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Regional Variation of Splicing QTLs in Human Brain

Yida Zhang,1,2 Harry Taegyun Yang,1 Kathryn Kadash-Edmondson,2 Yang Pan,1 Zhicheng Pan,1

Beverly L. Davidson,3,4 and Yi Xing1,2,4,5,*

Amajor question in human genetics is how sequence variants of broadly expressed genes produce tissue- and cell type-specificmolecular

phenotypes. Genetic variation of alternative splicing is a prevalent source of transcriptomic and proteomic diversity in human popula-

tions. We investigated splicing quantitative trait loci (sQTLs) in 1,209 samples from 13 human brain regions, using RNA sequencing

(RNA-seq) and genotype data from the Genotype-Tissue Expression (GTEx) project. Hundreds of sQTLs were identified in each brain re-

gion. Some sQTLs were shared across brain regions, whereas others displayed regional specificity. These ‘‘regionally ubiquitous’’ and

‘‘regionally specific’’ sQTLs showed distinct positional distributions of single-nucleotide polymorphisms (SNPs) within and outside

essential splice sites, respectively, suggesting their regulation by distinct molecular mechanisms. Integrating the binding motifs and

expression patterns of RNA binding proteins with exon splicing profiles, we uncovered likely causal variants underlying brain region-

specific sQTLs. Notably, SNP rs17651213 created a putative binding site for the splicing factor RBFOX2 andwas associatedwith increased

splicing of MAPT exon 3 in cerebellar tissues, where RBFOX2 was highly expressed. Overall, our study reveals a more comprehensive

spectrum and regional variation of sQTLs in human brain and demonstrates that such regional variation can be used to fine map po-

tential causal variants of sQTLs and their associated neurological diseases.
Introduction

Alternative splicing is a crucial post-transcriptional regulato-

ry mechanism that enables enormous RNA-level

complexity. Through alternative splicing, specific exons

may be included or excluded from the final mature

messenger RNA (mRNA), allowing a single gene to generate

multiple transcript and protein products with unique bio-

logical functions.1 In humans, more than 95% of multi-

exon genes undergo alternative splicing,2 with the nervous

system being a prominent site.3,4 Abnormalities in alterna-

tive splicing have been associated with multiple pathol-

ogies,5–8 including neurodegenerative disorders like Parkin-

son disease (PD),9 Alzheimer disease (AD),10,11 amyotrophic

lateral sclerosis (ALS),12 and frontotemporal dementia

(FTD),13 as well as neuropsychiatric disorders like autism

spectrum disorders (ASD)14–17 and schizophrenia.18–20

Genetic variants can alter exon inclusion or splice

site usage, by creating or disrupting splice sites21 or other

cis splicing regulatory elements within precursor

mRNAs.22–24 Such genetically regulated alternative

splicing events were recently recognized as a primary link

between genetic variation and disease.25 Splicing quantita-

tive trait loci (sQTL) analysis is a common method for

discovering genotype-splicing associations. In an sQTL

analysis, the splicing level of an alternative exon or splice

site is treated as a quantitative trait and tested for associa-

tion with genotype across a population. Using this

approach, two recent reports described effects of genetic

variants on alternative splicing in human brain as well as

their associations with schizophrenia20 and AD.26 Howev-
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er, both studies were restricted to a single brain region, and

therefore a more comprehensive spectrum and regional

variation of sQTLs in human brain were not revealed.

In this study, we systematically discovered sQTLs in 13

regions of human brain using RNA sequencing (RNA-seq)

and genotype data from the Genotype-Tissue Expression

(GTEx) project (Figure 1A). We decided to study patterns

and regional variation of sQTLs in human brain, based

on the observation that brain region is the dominant

contributing factor to variations in gene expression and

alternative splicing in human brain, as compared to other

biological factors such as age and sex. By comparing sQTL

signals across different brain regions, we found that some

sQTLs were shared across brain regions, whereas others dis-

played regional specificity. These ‘‘regionally ubiquitous’’

