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Cancer, especially malignant tumors with poor prognosis, has become a major hazard

to human life and health. The tumor microenvironment is gaining increasing attention

from researchers, as it offers a new focus for tumor diagnosis, therapy, and prognosis.

The numbers of immune and stromal cells, which are major components of the tumor

microenvironment, could be determined from RNA-seq data with the Estimation of

STromal and Immune cells in Malignant Tumors using Expression data (ESTIMATE)

algorithm. To explore the effects of immune and stromal cells on tumor prognosis,

we analyzed associations between overall survival and immune/stromal scores for 20

malignant tumor types based on The Cancer Genome Atlas (TCGA) data. For six of the

20 tumor types, we observed statistically significant associations. Furthermore, to better

explain the predictive ability of these scores, differentially expressed genes (DEGs) were

identified in groups of cases with high or low immune or stromal scores for each of these

six malignant tumor types. In addition, a list of immune-related genes was screened to

identify prognostic predictors for one or more tumor types. Thus, multi-database joint

analysis can provide a new approach to the assessment of tumor prognosis and allow

the identification of related genes that may be new biomarkers for tumor metastasis

and prognosis.
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INTRODUCTION

Currently, cancer is a serious public health problem due to its serious threat to
human life and health. According to the latest statistics, over the past decade, the
overall cancer incidence rate has remained generally stable in women and decreased
in men, but cancer death rates in both sexes have declined annually due to behavioral
changes and medical practices, such as cancer screening tests (1). To gain insight
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into the occurrence and progression of cancers through
molecular characterization, comprehensive genomic data
resources have been established for the broad research
community, including the UCSC Genome Browser and
The Cancer Genome Atlas (TCGA) (2, 3). TCGA provides rich
multi-omic data for 33 malignant tumor types with both good
and poor prognosis, allowing convenient application in the
computational biology field.

Malignant tumor tissues not only contain tumor cells but also
require support from tumor-associated normal cells, including
stromal cells and infiltrating immune cells, which together
comprise the tumor microenvironment (4, 5). A growing
body of evidence has demonstrated the importance of the
microenvironment for tumor initiation, progression, and even
therapeutic approaches (6, 7). Thus, understanding the tumor
microenvironment has received a new emphasis on tumor
biology, therapy, and prediction. However, the presence of
normal cells in samples strongly affects the observed levels of
gene expression, leading to significantly lower accuracy of tumor
cell gene expression profiles (8). As a result, many methods have
been established to infer tumor purity using gene expression
data (9–11).

ESTIMATE (Estimation of STromal and Immune cells in
Malignant Tumors using Expression data) is an algorithm that
uses the gene expression signatures of tumor samples from
TCGA to infer tumor purity (11). As the most common normal
cells in the microenvironment, both stromal and immune
cells were chosen for evaluation in this study, and their gene
expression data were used to calculate stromal and immune
scores to estimate the numbers of infiltrating stromal cells and
immune cells in tumor samples. In addition, by combining
the stromal and immune scores, an ESTIMATE score can
also be calculated to characterize tumor purity. At present,
approximately 25 malignant tumor types have been evaluated by
ESTIMATE using expression data across different platforms (12).
Furthermore, stromal or immune scores have been analyzed in
clinical data to predict tumor progression (13), treatment (14),
and prognosis (15). However, these investigations involve only
one cancer and therefore cannot compare the differences and
explore common characteristics among many kinds of cancers.

In this study, we investigated the correlation between
prognosis and stromal and immune scores in cases of 20
malignant tumor types to explore the prognostic potential
of the tumor microenvironment, using both TCGA and the
ESTIMATE algorithm, for the first time. Finally, six malignant
tumor types with poor prognosis, including breast invasive
carcinoma (BRCA), lung adenocarcinoma (LUAD), kidney
renal clear cell carcinoma (KIRC), stomach adenocarcinoma
(STAD), brain lower grade glioma (LGG) and skin cutaneous
melanoma (SKCM), were screened for prognostic evaluation
using stromal or immune scores. On this basis, a list
of microenvironment-associated differentially expressed genes
(DEGs) was extracted and further analyzed via Gene Ontology
(GO), protein-protein interaction (PPI), survival and expression
analysis to effectively identify genes as potential prognostic
biomarkers for each kind of tumor and even for multiple
tumor types.

