a Generalized Additive Model (GAM) was 
subsequently explored to identify the important risk factors that might influence the prevalence of childhood malaria in Nigeria. 
The GAM incorporated the complexity of the survey data, while simultaneously modelling the nonlinear and spatial random effects 
to allow a more precise identification of the major malaria risk factors that influence the geographical distribution of the disease. 
From our findings, the three latent factor components (constituted by humidity, precipitation, potential evapotranspiration, and 
wet days/maximum and minimum temperature/proximity to permanent waters, respectively) were significantly associated with 
malaria prevalence. Our analysis also detected statistically significant and nonlinear effect of altitude: the risk of malaria increased 
with lower values but declined sharply with higher values. A significant spatial variability in under-5 malaria prevalence across the 
survey clusters was also observed; malaria burden was higher in the northern part of Nigeria. Investigating the impact of important 
risk factors and geographical location on childhood malaria is of high relevance for the sustainable development goals (SDGs) 
2015–2030 Agenda on malaria eradication, and we believe that the information obtained from this study and the generated risk 
maps can be useful to effectively target intervention efforts to high-risk areas based on climate and environmental context.

© 2020 The Authors. Published by Atlantis Press International B.V.   
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

*Corresponding author. Email: 217075063@stu.ukzn.ac.za; chigozie.ugwu@unn.edu.ng
Data availability statement: The data utilized in this study are freely available and the 
access was granted before use. The raw data may be accessed upon request, through 
Measure Demographic Health Survey (DHS) websites: www.dhsprogram.com/data/  
and Data Repository (http://spatialdata.dhsprogram.com).

https://doi.org/10.2991/jegh.k.200814.001
https://www.atlantis-press.com/journals/jegh
http://orcid.org/0000-0001-5013-2253
http://creativecommons.org/licenses/by-nc/4.0/
mailto: 217075063@stu.ukzn.ac.za 
mailto: chigozie.ugwu@unn.edu.ng 
http://www.dhsprogram.com/data/


	 C.L.J. Ugwu and T. Zewotir / Journal of Epidemiology and Global Health 10(4) 304–314	 305

infections are not uniformly distributed in space. According to the 
findings of Grillet et al. [7], Laguna et al. [9], Awolola et al. [17], 
Nkurunziza et al. [33], the epidemiological patterns of mosquito- 
borne pathogens could be extraordinarily heterogenous by cause 
of a complex interactions among parasites, vectors and host, which 
occurs at definite locations and time, inducing irregular patterns of 
epidemic spread (malaria), that may reflect spatial variation in the 
disease distribution.

It is evident that malaria disease is spatially correlated because chil-
dren living in a given geographical location may exhibit similar 
behavior that influences the rate of infection. Public health policy 
makers may want to understand the geographical distribution of 
malaria across the states and regions rather than just the prevalence 
across states, and this might shade more light on the distributional 
patterns across space. In modelling spatial data, the existence of 
spatial autocorrelation between observations must be considered. 
Spatial autocorrelation-measure offers additional insight into the 
interdependence of spatial data and ignoring such correlation can 
lead to biased and erroneous inference. Progress has been made in 
understanding the individual risk factors associated with malaria 
distribution and generally where the burden in higher, but spa-
tial analytical studies on how malaria infection is associated with 
climate and environmental conditions with respect to under-5 
malaria prevalence data are limited in Nigeria. From the litera-
ture, we have observed that studies to identify specific clusters of 
elevated under-5 malaria risks across the states and regions using 
nationally representative data remains largely unexplored.

This paper evaluates the spatial patterns of under-5 malaria distri-
bution based on the 2015 Nigeria Malaria Indicator Survey (NMIS) 
data, with the corresponding Demographic and Health Survey 
(NDHS) geospatial dataset. The main goal was to identify hot-spots 
of under-5 malaria risks and to investigate important influencing 
factors with respect to climate and environmental factors, while 
accounting for the spatial structure of the data. Our study explored 
a factor analysis to circumvent the issue of multicollinearity among 
the highly correlated variables by obtaining latent factor component 
of the observed climate and environmental factors. Subsequently, we 

used a Generalized Additive Model (GAM) to examine the nonlinear 
and spatial random effects of the potential malaria risk factors. Other 
geospatial covariates such as urban-rural settlement, population den-
sity, Enhanced Vegetation Index (EVI) and travel times to the nearest 
population settlement >50,000 inhabitants, were included directly 
in our analysis, specifically because of the relative lack of literature 
that explores the impact of the aforementioned factors on under-5 
malaria risks in Nigeria. This study may provide information on the 
geographical patterns of under-5 malaria distribution which could 
inform public health policy makers and program managers on the 
priority areas that need enhanced malaria control and intervention  
across Nigeria.