and ‘‘regionally specific’’ sQTLs were enriched for genetic

variants within and outside essential splice sites, respec-

tively, suggesting their regulation by distinct molecular

mechanisms. Integrating RNA binding protein (RBP) mo-

tifs with RBP expression and exon splicing profiles, we

demonstrate that regional variation of sQTLs can be used

to fine map potential causal variants underlying geneti-

cally regulated alternative splicing events and their associ-

ated neurological diseases.
Material and Methods

Datasets and Processing of GTEx Brain Tissue Samples
RNA-seq data (BAM files; v7, June 2017 release) for human brain

tissues from postmortem donor specimens were downloaded

from the GTEx Portal website (see Web Resources). RNA-seq data
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Figure 1. Overview of Study and Data
(A) Overview of study. RNA-seq data
derived from human brain tissue samples
were downloaded from the GTEx Portal.
Data were processed to quantify gene
expression (in TPM) and alternative
splicing (in PSI) across 13 brain regions.
Splicing QTLs (sQTLs) were identified for
each individual brain region, based on
alternative splicing and genotype informa-
tion. The sQTL data were used to study the
relationship among the positional distri-
bution of sQTLs, significance of sQTLs,
and brain region specificity. RNA binding
protein (RBP) expression was incorporated
with alternative splicing (AS) and single-
nucleotide polymorphism (SNP) data to
identify potential causal cis variants and
trans regulators. Data were used to identify
sQTLs potentially associated with 14
neurological disorders.
(B) t-SNE clustering of all brain tissue sam-
ples based on gene expression (left) and
alternative splicing (right). Samples are co-
lor coded by brain region. Dashed ovals
encircle samples from physically proxi-
mate brain regions.
were available for 1,409 samples from 13 brain regions of 201

individuals.

An ultra-fast version of rMATS (rMATS-turbo, see Web Re-

sources) was run on BAM files to obtain exon inclusion levels

(PSI values). Detailed information regarding the quantification

of different types of alternative splicing events can be found in

the original rMATS paper.27 Missing PSI values were imputed using

k-nearest neighbors. To ensure reliability of the imputation and

downstream analyses, we only included an exon in our analyses

if it passed the following filters:

1) Average PSI within 0.05 and 0.95,

2) Average total read count (inclusion countþ skipping count)

R10,

3) Percentage of samples with missing PSI value < 5%,

4) max(PSI) – min(PSI) > 0.05

Processed gene expression data (in transcripts per kilobasemillion,

TPM) were downloaded from the GTEx Portal. These data were

available for 1,258 of the 1,409 samples with RNA-seq data. Me-

dian normalization was performed on each sample for between-

sample normalization.

Genotype data of GTEx brain samples based on whole-genome

sequencing (WGS) were downloaded from the database of Geno-

types and Phenotypes (dbGaP, see Web Resources). Description

of the WGS genotype data can be found on the GTEx portal28

(see Web Resources). SNPs with a minor allele frequency < 0.05

as well as SNPs on sex chromosomes were excluded from analysis,

leaving 6,317,213 SNPs for downstream analysis. The final dataset

for sQTL analysis comprised 1,209 samples for which genotype

data and corresponding RNA-seq data, including processed gene

expression data, were available.
The Americ
Age-, Brain Region-, and Sex-Dependent Splicing and

Expression
To determine the extent to which splicing (PSI) results were

affected by differences in age, brain region, or sex between tissue

samples, the following linear mixed model was used:

jij ¼ logit�1

 
mi þaAgej þbBrainRegionj þgSexj þ Pij

þ
XN
k¼1

dkSVkj þ εij

!

Pij � N
�
0; s2

ij

�

where jij is the PSI for exon i of sample j; and Agej, BrainRegionj,

and Sexj are the age, brain region, and sex of sample j with regres-

sion coefficients a, b, and g, respectively. Random effect term Pij
was introduced to account for the fact that multiple GTEx samples

may come from the same donor. To control for all other known

and unknown confounding factors (e.g., ancestry, BMI, batch ef-

fects, etc.), the following surrogate variable(s) estimated by Surro-

gate Variable Analysis (SVA)29 was used:

SVkjð1% k%NÞ

where SVkj is the value of surrogate variable (SV) k for sample jwith

regression coefficient dk; N is the total number of SVs that are not

correlated with age, brain region or sex; εij is the error term; and mi

is the regression intercept for exon i. Themodel was fitted by using

the lmer function in the lme4 package in R. For each exon, we used

a least-squares approach to estimate regression coefficients and a

likelihood ratio test to estimate significance. If a, b, or g signifi-

cantly deviated from 0, then the exon was considered to be
an Journal of Human Genetics 107, 196–210, August 6, 2020 197



dependent on age, brain region, or sex. False discovery rate (FDR)

< 5% was used as the cutoff for significance.