MATERIALS AND METHODS

Selection of Tumor Types for the Analysis
Twenty malignant tumor types were chosen based on the
data integrity, sample size, and overlap between TCGA and
ESTIMATE. TCGA datasets for bladder urothelial carcinoma
(BLCA, number of samples: n = 436), BRCA (n = 1247),
cervical cancer (CESC, n = 312), colorectal adenocarcinoma
(COAD, n = 551), esophageal carcinoma (ESCA, n = 204),
glioblastoma multiforme (GBM, n = 629), head and neck
squamous cell carcinoma (HNSC, n = 604), KIRC (n = 945),
kidney renal papillary cell carcinoma (KIRP, n = 352), liver
hepatocellular carcinoma (LIHC, n = 438), brain LGG (n =

530), LUAD (n = 706), lung squamous cell carcinoma (LUSC,
n = 626), SKCM (n = 481), ovarian serous cystadenocarcinoma
(OV, n = 630), pancreatic ductal adenocarcinoma (PAAD,
n = 196), pheochromocytoma & paraganglioma (PCPG, n
= 187), prostate adenocarcinoma (PRAD, n = 566), STAD
(n = 580), and thyroid papillary carcinoma (THCA, n =

580) were selected, and the “Phenotype” information for
each dataset was downloaded for the survival analyses using
the UCSC Xena Browser portal (16) (https://xenabrowser.net/
datapages/). The immune scores and stromal scores for the
human cancers above were downloaded from the ESTIMATE
website (11) (https://bioinformatics.mdanderson.org/estimate/).
RNA-seq gene expression data from the Illumina HiSeq 2000
RNA Sequencing platform for BRCA, LUAD, KIRC, STAD, LGG
and SKCM were also obtained from the TCGA data portal.

Kaplan-Meier Curves Based on High/Low
Stromal or Immune Scores
The cases of each cancer, including the stromal and immune
score values and the overall survival in the “Phenotype” file,
were chosen and matched with each other. The values of the
immune scores and stromal scores were sorted from low to high
and divided in half to form the low and high score groups for
the cases of each cancer. Then, Kaplan-Meier survival curves
were plotted to demonstrate the correlation between the patients’
overall survival and the low and high immune and stromal score
groups for the 20 malignant tumor types with a log-rank test.
Simultaneously, the median survival time (MST), hazard ratio
with a 95% confidence interval (CI) and p-value were calculated
and analyzed.

Identification of DEGs for Six Malignant
Tumor Types
For BRCA, LUAD, KIRC, STAD, LGG and SKCM, DEGs between
the low and high immune or stromal score groups were identified
by the limma algorithm (17) online (http://www.omicsbean.cn/)
with fold change (FC) value > 1.5 and adjusted p-value < 0.05.
Venn diagrams were used to obtain the common DEGs for two
groups: the immune score group (BRCA, LUAD, KIRC, LGG and
SKCM cases; tumor types correlated with immune scores) and
the stromal score group (STAD, LGG and SKCM cases; tumor
types correlated with stromal scores). TBtools software was used
to display the expression profiles of the top 100 DEGs in the form
of a heatmap (18).
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Functional Enrichment Analyses of
Common DEGs
GO (19) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) (20) are the two most important databases traditionally
used for gene list enrichment analyses. DAVID (21) (Functional
Annotation Bioinformatics Microarray Analysis) (https://david.
ncifcrf.gov/), an online bioinformatics tool, was used to present
the DEG enrichment of the GO biological process (BP), cellular
component (CC), andmolecular function (MF) terms and KEGG
pathways with a false discovery rate (FDR) < 0.05.

PPI Network and Module Analysis
PPI information was evaluated by STRING version 11.0 (22)
(https://string-db.org/), an online tool. Then, Cytoscape software
(23) was applied to reconstruct and analyze the PPI network. The
modules of the PPI network were further checked by theMCODE
(Molecular Complex Detection) app in Cytoscape software,
which found densely connected regions using the following
parameters: degree cutoff= 2, k-core= 2, max. depth= 100 and
node score cutoff= 0.2.