2.  MATERIALS AND METHODS

2.1.  Study Area

Nigeria is the largest country in sub-Saharan Africa, a landlocked 
country of more than 923,768 km2 located in the tropical region 
within Latitudes 4° and 14° north of the Equator and between 
Longitudes 2°2′ and 14°30′ east of the Greenwich Meridian [10]. It 
has 37 regional states, including the Federal Capital Territory (FCT), 
within the six geopolitical regions (Figure 1). The country shares 
borders with Niger Republic in the north, the Republic of Chad in 
the northeast, Republic of Cameroon in the east, and Republic of 
Benin in the west [12,36]. Nigeria has a tropical climate which is 
made of two seasons, the wet and dry season, being propelled by 
the movement of two dominant winds, the rain-bearing southwest-
erly winds and the cold, dry and dusty northeasterly winds, usually 
called the Harmattan period. The dry-season lasts for approxi-
mately 6 months from October to March, with a spell of coldness 
accompanied by dry-dusty Harmattan wind, which is felt mostly 
in the north between December and January. The wet season also 
last for approximately 6 months from April to September [16,36]. 
The Nigeria’s temperature oscillates between 25°C and 40°C, with a 
range of temperature from 2650 mm in the southeast to ≥600 mm 
in other parts of the north, predominantly on the boundaries of the 

Figure 1 | Locations map of where the survey dataset was collected based on the 2015 MIS–DHS in Nigeria’s 37 States, including the Federal Capital 
Territory (FCT).
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Sahara desert, while the rainfall ranges from 2650 mm in the south-
east to <600 mm in some parts of the north, mainly on the outskirts 
of the Sahara desert [36]. The country has a wide range of climate 
and vegetation, the vegetation consists of mangrove swamp forest 
in the Niger Delta and Shel grassland in the north [37].

2.2.  Study Data

This study was based on the available data collected from the 
NMIS of 2015, with the corresponding NDHS geospatial covari-
ates, assessed upon request from the Measure DHS website (https://
dhsprogram.com/data/). The MIS/DHS are internationally reor-
ganized sources of data being designed to generate representative 
data of key health indicators at national and sub-national (region 
or state) levels [12,36]. The surveys typically utilized two-stage 
stratified cluster design in which the country was stratified into the 
administrative areas and then subsequently stratified into urban 
and rural areas [12]. At the first stage of sampling, selection of clus-
ters (enumeration areas) from each of the urban and rural strata 
was involved. At the second stage, households were systematically 
selected. The selected households were further visited and inter-
viewed by qualified personnel purposely trained for the survey.  
A detailed review of the sampling methods is presented in the 
MIS/DHS sampling manual [38]. Three questionnaires including 
women, household, and the men were carried out in the sampled 
households. These questionnaires were designed to collect infor-
mation on the characteristics of households and eligible women, 
men as well as children. In addition children under the age of  

5 years in the selected households, were tested for malaria using 
Rapid Diagnostic Tests (RDT) to determine the prevalence, with 
an approved consent from the parents or caregiver [12]. The 
survey protocol was approved by Nigeria Health Research Ethics 
Committee of the Federal Ministry of Health.

2.2.1.  Outcome variable

In controlling the risk of malaria and reducing the high mortality 
rate in endemic regions, the World Health Organization recom-
mended timely diagnosis and instant treatment as key strategies, 
having approved the RDTs for malaria diagnosis in the MIS/DHS 
surveys [12,39]. In this study, the outcome of interest was based on 
malaria RDT survey results as a binary indicator of the presence 
of malaria parasites in the child’s blood sample, where 1 signifies 
the presence of malaria and 0 the absence. A total number of 6025 
observations were included in our analysis.

2.2.2.  Explanatory variables

The explanatory variables considered in this study comprise a 
selection of climate and environmental factors obtained from 
the DHS Spatial Data Repository upon request (Table 1) [40]. 
The DHS program georeferenced these climate and environmen-
tal data to be used for spatial analysis, by making available stan-
dardized files of the most frequently used geospatial covariates  
(climate and environmental factors) for the year 2015, which can be 

Table 1 | Climate and environmental covariates, and their definitions

Covariate Data sources Definition

Enhanced Vegetation  
Index (EVI)

Nigeria Demographic and  
Health Survey (NDHS)  
Spatial Analysis data

The average vegetation index value within the 2 km (urban) or 10 km (rural) buffer surrounding 
the DHS cluster at the time of measurement (year). The enhanced vegetation index was  
calculated by measuring the density of green leaves in the near-infrared and visible bands.