We performed the same analysis on gene expression data by re-

placing PSI with normalized TPM, but with one difference. For

gene expression analysis, SVA estimated 1,232 SVs, which gener-

ated more parameters than could be analyzed by the linear mixed

model. As t-SNE analysis did not reveal any obvious effect of con-

founding factors on gene expression, we excluded SVs from the

analysis.
Correcting PSI Values for Confounding Factors before

sQTL Analysis
Before performing the sQTL analysis, we corrected the PSI value by

removing potential confounding factors. First, we performed prin-

cipal component analysis in PLINK on GTEx genotype data to

obtain population structure. This analysis was performed on a

genome-wide set of linkage disequilibrium (LD)-pruned variants

(R2 > 0.2). The top three principal components were used as cova-

riates to correct for population structure, because they accounted

for 5.5% of the genotype variance with diminishing returns

(0.25% or smaller) for subsequent PCs. The top three PCs were suf-

ficient to capture the major population structure in GTEx data

consisting of African American, American Indian, Asian, and

White individuals (Figure S1).

Next, we used SVA to remove potential confounding factors

from sources other than brain region. The input of SVA was logit

transformed PSI values of all alternative splicing events across all

samples. As the aim of the sQTL analysis was to identify sQTLs

across different brain regions, we included only one factor (brain

region) in the sQTL analysis. Any variation that could not be ex-

plained by brain region was estimated by SVA and removed.

We fitted the following linear model:

jij ¼ logit�1

 
mi þ

XM
m¼1

SVmj þ
X3
k¼1

PCkj þ εij

!

whereM is the total number of SVs uncorrelated with brain region.

SVmj is the value of surrogate variable (SV) m for sample j. PCkj is

the value of principal component k for sample j. All samples

from the same donor have the same values of genotype PCs. The

top three principal components were used to account for popula-

tion structure. We used the residual of the model as the corrected

PSI value in sQTL analysis.
Identification of sQTLs
After the corrected PSI value was obtained, each single-nucleotide

polymorphism (SNP) within a 200-kb window on each side of an

alternative splicing event was fitted with a linear regression sepa-

rately. We estimated the FDR using a permutation procedure to

obtain the null distribution of p values. We used the same permu-

tation approach as in Zhao et al.30 For each alternative splicing

event, we permuted the individual label 5 times, recalculated the

p values of all SNPs, and recorded the minimum p value for each

alternative splicing event for each permutation. This set of mini-

mum p values serves as the empirical null distribution for the p

values (denoted as p0). We then compared the true distribution

of minimum p values (denoted as p1) to this null distribution to

obtain the estimate of FDR at the event level. For example, for

FDR ¼ 0.1, we found a p value cutoff z such that P(p0 < z)/ P(p1

< z) ¼ 0.1, where P(p0 < z) is the fraction of minimum p values

from permutation less than z and P(p1 < z) is the fraction of min-
198 The American Journal of Human Genetics 107, 196–210, August
imum p values from observed data less than z. We applied the per-

mutation procedure to estimate FDR values for the three types of

alternative splicing events separately. Within each type, the p

values from all events and all permutations were used to define a

single empirical null distribution for estimating FDR values.

We defined the sQTL SNP of an alternative splicing event as the

closest SNP with the most significant association, using a two-tier

cutoff for significance: (1) FDR < 10% and (2) uncorrected p <

10�5. The corresponding p value of FDR ¼ 10% is �10�6 for

each brain region; thus, events meeting this threshold represent

a higher confidence set of sQTLs. This calculation was done in

all 13 brain regions separately.
LD Calculation
Most GWAS variants have been identified in samples of European

ancestry. Therefore, for LD calculations, we used genotype data

from the CEU population (Utah residents with ancestry from

northern and western Europe). Genotype data were downloaded

from the 1000 Genomes Project (HapMap Project Genome

Browser version E, data release #28 [Phase IIþIII], see Web Re-

sources). To calculate LD between SNPs, we used PLINK (with pa-

rameters –no-fid –no-parents –r2 –ld-window-kb 1000 –ld-window

99999 –ld-window-r2 0.8). SNPs with r2 > 0.8 were defined as be-

ing in high LD.