Survival Analysis and Gene Expression
Analysis
The common DEGs from the top list for immune scores analysis
and top list for stromal scores analysis were carried out by
survival analysis through TCGA analysis in the UALCAN cancer
database (http://ualcan.path.uab.edu/) (24). Based on the gene
expression in the corresponding tumor, the UALCAN cancer
database could provide Kaplan-Meier survival curves and p-
values to obtain DEGs related to prognosis in associated cancers
with statistically significant differences (p < 0.01). Next, the
expression of the top DEGs related to prognosis was validated in
tumor and normal samples using the Gene Expression Profiling
Interactive Analysis (GEPIA) database (http://gepia.cancer-pku.
cn/) (25). Based on tumor and normal samples from the TCGA
and GTEx projects, GEPIA was used to analyze differential gene
expression in tumors with p-value < 0.01 and |log2FC|>1.

RESULTS

Correlation of Prognosis With Stromal and
Immune Scores in 20 Different Tumor Types
This was the first study to investigate whether stromal and
immune scores could predict prognosis for 20 different tumor
types. The correlations between overall survival and stromal
or immune scores are shown in Table 1. For BRCA, LUAD
and KIRC, the immune scores were more informative than
the stromal scores to predict prognosis, because there were
statistically significant differences in overall survival between the
low and high immune score groups (p < 0.05) (Figures 1A–F).
In contrast, for STAD, a significant difference in stromal
scores was observed (p = 0.0285) (Figures 1G,J). Moreover,
statistically significant differences were found in both the
stromal and immune scores for LGG and SKCM, indicating
a high potential for prognostic evaluation (Figures 1H,I,K,L).
However, for the other 14 tumor types, there were no statistically

significant differences using the stromal and immune score
groups (p > 0.05).

Although stromal scores or immune scores were significantly
correlated with prognosis for BRCA, LUAD, KIRC, STAD, LGG,
and SKCM, it is necessary to further research how low and high
scores can estimate prognosis. For BRCA, LUAD and KIRC,
which were correlated with immune scores, the MST of BRCA
(3,959 vs. 3,736 d, high vs. low) and LUAD (1,725 vs. 1,235
d) cases were longer in the high score group than in the low
score group, but the opposite result was found for KIRC cases
(2,343 vs. > 4,000 d). The MST of STAD cases with low stromal
scores was longer than that of the cases in the high score group
(794 vs. 1,686 d). Moreover, for LGG, the MST in the low score
group was longer than that in the high score group for both
stromal (2,235 vs. 4,068 d) and immune scores (2,052 vs. 2,907
d). However, the opposite results were observed for SKCM cases,
which were also correlated with both stromal (2,927 vs. 2,030
d) and immune scores (3,259 vs. 1,860 d). Overall, these results
suggest that stromal scores or immune scores can help to evaluate
prognosis for 6 malignant tumor types with poor prognosis.

Identification of DEGs Associated With
High Stromal and Immune Scores
Next, we identified genes whose expression was positively or
negatively associated with immune or stromal score values. For
this analysis, we selected six tumors whose prognosis could be
predicted by immune (BRCA, LUAD, KIRC, LGG, and SKCM)
and/or stromal (STAD, LGG, and SKCM) scores. Then, Venn
diagrams were drawn to show the common upregulated and
downregulated genes (Figures 2A,B). The results revealed a total
of 54 common DEGs among the upregulated genes, but no
common DEGs were detected among the downregulated genes.
In addition, among these 5 cancers (BRCA, LUAD, KIRC, LGG
and SKCM), the BRCA, LUAD and SKCM cases with long MST
and high scores had other 16 common DEGs, and all the DEGs
were upregulated. Conversely, for the KIRC and LGG cases
with long MST and low scores, 4 and 10 additional upregulated
and downregulated common DEGs, respectively, were detected
(Table S1).

Because stromal scores were correlated with prognosis
for STAD, LGG and SKCM, the common upregulated and
downregulated DEGs were examined using Venn diagrams
(Figures 2C,D). Among the upregulated genes, a total of 115
common DEGs were detected for STAD, LGG and SKCM,
and 23 additional common DEGs were detected for STAD
and LGG cases with long MST and low scores. Among the
downregulated genes, 1 common DEG was found for STAD,
LGG, and SKCM, and 7 additional common DEGs were found
for only the STAD and LGG cases (Table S2). Thus, these DEGs
were chosen as the focus of all subsequent analyses. What’s more,
heatmaps showed the expression profiles of the top 100 DEGs
that distinguish tumors with low and high immune or stromal
scores (Figures S1, S2).