Proximity to waters  
(Coast/Large Lakes)

NDHS Spatial  
Analysis data

Straight-line distance to the nearest major water body. Based on the World Vector Shorelines, CIA 
World Data Bank II, and Atlas of the Cryosphere.

Population  
density

NDHS Spatial  
Analysis data

Estimates of human population density is the number of persons/km2 based on counts consistent 
with national censuses and population registers.

Precipitation NDHS Spatial  
Analysis data

The average precipitation measured within the 2 km (urban) or 10 km (rural) buffer surrounding 
the DHS survey cluster each year.

Travel time to nearest  
settlement >50,000  
inhabitants

NDHS Spatial  
Analysis data

The average time (min) required to reach a high-density urban center from the area within the  
2 km (urban) or 10 km (rural) buffer surrounding the DHS cluster location, based on year  
2015 infrastructure data.

Minimum  
temperature

NDHS Spatial  
Analysis data

The average annual maximum temperature within the 2 km (urban) or 10 km (rural) buffer  
surrounding the DHS cluster location. The maximum temperature is calculated from the  
modeled mean temperature and the modeled diurnal temperature range.

Maximum  
temperature

NDHS Spatial  
Analysis data

The average annual minimum temperature within the 2 km (urban) or 10 km (rural) buffer  
surrounding the DHS cluster location. The minimum temperature is calculated from the  
modeled mean temperature and the modeled diurnal temperature range.

Potential  
Evapotranspiration 
(PET)

NDHS Spatial  
Analysis data

The average annual PET within the 2 km (urban) or 10 km (rural) buffer surrounding the  
DHS cluster location, synthetic measurement that was calculated using a variation of the 
Penman–Monteith formula.

Cluster altitude NDHS Spatial  
Analysis

Measure of surface altitude (m). The data were interpolated using a thin plate smoothing spline 
algorithm with altitude, longitude and latitude as independent variables.

Wet days NDHS Spatial  
Analysis data

The average number of days receiving rainfall within the 2 km (urban) or 10 km (rural) buffer 
surrounding the DHS cluster location. It combines the number of observed days with rainfall from 
weather stations with the number of days that should have received rainfall.

Urban–rural  
settlement

NDHS Spatial  
Analysis data

This is urban–rural population classification of the area within the 2 km (urban) or 10 km (rural) 
buffer surrounding the DHS survey cluster location. It is the representation of the degree of 
urbanization concept obtained using urban-rural settlement classification model adopted by the 
Global Human Settlement Layer (GHSL) project.
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Table 2 | Correlations between the climate and environmental variables (all correlations were significant at 5% level)

Variables Precp Hum EVI MaxT MinT PET ProxW UR TR PopD Alt WetD

Precp 1.000
Hum 0.989* 1.000
EVI 0.633* 0.623* 1.000
MaxT 0.055 −0.033 −0.055 1.000
MinT 0.463 0.394 0.271 0.872* 1.000
PET −0.606* −0.667* −0.565* 0.677* 0.250 1.000
ProxW −0.616* −0.633* −0.518* 0.310 −0.099 0.791* 1.000
UR 0.131 0.181 −0.067 −0.250 −0.100 −0.319 −0.218 1.000
TR 0.031 0.036 −0.038 0.106 0.087 0.101 0.006 −0.469 1.000
PopD −0.145 −0.085 −0.307 −0.452 −0.392 −0.270 −0.092 0.601* −0.310 1.000
Alt −0.487 −0.533* −0.226 0.186 −0.160 0.545* 0.620* −0.160 −0.069 −0.127 1.000
WetD 0.957* 0.959* 0.686* 0.070 0.499 −0.629* 0.624* 0.184 −0.002 −0.109 −0.443 1.000
*Indicate correlation among variables. Precp, precipitation; Hum, humidity; EVI, enhanced vegetation index; MaxT, maximum temperature; MinT, minimum temperature; PET, potential 
evapotranspiration; ProxW, proximity-to-water; UR, urban–rural settlement; TR, travel times; PopD, population density; Alt, cluster altitude; WetD, wet days.

Table 3 | Results of the estimated Varimax-rotated factor loadings, 
applying factor analysis for the highly correlated covariates

Parameters
Factor 1 

(Wet events 
component)

Factor 2 
(Temperature 

variation)

Factor 3 
(Proximity to 
water bodies)

Annual precipitation 0.9467* 0.1313 −0.2584
Humidity 0.9567* 0.0459 −0.2656
Maximum temperature −0.0209 0.9741* 0.2151
Minimum temperature 0.3518 0.9244* −0.0765
Potential  

evapotranspiration
−0.5819* 0.5589 0.5625

Proximity to permanent 
water bodies

−0.4099 0.1113 0.9004*

Wet days 0.9268* 0.1577 −0.2978
*Factors with high loadings.