We calculated the LD of sQTL SNPs for skipped exon (SE), alter-

native 50 splice sites (A5SS), and alternative 30 splice sites (A3SS)

events with SNPs from the 1000 Genomes Project. SNPs that

were in high LD with sQTL SNPs were annotated by using

GWAS variants from the NHGRI-EBI GWAS Catalog v.1.0.1 (see

Web Resources). This list includes GWAS SNPs with p values <

1 3 10�5. Therefore, SNPs with p values between 5 3 10�8 and

1 3 10�5 were included in the analysis. We used 14 keywords to

classify GWAS traits into disease categories: ‘‘Alzheimer,’’ ‘‘amyo-

trophic lateral sclerosis,’’ ‘‘Parkinson,’’ ‘‘frontotemporal demen-

tia,’’ ‘‘epilepsy,’’ ‘‘autism,’’ ‘‘schizophrenia,’’ ‘‘bipolar,’’ ‘‘depres-

sion,’’ ‘‘attention deficit hyperactivity disorder,’’ ‘‘glio,’’ ‘‘multiple

sclerosis,’’ ‘‘narcolepsy,’’ and ‘‘stroke.’’ After identifying GWAS

SNPs that were in high LD with sQTL SNPs, we obtained the

GWAS SNP disease ontology information (‘‘MAPPED_TRAIT’’ col-

umn in GWAS Catalog table). If the disease ontology information

contained any of the 14 keywords, then the sQTL SNP and the cor-

responding alternative splicing event were considered to be related

to that specific disease.
Colocalization Analysis between sQTL and GWAS

Signals
We performed a colocalization analysis between sQTL and GWAS

signals to test whether a single causal variant underlies the sQTL

signal and GWAS signal. For sQTLs associated with GWAS traits,

we collected the GWAS SNPs that were in high LD with sQTL

SNPs, together with the GWAS studies reporting these GWAS

SNPs. Whenever available, we downloaded the harmonized sum-

mary statistics of the GWAS studies from the GWAS Catalog (see

Web Resources). Colocalization analysis using coloc31 under

default parameter settings was performed on the GWASs, using

their harmonized GWAS summary statistics along with the associ-

ated sQTL’s summary statistics in brain regions with a significant

sQTL signal. SNPs within a 200-kb window on each side of an

alternative splicing event were used for the colocalization analysis.

A posterior probability of R75% was considered strong evidence
6, 2020



for a single causal variant underlying the sQTL signal and the

GWAS signal.32

Selection of the Most Representative sQTL SNP across

13 Brain Regions
For each sQTL event, we collected the sQTL SNPs for each brain re-

gion (see Identification of sQTLs). Among all significant (FDR <

10%) sQTL SNPs, we selected the SNP that was the top (i.e.,

most significant) SNP in the largest number of brain regions as

the most representative sQTL SNP. In the event of a tie, we

compared competing SNPs and chose the SNP that was significant

(FDR < 10%) in the largest number of brain regions. If sQTL SNPs

were still tied, then we chose the SNP closest to the sQTL event as

the most representative sQTL SNP across all 13 brain regions.

Defining Regionally Ubiquitous and Regionally Specific

sQTLs
We considered an sQTL event to be regionally specific if: (1) the

uncorrected p value of themost representative SNP across 13 brain

regions was< 10�5 in nomore than 4 brain regions and (2) the un-

corrected p value was less than the FDR cutoff (FDR < 10%) in at

least one brain region. We considered an sQTL event to be region-

ally ubiquitous if the uncorrected p value of the most representa-

tive SNP across 13 brain regions was less than the FDR cutoff (FDR

< 10%) in at least 10 brain regions. We designed this two-tier cut-

off for sQTL significance (FDR < 10%, uncorrected p < 10�5) to

ensure a reliable definition of significant and insignificant events.