Go Enrichment Analysis for Common DEGs
A total of 54 common DEGs detected in the immune score group
and 116 common DEGs detected in the stromal score group were
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TABLE 1 | Correlation analysis between overall survival and stromal scores or immune scores in 20 different tumor types.

Cancer type Low N High N Stromal score Immune score

Low MST High MST HR (95%

CI)

p-Value# Low MST High MST HR

(95% CI)

p-Value#

BLCA 202 202 1,348 859 0.77

(0.58–1.04)

0.0864 1,036 1,005 1.02

(0.76–1.37)

0.8877

BRCA 542 543 3,941 3,669 1.07

(0.78–1.48)

0.2648 3,736 3,959 1.41

(1.03–1.93)

0.0351*

CESC 146 147 3,046 3,097 1.16

(0.73–1.84)

0.5291 4,086 3046 1.50

(0.94–2.37)

0.0886

COAD 124 125 Undefined 2,134 1.02

(0.56–1.86)

0.9391 Undefined 2,134 1.00

(0.55–1.81)

0.9956

ESCA 92 93 855 681 0.85

(0.54–1.33)

0.4791 801 694 0.86

(0.55–1.35)

0.5168

GBM 82 82 442 380 0.84

(0.58–1.17)

0.2883* 427 375 0.92

(0.65–1.31)

0.6488

HNSC 259 260 1,504 1,838 1.03

(0.79–1.34)

0.8338 1,430 1,762 1.21

(0.93–1.58)

0.1615

KIRC 266 266 3,554 2,256 0.81

(0.60–1.09)

0.1616 Undefined 2,343 0.67

(0.50–0.91)

0.0090**

KIRP 144 144 Undefined 2,941 0.70

(0.39–1.26)

0.2306 Undefined Undefined 1.26

(0.70–2.28)

0.4408

LIHC 183 184 2,486 1,694 1.14

(0.81–1.61)

0.4583 1,791 1,685 1.13

(0.80–1.59)

0.4990

LGG 262 263 4,068 2,235 0.60

(0.43–0.85)

0.0036** 2,907 2,052 0.65

(0.46–0.92)

0.0145*

LUAD 252 253 1,293 1,830 1.32

(0.99–1.77)

0.0599 1,235 1,725 1.45

(1.09–1.94)

0.0124*

LUSC 247 247 1,695 1,470 0.88

(0.68–1.16)

0.3524 1,695 1,655 0.95

(0.72–1.26)

0.7398

SKCM 230 230 2,030 2,927 1.31

(1.02–1.73)

0.0409* 1,860 3,259 1.69

(1.30–2.21)

0.0001***

OV 231 232 1,359 1,324 0.94

(0.75–1.18)

0.5784 1,334 1,399 1.09

(0.87–1.37)

0.4474

PAAD 89 89 634 603 0.92

(0.61– 1.37)

0.6703 627 603 1.01

(0.67–1.51)

0.9801

PCPG 91 91 Undefined Undefined 2.94

(0.67–10.78)

0.1632 Undefined Undefined 1.41

(0.35–5.70)

0.6291

PRAD 248 249 Undefined Undefined 2.20

(0.65–7.73)

0.2221 Undefined Undefined 1.39

(0.40–4.81)

0.6035

STAD 194 194 1,686 794 0.70

(0.51–0.96)

0.0285* 1,043 940 0.87

(0.65–1.19)

0.3947

THCA 254 254 Undefined Undefined 1.03

(0.39–2.74)

0.9527 Undefined Undefined 1.00

(0.37–2.66)

0.9962

#p-values and HR were calculated by applying the log-rank test; N, number; MST, median survival time; HR, hazard ratio; undefined, the cumulative survival was not <50%; *p-value <

0.05; **p-value < 0.01; ***p-value < 0.001.

chosen for functional enrichment analyses. First, the results of
the gene enrichment analyses are shown in Figure 3, including
the three GO categories BP, CC and MF. There were 28 enriched
terms in BP (the top 10 are shown), four terms in CC and three
terms in MF with FDR < 0.05 for the immune score group
(Figures 3A–C), and 21 BP terms, 16 CC terms and 3 MF terms
for the stromal score group (Figures 3D–F).