linked to the MIS datasets via the cluster ID [40]. This study aimed 
at examining the effects of the selected geospatial covariates (cli-
mate and environmental factors) on childhood malaria prevalence 
in Nigeria. The values of the extracted covariates are based on geo-
graphical coordinates of the clusters, therefore, are regarded as cluster 
level [40]. In addition, the results from a wide range of literature also 
highlighted the need to include these covariates in malaria analysis, 
having also been utilized in various spatial modelling and mapping 
studies in other countries [41–44]. The covariates considered include: 
the annual precipitation, annual Potential Evapotranspiration (PET), 
maximum temperature, minimum temperature, cluster altitude, 
humidity, EVI, wet-days, population density, travel times, proxim-
ity to permanent water bodies, and urban–rural settlement. More 
detailed information on the DHS geospatial data can be found at 
(http://spatialdata.dhsprogram.com/resources/).

2.3.  Variable Selection and Data Analysis

From data explorations, it was observed that the climate and envi-
ronmental covariates were highly correlated as they reflect related 
latent characteristics. The high correlation between the variables 
is a source of multicollinearity in regression models. However, one 
can circumvent the problem of multicollinearity using factor anal-
ysis, because removal of some variables may conceal important 
information associated with the data [45,46]. In order to identify the 
potential highly correlated climate and environmental covariates, 
all the covariate-pairs were compared to the correlation between 
them using correlation analysis implemented in Statistical Analysis 
Software (SAS), version 9.4 (SAS Institute Inc., Cary, NC, USA). 
The pairs with correlations (c > 0.5) as highlighted in Table 2, were 
further scrutinized [46,47]. 

In Table 2, we observed a clear pattern of correlation as the results 
indicated that the following covariates including: the annual precip-
itation, humidity, PET, maximum temperature, minimum tempera-
ture, proximity to permanent water bodies and wet days exhibited 
high correlation between themselves at 5% level of significance, 
and the result motivated us to use an additional step using factor  
analysis to address the issue of multicollinearity associated with 
highly correlated variables in regression modelling.

Using factor analysis implemented in SAS version 9.4, we trans-
form some of the highly correlated variables into new independent 
uncorrelated variable known as the latent factors [47]. Rotated 
factor matrix (i.e. a rotated factor loadings) were obtained as seen 
in Table 3. The linear combination of these highly correlated cli-
mate and environmental factors allowed the identification of three 
main latent factor components that explained 97% of the total vari-
ation of the data. These latent factors included (1) the wet events 
component which can also be defined as a period of wet season 
that constituted: the humidity, precipitation, PET, and wet days. 
(2) The temperature variation, which is a linear combination of the 
maximum and minimum temperature and (3) proximity to perma-
nent water bodies which formed the third latent factor component. 
Therefore, subsequent analysis with the GAM, included: the wet 
events component, the temperature variation, proximity to per-
manent water bodies and the direct inclusion of other important 
covariates namely: the EVI, the cluster altitude, urban–rural settle-
ment, population density and travel time to the nearest settlement 
>50,000 inhabitants (distance to major roads).

2.4.  Generalized Additive Model

The GAMs are nonparametric regression techniques proposed by 
Hastie and Tibshirani [48], as an extension to the conventional 
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Generalized Linear Models (GLMs), that allow for nonparamet-
ric relationships between a response variable and variety of con-
tinuous covariates. The generalized additive models are especially 
useful, when there are uncertainties about the type of influence 
of predictors [49]. The model makes use of regression splines in 
modelling, to provide a flexible way of approximating the under-
lying regression functions by polynomials and does not assume 
any specific model for the dependence between covariates and 
the response variable. Contrary to the GLMs, the GAM tries to fit  
possible observed data as closely as possible by enabling the smooth 
effects of the continuous predictors as well as the spatial structure 
of the data [48–50].

Assume that yi is a binary random variable that indicates whether 
an under-5 child has malaria parasite, and this is available for 6025 
number of children in 37 geographical locations. We assume that 
the response variable yi whose distribution belongs to the exponen-
tial family be associated with covariates of different types including 
continuous, categorical as well as spatial covariates. Like the GLMs, 
the mean value µi of the response variable yi is linked to the predic-
tor ηi via the nonlinear link function g(.), such that;

	 g E y g g i ni i i( [ ]) = ( ) = ( ), for = 1, 2, ...,m h � (1)