Predicting the Effect of SNPs on RBP-RNA Binding via

DeepBind
We used the DeepBind model33 to quantify the effect of SNPs on

RBP-RNA binding. DeepBind takes RNA sequences as input and

outputs DeepBind scores, which quantify the binding specificity

of different RBPs for the input sequences. The DeepBind scores

can be used to generate mutation maps, which visually display

the impact of sequence variants on RBP-RNA binding.

First, we collected all significant SNPs (and 20-bp flanking se-

quences on both sides) within 300 bp of the nearest splice site of

each sQTL event across all 13 brain regions. Next, we tested the ef-

fect of each significant SNP on the binding of 102 human RBPs for

which the DeepBind model had been trained. Following the pro-

cedure described in Alipanahi et al.,33 we calculated DeepBind

scores and generatedmutationmaps for 41-bp slidingwindows us-

ing a 20-bp motif detector. We used a modified approach to

generate the mutation map for each SNP-RBP pair. Specifically,

whereas Alipanahi et al.33 was primarily concerned with the abil-

ity of a sequence variant to decrease the binding score (i.e., base

height was unchanged if a sequence variant increased binding),

our study was also concernedwith the ability of a sequence variant

to increase binding. To account for this, we calculated the sum of

the scores on each base in the reference genome by using the ab-

solute value of the four DeepBind scores on that base, and then

scaled the height of each base by using this sum. In this way,

the height of each base was proportional to the ability of sequence

variants on the base to change (increase or decrease) binding.

To facilitate the identification of potential causal variants under-

lying regionally specific sQTLs, we analyzed RBP expression data

across the 13 brain regions. If a SNP regulates exon splicing by

altering RBP binding, thenwewould expect to see higher sQTL sig-

nificance in brain regions where the RBP is highly expressed. To

test this possibility, we grouped samples based on whether they
The Americ
were from brain regions where the sQTL was significant or insig-

nificant. For each RBP, we applied a Wilcoxon rank sum test to

determine whether the RBP was differentially expressed between

the two groups, with FDR < 5% indicating significant differential

expression. FDR is calculated using the p values of all exon-SNP-

RBP combinations.
Motif Scan of NOVA1
NOVA1 is not included in the DeepBind model but has a well-

defined consensus motif (YCAY). Therefore, for NOVA1, instead

of running the DeepBind model, we carried out a motif scan on

the same set of SNPs as were used in the DeepBind analysis. For

each SNP, we checked all possible 4-mer sequences overlapping

with the SNP to see if the SNP created or disrupted a NOVA1 bind-

ing site.
Results

Gene Expression and Alternative Splicing in Human

Brain

We downloaded RNA-seq data from the GTEx project web-

site and collected corresponding gene expression, alterna-

tive splicing, and genotype information of 1,209 human

brain samples comprising 13 brain regions (Figure S2; see

Material and Methods for details). We applied our compu-

tational tool rMATS,27 developed for quantifying alterna-

tive splicing events from large-scale RNA-seq data, to esti-

mate exon splicing levels (percent spliced in, or PSI) from

the GTEx RNA-seq data. After applying filters to select

high-confidence alternative splicing events with reliable

RNA-seq quantitation, we collected 10,665 skipped exons

(SE), 1,443 alternative 50 splice site (A5SS) events, and

2,434 alternative 30 splice site (A3SS) events (Figure S3).

The t-distributed stochastic neighbor embedding (t-SNE)

algorithm was used to inspect relationships among sam-

ples. Using this approach, we were able to separate samples

from different brain regions and to recapitulate relation-

ships between brain regions using gene expression and

alternative splicing information (Figure 1B shows results

for SE events; similar patterns were obtained for A5SS

and A3SS events). Although we tested additional co-vari-

ates such as age and sex, as well as various potential con-

founding or batch effects, these other factors did not

enable clear separation of samples based on gene expres-

sion or alternative splicing (Figure S4). Our results indicate

that brain region is the dominant contributing factor to

variations in gene expression and alternative splicing in

human brain.

To quantify contributions of different biological factors

to alternative splicing and gene expression, we fit a linear

mixed model to each alternative splicing event or gene.