In the BP category, most DEGs were associated with the
immune process, including immune response, immune system
process, defense response, and inflammatory response for

both the immune and stromal score groups (Table S3). Plasma
membrane terms dominated the CC category, representing
40.74 and 44.83% of the DEGs in the immune and stromal score
groups, respectively. Finally, the DEGs were clustered based on
the MF category, and the results showed that a majority of the
genes were associated with receptor activity and binding reaction.
A comparison showed a high consistency of terms in the BP, CC
and MF categories in the two different groups. Furthermore,
the KEGG pathways for these two groups are shown
in Figure S3.
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FIGURE 1 | Correlation of stromal scores and immune scores with prognosis in six different tumor types by Kaplan-Meier survival curves. (A–C,G–I) Kaplan-Meier

survival curves for BRCA, LUAD, KIRC, STAD, LGG, and SKCM grouped by stromal scores. (D–F, J–L) Kaplan-Meier survival curves for BRCA, LUAD, KIRC, STAD,

LGG, and SKCM grouped by immune scores. Low, low score group (black line); high, high score group (red line).

Comparison of PPI Between Immune and
Stromal Score Groups
To better understand the interactions of the DEGs in each
group and explore the distinction between the immune and
stromal score groups, 54 DEGs for the immune score group
and 116 DEGs for the stromal score group were analyzed
separately using the STRING tool to acquire PPI networks.
For the immune score group, the network included 53

nodes and 146 edges with an enrichment p-value < 1.0e-
16 (Figure 4A). Furthermore, the 10 central nodes were

identified by Cytoscape MCODE, all with high degree values,
and named the ITGAM module (Figure 4B). For the stromal

score group, the network included 115 nodes and 369

edges with an enrichment p-value < 1.0e-16 (Figure 4C); 12
central nodes were identified and named the PTPRC module
(Figure 4D).
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FIGURE 2 | Identification of DEGs in the stromal and immune score groups by Venn diagrams. (A) Upregulated DEGs identified through immune scores; (B)

downregulated DEGs identified through immune scores; (C) upregulated DEGs identified through stromal scores; (D) downregulated DEGs identified through stromal

scores.

Prognostic Potential of Each DEG in
Associated Cancers
We further investigated the DEGs correlated with prognosis
in associated cancers using Kaplan-Meier survival curves from
the TCGA database. Among the 54 DEGs for the immune
score group, 53 DEGs had expression levels associated with the
prognosis of at least one of BRCA, LUAD, KIRC, LGG, and
SKCM (p < 0.05); only ASGR2 expression was uncorrelated
with prognosis (Table 2). In addition, C16orf54 and hepcidin
antimicrobial peptide (HAMP) expression levels were both
correlated with prognosis in four tumor types, except KIRC
and BRCA, and 17 DEGs had expression levels associated with
prognosis in three tumor types. For the stromal score group, 108
of the 116 DEGs had expression levels significantly correlated
with prognosis in at least one of STAD, LGG, and SKCM
(Table S4). Notably, five DEG expression levels were correlated

with prognosis in these three tumor types, including AXL,
CCDC152, EVI2B, GLIPR1, and SERPING1.

Although these DEGs demonstrated prognostic potential
in specific cancers, it was necessary to investigate the gene

expression differences between the normal and cancer
populations. Thus, the 53 DEGs from the immune score

group and 108 DEGs from the stromal score group were

excavated with GEPIA to identify genes with significantly
differential expression. The results revealed that 79 DEGs

had statistically significant expression differences (p < 0.01),
including five genes with differences in all three tumor types, 21
genes with differences in two tumor types, and 53 genes with
differences in only one tumor type (Table 3). Moreover, for
FCER1G, LGALS9, TWEM149, EVI2B, and HAMP, the gene
expression levels in the cancer population were higher than those
in the normal population (Figure 5). The expression levels of
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FIGURE 3 | GO enrichment analysis of DEGs detected 54 in the immune score group and 116 in the stromal score group. (A–C) Top 10 GO terms in BP, CC, and MF

for the immune score group; (D–F) top 10 GO terms in BP, CC, and MF for the stromal score group.

FIGURE 4 | PPI network of common DEGs for the immune and stromal score groups. (A) PPI network of 54 DEGs in the immune score group; (B) ITGAM module,

top 1 PPI network for the immune score group, identified by Cytoscape MCODE; (C) PPI network of 116 DEGs in the stromal score group; (D) PTPRC module, top 1

PPI network for the stromal score group.
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TABLE 2 | Correlation of DEGs in the immune score group with prognosis in

associated cancers by Kaplan-Meier survival curves from the TCGA database.