As already stated, the vector of the covariates can be split into fixed 
covariates xi = (xi1, ..., xip)′, continuous covariates (ϑi1, ..., ϑiq)′ and 
spatial covariates in the form of x and y coordinates with plausi-
ble nonlinear influence on the predictor ηi. However, unlike the 
GLMs that assume a linear predictor, the GAMs instead assume 
a semiparametric additive form for the predictor ηi, by relaxing 
the linearity assumption in the GLMs using the smoothing terms 
that characterize the nonlinearity dependency structure [48]. Both 
the parametric components and unknown nonparametric smooth 
functions f(.) are accommodated into the GAM, while simultane-
ously incorporating the spatial effects for the geographical location. 
The general form of the model with respect to the semiparametric 
predictor ηi can thus be expressed as:

g f f fi i ip p i q iq( ) = ... + lat, long0 1 1 geom h b a= + ¢ ¢ + ¢ + ¢ +x ( ) ( ) ( )J J � (2)

Here, β0 is the intercept, f(.)s are the smooth nonparametric func-
tions for the continuous covariates, ¢a ip  are the linear effect of cat-
egorical covariates, g(.) is the link function and fgeo(.) represents the 
nonlinear spatial effects by longitude and latitude.

In this paper, a generalized additive logistic regression model with 
a logit link function was used to study the under-5 malaria preva-
lence at the cluster level, and our focus was on the use of this model 
for the analysis of the continuous variables ¢Jiq and the spatial 
effects fgeo(.), such that the predictor of the model reduces to;

  g f fi i i q iq( ) = ... + lat, long0 1 geom h b= + + +f1( ) ( ) ( )ϑ ϑ � (3)

This model accounts for the nonlinear effects of the climate and 
environmental covariates, while simultaneously incorporating the 
spatial structure of the malaria survey data in terms of geographi-
cal coordinates (latitude and longitude). The nonparametric terms 
were constructed via the penalized regression splines to estimate the 
nonparametric functions of the model parameters, as well as other 
covariates involved in the GAM model, while taking account of the 
spatial autocorrelation [51]. Further, the predicted values from the 

model was mapped both at state and regional levels to obtain the 
risk maps of under-5 malaria prevalence. This was done by gener-
ating the fitted values; i.e. the values for the malaria RDT outcome 
predicted by the fitted data via the GAM, on which we utilized the 
kriging method to infer values in the unsampled locations. This was 
weighted by the neighborhood distance to the unsampled points, 
using the weighted combination of the nearby data points [52]. This 
approach allowed us to model and map the risks of under-5 malaria 
infections, to identify possible hot-spots of malaria across Nigeria.

The spatial analysis was carried out using ArcGIS, version 10.6.1 
(Environmental System Research Institute (ESRI), Redlands, CA, 
USA) and all the statistical analysis was carried out in SAS statisti-
cal software version 9.4. The significance level was set at α = 0.05 
and the model diagnostics was performed using the goodness of fit 
statistics and residual plots [48,49,53].

3.  RESULTS

3.1.  The Sample Characteristics

This study included 6025 children between ages 6 and 59 months 
in the analysis. The mean (±SD) age of the children was 4.2 (±1.5) 
months. Most of the children were males 3079 (50.7%). Regarding 
their age categories, there were 721 (11.9%) children between ages 
6 and 12 months, 1283 (21.1%) between 13 and 24 months, 1309 
(21.6%) between 25 and 36 months, 1417 (23.3%) between 37 and  
48 months and 1341 (21.1%) between 49 and 59 months, respec-
tively. These children were tested for malaria RDT of which their 
binary outcome was used as the response variable. Most of these 
children reside in rural areas 4033 (66.4%) and the percentage of 
children aged 6–59 months with malaria infection was 2736 (45.1%).

3.2. � Association Between Under-5  
Malaria Outcome and Climate and  
Environmental Covariates as Obtained 
Using Generalized Additive Model

The analysis using a GAM assessed the relationship between 
malaria prevalence and the climate and environmental covariates, 
including the latent factors obtained through factor analysis. The 
findings of these covariates were estimated as nonlinear effects 
using smoothing splines, results presented in Table 4. Results in 
Table 4 showed that the degrees of freedom values are much larger 
than 1 for all the predictors, the measures suggest nonlinear pat-
terns in the dependency of the malaria outcome on the predictors. 
In addition, the model output revealed that all spline terms are sig-
nificant in predicting malaria prevalence.