We included brain region, age, and sex in the model as

main effects and controlled for confounding factors (Mate-

rial and Methods). Using an FDR of < 5%, we found that

gene expression and alternative splicing showed substan-

tial variation depending on brain region, but much less

variation depending on age or sex (Figure S5). These
an Journal of Human Genetics 107, 196–210, August 6, 2020 199



findings were consistent with the t-SNE results (full list of

brain region-, age-, or sex-dependent genes and alternative

splicing events are given in Tables S1 and S2).

Given this strong brain-regional variation, we validated

our results using previously reported brain region-specific

alternative splicing events and genes; neurexin is one

prominent example. Through alternative splicing, neurex-

ins 1, 2, and 3 generate thousands of mRNA and protein

products.34–36 Ehrmann et al. reported that the tissue-

dependent RBP KHDRBS3 (referred to as T-STAR) and its pa-

ralog KHDRBS1 (referred to as Sam68) regulate brain re-

gion-specific alternative splicing of neurexin1-3 exon 4.37

Specifically, exon 4 was included at low levels in brain re-

gions with a high gene expression ratio of KHDRBS3 versus

KHDRBS1 (e.g., cortex) and at high levels in regions with a

low gene expression ratio (e.g., cerebellum). Plotting the

exon inclusion level of neurexin2 exon 4 with the

KHDRBS3:KHDRBS1 expression ratio (Figure S6), we found

consistent results with those reported previously.37 Exon 4

of either neurexin1 or neurexin3 showed a similar pattern

based on our data.

Identification of sQTLs in 13 Brain Regions

To elucidate genetic regulation of alternative splicing in

human brain, we performed sQTL analyses in each of

the 13 brain regions separately (see Material and

Methods for details). After controlling for confounding

factors, we identified sQTLs by using linear regression

to calculate the association between exon splicing levels

(PSI values) and SNP genotypes in each brain region. The

total numbers of tests performed were 111,720,167 for

SE, 14,675,960 for A5SS, and 25,059,203 for A3SS events.

The closest SNP with the smallest p value within 200 kb

of each alternative splicing event (SE, A5SS, or A3SS) was

selected as the sQTL SNP in that brain region. The corre-

sponding alternative splicing event was defined as the

sQTL event. Between 387 and 849 significant sQTL

events (p < 10�5) were found in each brain region

(Figure 2A), with most events being specific to only a

few regions (Figure 2B). We also identified 133 sQTL

events that were significant in all 13 brain regions. These

data indicate that sQTLs in human brain can be either

‘‘regionally ubiquitous’’ or ‘‘regionally specific.’’ Of

note, in the step of correcting PSI values for confounding

factors, we identified 3 surrogate variables based on SVA.

Surrogate variable 1 was significantly correlated with

RNA integrity number (RIN) (p value ¼ 0.00089) and

post mortem interval (PMI) (p value ¼ 0.045). Therefore,

although we did not explicitly correct for confounding

factors like RIN and PMI, these factors were considered

and accounted for by the use of surrogate variables in

sQTL discovery.

Next, we annotated sQTL events in terms of disease risk

by calculating the LD between sQTL SNPs and SNPs iden-

tified as disease-associated variants by genome-wide associ-

ation studies (GWASs) (see Material and Methods for de-

tails). We used disease ontology terms in the NHGRI-EBI
200 The American Journal of Human Genetics 107, 196–210, August
GWAS Catalog,38 focusing on terms related to 14 neurolog-

ical disorders: AD, ALS, PD, FTD, epilepsy, ASD, schizo-

phrenia, bipolar, depression, attention deficit hyperactivi-

ty disorder (ADHD), glioma/glioblastoma, multiple

sclerosis, narcolepsy, and stroke. Any sQTL event with an

sQTL SNP in high LD (r2 > 0.8) with a neurological disor-

der-related GWAS variant was considered to be a disease

sQTL event related to that specific disorder. Figure 2C

shows the number of disease sQTL events for each disorder

in each brain region. Results based on GWAS SNPs reach-

ing genome-wide significance (p value % 5 3 10�8) can

be found in Figure S7.