DEG p (BRCA) p (LUAD) p (KIRC) p (LGG) p (SKCM)

1 ARHGAP25 - - - <0.0001 0.0024

2 BCL2A1 - - 0.018 0.0053 -

3 C16orf54 0.039 0.038 - <0.0001 0.0003

4 C1orf38 - - 0.015 0.032 -

5 CCL21 0.015 - - - -

6 CCL22 - - 0.018 0.00055 -

7 CFB - - 0.017 <0.0001 0.00026

8 CFD - - - 0.0035 0.32

9 CFH - - 0.0036 <0.0001 -

10 CLIC2 - - 0.014 - 0.00028

11 CSF2RA - 0.02 - 0.0086 -

12 EVI2A - 0.049 - - 0.0035

13 EVI2B - - - <0.0001 0.00011

14 FAM70A - - - <0.0001 -

15 FCER1G - - 0.0021 <0.0001 0.0017

16 GAL3ST4 - 0.012 - <0.0001 -

17 GPR120 - - - 0.0034 0.004

18 HAMP - 0.0013 0.00018 <0.0001 0.0005

19 HLA-DPA1 - 0.0018 - <0.0001 <0.0001

20 HLA-DQB1 - 0.016 - <0.0001 <0.0001

21 HLA-DRB1 - 0.0036 - <0.0001 <0.0001

22 HLA-DRB5 - - - <0.0001 <0.0001

23 HLA-DRB6 - - - 0.00074 <0.0001

24 HVCN1 - 0.042 - <0.0001 0.031

25 IL10RA - - - 0.017 0.00019

26 IL2RA - - 0.003 - <0.0001

27 IL2RB - - 0.00047 0.007

28 IL2RG - - 0.047 <0.0001 0.00064

29 ITGAL - - - <0.0001 0.0014

30 ITGAM - - - 0.0089 0.0002

31 ITGAX - - - <0.0001 0.0025

32 LAG3 - - 0.049 0.0014 <0.0001

33 LGALS9 - - 0.044 <0.0001 0.00028

34 LILRB3 - - - <0.0001 0.002

35 LPAR5 - 0.032 - - -

36 MYO1F - - - 0.0014 0.01

37 MYO1G - - - 0.00056 0.00059

38 NCF1 - - - <0.0001 <0.0001

39 OLR1 - - - <0.0001 0.002

40 RAC2 - - - <0.0001 0.0075

41 RARRES3 - 0.0022 - 0.00018 <0.0001

42 RSAD2 - - - <0.0001 0.00012

43 SASH3 - - - <0.0001 -

44 SERPING1 - - 0.035 <0.0001 0.00043

45 SLA2 - 0.023 - <0.0001 0.0019

46 SLC37A2 - 0.044 0.014 <0.0001 -

47 SPN 0.0098 - - <0.0001 0.0011

48 STAC3 - - 0.00091 0.00043 0.0019

49 SYK - - - 0.022 -

50 TMEM149 - - 0.00025 <0.0001 0.022

51 TNFSF12-TNFSF13 - 0.048 - 0.0004 -

52 XAF1 - - 0.0026 <0.0001 <0.0001

53 ZAP70 - - - <0.0001 0.009

-, p > 0.05, no statistical significance.

TABLE 3 | Correlation of cancer types with differentially expressed genes between

the normal and cancer populations by GEPIA.

Cancer types DEGs

KIRC, LGG and SKCM LGALS9, FCER1G, TMEM149

LUAD, KIRC and SKCM HAMP

STAD, LGG and SKCM EVI2B

KIRC and LGG C1orf38, XAF1, SLC37A2

SKCM and LGG C1R, FPR3, HLA-DMB, HLA-DPA1, HLA-DRB1,

HLA-DRB5, HLA-DRB6, HVCN1, ITGAX, NCF1,

RARRES3, SLC15A3, VCAM1

STAD and LGG DES, FN1, IGFBP7

KIRC and SKCM IL2RG, LAG3

BRCA CCL21

KIRC BCL2A1, CFB, STAC3

LGG ABI3, APLNR, ARHGDIB, CLEC7A, COL4A1,

GAL3ST4, GGT5, IGFBP3, IGFBP5, IL10RA,

ITGAM, LTBP1, MFNG, MGP, MRC2, OLR1,

PTPRC, RARRES2, TGFB1, TGFBR2, TRIM22,

TMEM255A, MYO1F, SASH3, SYK

LUAD TNFSF12-TNFSF13

SKCM AXL, CFD, CSF2RA, C1S, EVI2A, ITGAL, IL2RA,

PLA2G2D, TMEM97, TIMP1, TGM2, SRGN, REM1,

RAC2

STAD ADAM12, FPR1, FNDC1, GALNTL2, GLIPR1, H19,

LAMA2, LOX, STC1

genes with statistical significance in 2 tumor types are shown in
detail in Figure S4.