Figures 2A–2F, 3A and 3B gives the estimated smoothing  
components for childhood malaria with their corresponding 
95% confidence intervals. The first latent component (consti-
tuted by precipitation, humidity, PET, and wet days) was sta-
tistically significant and nonlinearly associated with malaria 
prevalence (p = 0.0013; Figure 2A). The impact of the second 
latent factor component (constituted by maximum and mini-
mum temperature) was statistically significant: malaria prev-
alence increased with lower temperature but declined sharply 
with higher temperature, indicating a negative impact of higher 
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temperature on malaria prevalence (p = 0.0298; Figure 2B). A 
significant negative nonlinear association was also found for  
proximity to water bodies (p < 0.0001; Figure 2C), indicating an 
overall increase in malaria prevalence for shorter distance from 
water bodies. We observed a decrease in malaria prevalence at 
increasing altitude (p < 0.0001; Figure 2D), areas below 500 m were 
found as being at the highest risk of malaria prevalence, whereas 
areas over 500 m were found as having the lowest risk of malaria. 
The lowest risk of malaria was observed at altitudes above 500 m.  
Similarly, vegetation density was found to be significantly and non-
linearly associated with malaria prevalence (p = 0.0372; Figure 2E).  
The travel times covariate, which measures the amount of time 
required to reach a settlement of >50,000 people was found to 
be statistically significant and nonlinear (p < 0.0001; Figure 2F). 
The pattern of the nonparametric effect showed a wiggly estimate 
that is hardly interpretable, though the highest risk of malaria was 
observed at values between 150 and 250 min away. Further, the risk 
of under-5 malaria prevalence was found to decrease with high  

Figure 2 | Smoothing plots of relationships between under-5 malaria prevalence and climate-environmental factors in GAM with 95% confidence bands. Panel 
A: wet events component (precipitation, humidity, potential evapotranspiration, and wet days). Panel B: temperature variation component (maximum and 
minimum temperature). Panel C: distance to permanent water bodies. Panel D: cluster altitude. Panel E: enhanced vegetation index and panel F: travel times.

Figure 3 | Smoothing plots of relationships between under-5 malaria 
prevalence and climate and environmental factors with 95% confidence 
bands. Panel A: population density. Panel B: urban–rural settlement.

Table 4 | Approximate significance of the smooth terms

Covariates
Estimated 
degree of 
freedom

F-value p-value

S (Wet events) 9.0000 27.1206 0.0013
S (Temperature variation) 9.0000 19.3509 0.0298
S (Proximity to water bodies) 9.0000 43.2202 <0.0001
S (Cluster altitude) 8.0000 82.5703 <0.0001
S (Vegetation density) 7.0000 20.5699 0.0372
S (Travel time) 8.0000 99.0031 <0.0001
S (Population density) 8.0000 22.8964 0.0035
S (Urban–rural settlement) 3.0000 29.8106 <0.0001
S (Spatial effects) 24.4341 187.9308 <0.0001

population density (p = 0.0035; Figure 3A). In the case of urban–
rural settlement, the effect was highly non-monotonic with increas-
ing malaria risks for both low and high values (p < 0.0001; Figure 3B).

3.3. � Spatial Variability in Under-5  
Malaria Prevalence

This study highlights the spatial variability of childhood malaria 
prevalence in Nigeria, the non-parametric term which provides 
information on the spatial variation was statistically significant 
(p < 0.0001). It was found that the hot-spots of under-5 malaria 
prevalence were localized predominantly in the North-west,  
North-east, and partly in the North central regions of Nigeria as 
seen in Figure 4. Further, the risk map in Figure 5 revealed a highly 
significant malaria prevalence in the following states: Adamawa, 
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Delta, Abia, Akwa-ibom, Bayelsa, Ogun and Lagos. Notably, the 
white areas indicate unsampled parts of Borno state in the North 
east region for the 2015 NMIS, where no malaria observation was 
obtained, possibly due to security challenges as seen in Figures 4 
and 5 [12]. More studies may be required to ascertain the causes 
of under-5 malaria prevalence in the identified high-risk regions.

4.  DISCUSSION

In this study, a GAM with spline smoothing function and factor 
analysis were performed to examine the effects of climate and 
environmental factors on the prevalence of childhood malaria in 
Nigeria. The factor analysis was used to simplify the complexity 
of the relationships among the climate and environmental covari-
ates and to improve the effectiveness of predictor variables having 
transformed the original set of highly correlated variables into a 
new set of an equal number of latent factors to reduce dimensions 
and avoid collinearities, whereas the GAM with spline smooth-
ing was performed to capture the nonlinear relationships between 
malaria prevalence and climate-environmental covariates impact-
ing on its prevalence, including the estimated latent factor compo-
nents obtained via factor analysis.