We identified a predominance of disease sQTL events

that were related to neuropsychiatric disorders (e.g.,

schizophrenia). This result was not surprising, given the

greater prevalence of reported neuropsychiatric disease-

related GWAS variants in the literature.39,40 We also identi-

fied sQTL events related to neurodegenerative diseases

(e.g., AD and PD). Neurodegenerative disease-related

sQTL events tended to be brain region specific, whereas

neuropsychiatric disorder-related sQTL events were shared

across a larger number of brain regions. Full information

on the sQTLs identified in each brain region, together

with the disease association, can be found in Table S3.

The percentage of GWAS loci associated with brain sQTLs

was comparable across the brain disorders analyzed. Like-

wise, we did not observe significant enrichment for brain

sQTLs in brain disorders, as compared to apparently non-

brain phenotypes such as body mass index and body

height. This is not surprising, given that brain sQTLs could

also be sQTLs in non-brain tissues and cell types and that

genomic variants can have pleiotropic effects on pheno-

types.41

For sQTLs associated with GWAS traits, we also per-

formed a colocalization analysis between sQTL and

GWAS signals whenever data were available (see Material

and Methods for details). In total, we found 278 brain

sQTL-associated GWASs. Among them, 27 had harmo-

nized summary statistics (Table S4). Colocalization anal-

ysis using coloc31 was performed on these 27 studies. In to-

tal, 124 colocalization tests were performed on 43 sQTL-

GWAS pairs, using the GWAS summary statistics and the

sQTL summary statistics of every brain regionwith a signif-

icant sQTL signal. Full results of the colocalization tests can

be found in Table S5. Results from 77 tests supported the

colocalization model of a single causal variant underlying

the sQTL signal and the GWAS signal (posterior probability

R75%). One example is an sQTL involving PGAP3 exon 4

and SNP rs1565922 (Figure S8). SNP rs1565922 was signif-

icantly associated with the splicing level of PGAP3 exon 4

in multiple brain regions (cerebellar hemisphere, cere-

bellum, cortex, and frontal cortex) and was also in high

LD with rs2517959, a GWAS variant of bipolar disorder.

Figure S8 showed the colocalization at the PGAP3 locus be-

tween the sQTL signal (cortex) and the GWAS signal, sug-

gesting a single causal variant affecting PGAP3 exon 4

splicing and bipolar disorder.
6, 2020
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Figure 2. Identification of sQTLs in Each Brain Region
(A) Stacked bar plot showing the number of sQTLs (including SE, A5SS, and A3SS events) identified in each brain region, with the num-
ber in parentheses referring to the number of tissue samples with available genotype information.
(B) Stacked bar plot showing the histogram for the number of brain regions where sQTLs (including SE, A5SS, and A3SS events) were
determined to be significant.
(C) Heatmap showing the number of disease sQTLs (including SE, A5SS, and A3SS events) associated with each neurological disorder in
each brain region. Each row represents one brain region. Each column represents one neurological disorder. Bar plot above heatmap
shows the total number of unique sQTLs associated with each neurological disorder.
Relationship among SNP Position, Significance, and

Brain Region Specificity of sQTLs

We examined the relationship among SNP position, signif-

icance, and brain region specificity of sQTLs. Here, we

describe the result for SE events, but similar results were

observed for A5SS and A3SS events.

To evaluate the positional distribution of sQTL SNPs, we

plotted the –log10 p values of significant sQTL SNPs in all

13 brain regions together, against the distance to the

sQTL exons (Figure S9). As expected, and consistent with

previous results,20 we found that SNPs closer to the alterna-

tive exons tended to be more significant. Next, we exam-
The Americ
ined SNP positions for all exons included in the sQTL anal-

ysis for each brain region. For each exon, we obtained the

–log10 p values of all SNPs within 200 kb of the exon,

together with the distance of the SNPs to the exon. As

the p value cutoff for significant sQTLs increased, we

observed an increase in the fraction of exons with at least

one significant SNP within 300 bp of splice sites

(Figure 3A). This result, which was reproducible across all

brain regions, indicated enrichment in the local regulation

of significant sQTLs by exon-proximal SNPs.