DISCUSSION

With the development of high-throughput technologies, the
omics sciences have advanced greatly, gaining unprecedented
development; high-throughput methods have also promoted the
progress of bioinformatics by generating thousands of massive
datasets called “big data” (26, 27). Thus, data mining has emerged
to efficiently transform big data into useful information and
knowledge, and several automated tools and techniques are used
to intelligently assist data analysis (28, 29). At present, TCGA
is the primary database for multi-omic cancer data, and the
ESTIMATE algorithm, a new data mining tool, can be used with
TCGA data sets to estimate the numbers of stromal and immune
cells in the tumor microenvironment and, thus, to assess tumor
purity (30).

For the first time, in this study, the correlation of stromal and
immune scores with prognosis was investigated for 20 malignant
tumor types in an attempt to develop a new prognostic indicator.
The results showed that immune scores could predict prognosis
for BRCA, LUAD, KIRC, LGG, and SKCM, and stromal scores
were significantly correlated with prognosis in STAD, LGG, and
SKCM (Figure 1). However, the MST of the BRCA, LUAD, and
SKCM cases in the high score group was longer than that in
the low score group, and the opposite results were found for
the KIRC, LGG and STAD cases (Table 1). These results indicate
that stromal or immune scores can act as a new indicator for the

Frontiers in Oncology | www.frontiersin.org 8 July 2020 | Volume 10 | Article 1008

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Immune-Related Prognostic Biomarkers

FIGURE 5 | Gene expression levels in the cancer population and normal population. (A) FCER1G; (B) LGALS9; (C) TWEM149; (D) EVI2B and (E) HAMP. *p-value <

0.05.

above six tumor types, allowing prognosis prediction from a new
perspective, that of the tumor microenvironment.

To examine the potential mechanisms and correlations
underlying this phenomenon, the gene expression data were
used to extract the common DEGs (FC > 1.5 and adjusted p-
value < 0.05) for the two score groups, and then, the DEGs
were further explored by GO enrichment and PPI analysis.
As expected, there was a high similarity between the two
groups in the BP category, mainly including various terms
associated with immune responses, although adhesion responses
were also prominent in the stromal score group. Similarly,
the CC terms enriched in the DEGs were almost all related
to the cell surface in both groups. In the MF category, the
DEGs were enriched in cytokine receptor activity, interleukin-
2 (IL-2) receptor activity and binding in the immune score
group and growth factor binding, extracellular matrix structural
constituent and carbohydrate binding in the stromal score
group. These results are consistent with a previous report
that stromal cells are mainly made up of nonimmune cells,
such as endothelial cells and fibroblasts, that function in the
extracellular matrix and contribute to the neoplastic phenotype,
premalignant progression, tumor invasion and metastasis (31,
32). Nevertheless, immune cells in the tumor microenvironment
play a dual role in tumor progression, mainly depending on the
associated immune response (33).

Next, the potential associations among the DEGs were
confirmed by PPI network analysis. For the immune score
group, the 10 central nodes principally involved two types of
molecules: integrin and IL receptor (Figure 4B). ITGAM, ITGAX
and ITGAL encode the integrin subunit alpha M, X and L chain
proteins, respectively; these proteins are the main components
of an alpha chain that can be combined with a beta chain
to finally form integrin, which mainly functions in cell cycle

regulation (34, 35). In addition, among the interacting IL receptor
genes, including IL2RA, IL2RB, IL2RG and IL10RA, IL2RA,
IL2RB, and IL2RG constitute the high-affinity IL2 receptor, which
regulates tolerance and immunity (36). IL10RA encodes the IL10
receptor, which can mediate the immunosuppressive signal of
IL10, leading to inhibition of the synthesis of proinflammatory
cytokines (37). However, in the stromal score group, seven genes
in 12 central nodes encoded integrin, including ITGAM, ITGAX,
ITGAL, ITGA1, ITGA4, ITGA5, and ITGA9 (Figure 4D). The
most remarkable node was PTPRC, which encodes a member of
the protein tyrosine phosphatase family and is involved in the
regulation of many cellular processes (38).