The nonlinear relationship between the first latent factor compo-
nent (constituted by humidity, precipitation, wet days, and PET) 
and malaria prevalence was similar to that observed elsewhere 
[29,33,54–56]. Studies have shown that exposed small pools of 
stagnant water during wet seasons or at the beginning of dry season 
encourages mosquito survival and larvae development [29,57], as 
heavy rainfall may flush away the breeding larvae, thereby decreas-
ing the number of malaria causing mosquitoes. The findings of 
Adigun et al. [15], Nkurunziza et al. [33], Teklehaimanot et al. 
[35] also indicate a negative impact of strong rains (wet events), 
which contributes to the destruction of mosquito breeding sites, 
but an optimal combination of humidity and precipitation sup-
ports a good condition for mosquito breeding and development of 
vectors. However, according to the findings of Shimaponda-Mataa 
et al. [29], Teklehaimanot et al. [35], Ssempiira et al. [57], the dis-
tribution of malaria largely occurs in regions with sufficient pre-
cipitation, that provides comfortable mosquito habitats for vector 
species, where also adequate humidity enables mosquito survival.

The impact of temperature on malaria prevalence has been high-
lighted in several studies [29,33,35,54,58], indicating a negative 
effect of maximum temperature. Their findings have identified a 
positive impact of minimum temperature on malaria transmission, 
suggesting that mosquito development is usually interrupted at 
higher temperature, as higher temperatures within a given range 
could shorten the growth of anopheline mosquitoes, the incuba-
tion period as well as viral rate of development. Accordingly, the 
result of our analysis also showed a positive impact of decreasing 
temperature as well as a negative impact of increasing temperature 
on childhood malaria prevalence. The risk of childhood malaria 
prevalence is observed to decrease with increasing distance from 
permanent water bodies (rivers, lakes, dams, etc.), indicating a sig-
nificant nonlinear effect of distance from water bodies on malaria. 
Water bodies play a very important role as larval breeding sites for 
malaria occurrence, and the findings of this study has indicated that 
children residing at a shorter distance from water bodies are found 
to be at a higher risk of malaria infection. This finding is consistent 

Figure 4 | Predicted risk map of malaria prevalence of under-5 children 
for the six geopolitical regions in Nigeria. Shown is the colorimetric scale 
representing the risk of malaria per kilometer square.

Figure 5 | Predicted risk map of malaria prevalence of under-5 children 
for the 37 states in Nigeria. Shown is the colorimetric scale representing 
the risk of malaria per kilometer square.

Jigawa, Sokoto and Zamfara states. Other states such as: Benue, 
Kebbi, Niger, Kwara, Oyo, Kano, and Kastina had slightly higher 
burden of under-5 malaria as compared to most states in the 
Southern regions. Malaria risk among children under-5 was found 
to be significantly very low in the following states: Anambra, Imo, 



	 C.L.J. Ugwu and T. Zewotir / Journal of Epidemiology and Global Health 10(4) 304–314	 311

with the results of Onyiri [13], Adigun et al. [15], Ghebreyesus et al. 
[34], Ssempiira et al. [57]. According to the literature, closeness of 
residence to permanent water bodies enhances the risk of malaria, 
revealing that permanent surface of the waters is an important risk 
factor for malaria prevalence. Anopheles mosquitoes could breed 
in sites where water is present for at least 10–15 days or more, 
whereas permanent water bodies creates mosquito breeding sites 
that may possibly aid malaria transmission all year round.

A significant negative nonlinear association was found between 
population density and the risk of malaria infection, contrary to 
the findings of Nkurunziza et al. [33], Samadoulougou et al. [59]. 
Logically, areas with high population density are usually urban 
where access to health facilities and better environmental condi-
tions are higher; this might reduce possible exposure to malaria 
infection among under-5 children. Urbanization leads to decrease 
in malaria through reduction in human-vector contact and vector 
breeding sites [60]. According to the literature, urbanization has 
been historically linked to development [61]. Urban populations, 
excluding those residing in slums normally have better access to 
healthcare and better quality of life for children, and generally 
more economically prosperous than the rural dwellers, thus, result-
ing in an improved living conditions, and a higher likelihood of 
affording better health care and treatment, which reduces the risk 
of childhood malaria and associated deaths. Result of Figure 3B 
which captured the nonlinear effect of urban–rural differences in 
malaria prevalence was highly non-monotonic, implying that the 
risk of malaria infection is high amongst inhabitants dwelling in 
both rural and possibly urban slums, meaning that children resid-
ing with both rural and urban households, possibly those children 
living in urban slums are highly vulnerable to malaria infection. 
Inhabitants residing in rural and slummy areas are generally 
poor, and usually face problems including access to public health 
resources and poor environmental sanitation. Therefore, adequate 
intervention and general child’s living conditions are expected to 
significantly reduce the proportion of malaria prevalence in such 
populations.

Furthermore, the relationship between under-5 malaria prev-
alence and cluster altitude were found to be nonlinear and 
statistically significant. Malaria infection decreased monotoni-
cally with increasing altitude; the result indicated a decreasing 
malaria probability at increasing altitude. From the results, areas 
below 500 m were found as being at the highest risk of malaria 
prevalence, whereas areas over 500 m were found as having the 
lowest risk of malaria exposure. This may be logical since, most 
of the malaria infections usually occur in coastal areas where 
altitude is lower, the nonlinearity effect showed a sharp decrease 
in malaria risk as altitude increased, similar to the findings of 
Onyiri [13], Adigun et al. [15], Gunda et al. [29], Chirombo et al. 
[62]. Findings also indicated that altitude may indirectly influ-
ence the distribution and spread of malaria through its effect 
on temperature, being that at certain altitudes malaria transmis-
sion does not occur due to high temperature, which does not 
favor the life cycle of the parasite. The EVI was also nonlinear 
and significantly associated with malaria prevalence, malaria 
risk was significantly higher for high vegetation index value. 
The EVI is an important factor that indicates a condition suit-
able for agricultural production (which enhances the spread of 
malaria) [63]. According to several authors [64,65], vegetation 
indices such as EVI are considered proxies of vector habitat; 

disease transmission and physical environment are strongly cor-
related with disease environments in determining the intensity 
of a child’s exposure to infectious diseases such as malaria. The 
case of clearing vegetation during farming season by farmers 
may also unintentionally lead to creation of mosquito breeding 
sites [64,66].

Findings on the travel times covariate, which measures the 
amount of time required to reach a settlement of >50,000 people, 
being also defined as areas near the major roads was found to 
be statistically significant with an extreme wiggly estimate that 
is hardly interpretable, though we observed a risk of contracting 
malaria peak at a distance between 150 and 250 min away, and 
this is of a particular interest. The result is not surprising, because 
travel times was computed to provide a useful composite measure 
of the extent to which areas are being connected to the national 
system of transportation [40]. For instance, areas near major 
roads, would generally be well connected, even if they were some 
distance away from the major cities, thus having higher access to 
population centers, public health scare resources as well as quality 
health care systems [67]. Similar studies have also indicated that 
distance and travel time to population centers in some sub-Saha-
ran African countries are highly correlated with wealth and devel-
opmental indices, implying that a population’s social and health 
welfare decreases rapidly as entry or access to population cen-
ters gets worse [68,69]. Therefore, the effectiveness of any public 
health intervention measure against childhood malaria can also 
be determined by the distance from a residence in which a child 
lives to the major roads.

This study highlighted the spatial variability of childhood malaria 
prevalence across all the states and regions of Nigeria. Despite 
increasing efforts in fighting the disease, malaria prevalence among 
the under-5 children remain high. There is evidence of significant 
clustering of childhood malaria, with higher malaria risk occurring 
in the northern states, more especially in Adamawa, Sokoto and 
Zamfara states, but lower in the southern regions. Although the 
risk varied substantially across states and regions in Nigeria, and 
such variability may be associated with the underlying climate and 
environmental conditions. These spatial patterns may also indicate 
possible unobserved risk factors of malaria, which may be state- 
or region-specific or that which transcends geographical bound-
aries of the states and regions under consideration. Public health 
interventions should therefore be targeted in the high-risk areas to 
reduce the malaria prevalence and to achieve effective malaria con-
trol. Further epidemiological research may be required for more 
clarification using additional information at different spatial scales 
within the study areas.

The limitation of this study is that, the study used a cross-sectional 
data from the NMIS, the nature of the secondary data did not allow 
any causal relationship to be established. In addition, there are many 
other influencing factors that were not included in our analysis, 
which may bias the results. However, the strength of this research 
lies in the ability to generalize the findings to the whole country, 
having utilized nationally representative survey data of internation-
ally good quality and being able to quantify the state- and regional- 
level variations in childhood malaria prevalence in Nigeria based 
on climate and environmental context. With more robust statisti-
cal models, this study may be extended to incorporate several other 
influential factors that were not considered in this present study.
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5.  CONCLUSION

The main goal of our study was to evaluate important risk factors 
of under-5 malaria prevalence with respect to climate and environ-
mental conditions using a GAM, the methodology that has shown 
a greater level of flexibility than the standard regression models. 
Studying the spatial variations in under-5 malaria prevalence in a 
country like Nigeria is an effort in the right direction as it could 
help discover areas where malaria control and intervention should 
be enhanced. The Nigerian government need to consider the iden-
tification of remote cause of high malaria prevalence considering 
the effect of climate change. It was evident from our results that 
Nigeria’s climatic conditions make it suitable for high malaria 
transmission all year round. Therefore, being able to identify 
important climate and environmental conditions that are condu-
cive to the under-5 malaria prevalence will help to predict when 
malaria transmission may likely occur and how to effectively target 
the disease control and prevention across the identified high-risk 
areas in Nigeria.
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