Furthermore, we identified whether the common DEGs were
correlated with tumor prognosis using Kaplan-Meier survival
curves from TCGA, screening 53 and 108 DEGs for the immune
and stromal score groups, respectively (Table 2, Table S4).
Because a gene must have a measurable difference in expression
level to be used as a biomarker, it was necessary to confirm
the presence of expression differences between the normal and
cancer populations. Finally, there were 79 genes with significant
expression differences, and five of these genes were correlated
with prognosis in three tumor types simultaneously (Table 3).
Moreover, the expression levels of these five genes were higher in
tumor tissues than in normal tissues. Thus, LGALS9, FCER1G,
and TMEM149 can be regarded as common biomarkers for
KIRC, LGG, and SKCM. EVI2B is a common biomarker for
STAD, LGG and SKCM, while HAMP is a common biomarker
for LUAD, KIRC and SKCM.

LGALS9 encodes galectin 9, which has been demonstrated to
be overexpressed in all KIRC tissues and was isolated as a novel
immunotherapy target from a cDNA library (39). In glioma, the
expression level of LGALS9 can be scored by the immunoreactive
score (IRS), which is correlated with the WHO grade, although
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LGALS9 expression is lower in LGG than in grade IV glioma (40).
Furthermore, research has indicated that primary melanoma
lesions and melanocytic nevi have high expression of LGALS9,
but the minimal expression is found in metastatic melanoma
lesions due to the tumor-suppressor function of LGALS9, which
inhibits metastatic progression (40, 41).

FCER1G, which encodes the Fc fragment of the IgE
receptor Ig, is involved in allergic reactions. Previously, the
correlation between KIRC progression and prognosis and
FCER1G expression was identified and validated, providing
a new immune-related pathway to improve prognosis (42).
Although research has reported that FCER1G genes are expressed
at higher levels in pilocytic astrocytomas than in LGG, there are
no reports of FCER1G expression levels in LGG and SKCM (43).

HAMP, which shows biased expression in the liver and
heart, encodes a protein that maintains iron homeostasis
primarily through the regulation of iron storage in macrophages
and absorption in the intestine (44, 45). The current study
confirms that high serum hepcidin is linked to aggressiveness,
progression and prognosis in KIRC, making it a potential
biomarker to monitor tumor development (46). Similarly,
hepcidin concentration is high in the serum of patients with
non-small cell lung cancer and is closely associated with tumor
clinical stage and lymph node metastasis (47). However, there is
no evidence to indicate a correlation between HAMP and SKCM.
The above conclusions are all consistent with our results.

Although TMEM149 and EVI2B have been identified by RNA-
seq in a variety of different tissues, it is difficult to find any
studies about TMEM149 in KIRC, LGG and SKCM or about
EVI2B in STAD, LGG and SKCM (44, 48). Thus, according
to our results and consistent with the research conclusions
reported, TMEM149 and EVI2B are required further study with
corresponding tumor types to find better prognostic biomarkers.
In addition, we found 74 other immune-related genes with a
significant prognostic role for at least one tumor type, some
of which have been reported by previous studies (49–52).
Overall, these results suggest new possibilities for immune-
related prognostic biomarkers, but further experimental and
functional studies urgently need to be carried out to validate their
predictive roles.

In particular, the increasing evidence of immunotherapy as a
major tool for the management of cancer patients points toward
the need for testing stromal and immune scores in patients
undergoing immunotherapy in search for gene signatures which
may better characterize clinical response to immunotherapy

(53, 54). Thus, the stromal and immune scores can act as new
indicators to broaden the emerging therapeutic landscape in the
immunotherapy field.

CONCLUSIONS

In conclusion, the prognosis of six malignant tumor types with
poor prognosis could be effectively predicted from the tumor
microenvironment as described by immune or stromal scores.
Furthermore, a list of immune-related genes was screened as
potential biomarkers to predict prognosis for one or more
tumor types. Common biomarkers associated with multiple
tumor types could contribute to understanding the potential
relationships and shared mechanisms among different tumor
types. Finally, further functional study of these genes is essential
to advance the development of immune-related biomarkers for
tumor development and prognosis prediction.
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