To obtain a fine-grained picture of the relationship be-

tween SNP position and significance of sQTLs, we classified
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Figure 3. Relationship among SNP Position, Significance, and Brain Region Specificity of sQTLs (SE Events)
(A) Fraction of sQTL with at least one significant SNP within 300 bp of the splice sites as a function of the significance (�log10(p value))
cutoff for significant sQTLs. Each curve represents the result in one brain region.
(B) Boxplot showing the distribution of significance (�log10(p value)) of all SNPs within 200 kb of all significant (p % 10�5) sQTLs (SE
events). SNPs are grouped based on SNP position relative to the splice sites.
(C) Boxplot showing the relationship between overall sQTL significance (�log10(p value)) and the number of brain regions where sQTLs
are significant. Each dot represents one sQTL (SE event). An sQTL having at least one significantly associated SNP in a brain region is
considered significant in that brain region. Overall sQTL significance is calculated by considering all brain regions where the sQTL is
significant, and taking the median of the smallest p values.
(D) Bar plots (outside) and cumulative distribution function (CDF) (inside) showing the relationship between SNP position and brain
region specificity of sQTLs (SE events). The sQTLs are grouped based on the position of their significant SNP (e.g., dinucleotide, splice
site, etc.). For each group, the bar plot shows the histogram of the percentage of sQTLs that are significant in a given number of brain
regions. Each bar is labeled above with the number of significant sQTLs in the given number of brain regions.
all SNPs within 200 kb of all sQTL exons into 5 groups,

based on the SNP position relative to the corresponding

sQTL exon. In the figures that follow, 50SS represents the

9 bases (3 exonic and 6 intronic) around the 50 splice site

and 30SS represents the 23 bases (20 intronic and 3 exonic)

around the 30 splice site.42 We found that SNP position was

associated with sQTL significance (Figure 3B), with 50SS
SNPs having the highest sQTL significance, followed by
202 The American Journal of Human Genetics 107, 196–210, August
30SS SNPs, exonic SNPs, and proximal intronic SNPs (%

300 bp of exons). SNPs in distal intronic regions

(>300 bp from exons) had the largest overall p values, indi-

cating their relatively minor impact on splicing. These re-

sults are consistent with previous sQTL studies on human

B-lymphoblastoid cell lines.30,43

Next, for each individual sQTL, we asked whether its

number of significant brain regions was associated with
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its level of sQTL significance. For each sQTL exon, we

plotted the sQTL significance against the number of signif-

icant regions (Figure 3C). An sQTL exon with at least one

significantly associated SNP within the 200 kb window in

a brain region was considered significant in that brain re-

gion. Overall significance of the sQTL exon was calculated

as the median of the smallest p value from all regions in

which the sQTL was significant. As expected, we found

that sQTL exons that were significant in a greater number

of brain regions tended to have higher overall sQTL signif-

icance (Figure 3C).

Next, we analyzed the relationship between the SNP po-

sition and brain region specificity of sQTLs. For each sQTL

exon, we first classified all significant SNPs within 200 kb

across all brain regions into 5 categories: splice site dinucle-

otide (GT and AG for donor and acceptor sites, respec-

tively), splice site (9 nt around 50SS, 23 nt around 30SS,
excluding the dinucleotide), exon body, proximal intronic

region (%300 bp of the exon), and distal intronic region

(>300 bp of the exon). Then, we assigned each sQTL

exon to a specific category based onwhether it had a signif-

icant SNP in that category, prioritized sequentially from

splice site dinucleotide to distal intronic region. This infor-

mation was plotted together with the number of signifi-

cant brain regions for each sQTL exon (Figure 3D). To

restrict this analysis to high-confidence sQTLs, here we

used a more stringent cutoff of permutation FDR < 10%

instead of the uncorrected p value < 10�5 as the cutoff

for defining significant sQTLs. We observed that sQTL

exons with significant SNPs closer to their splice sites

tended to be significant in a greater number of brain re-

gions. For example, for sQTLs with significant SNPs located

at the splice site dinucleotide, 53% were significant in all

13 brain regions and 93% were significant in the majority

(R7 of 13) of brain regions. By contrast, for sQTLs with sig-

nificant SNPs located only in proximal or distal intronic re-

gions, the majority (50% or 90%, respectively) were signif-

icant in no more than 4 brain regions (Figure 3D). We

observed the same trend when we used permutation FDR

< 5% or permutation FDR < 1% as the cutoff to define sig-

nificant sQTLs (Figure S10).

Examples of Regionally Ubiquitous and Regionally

Specific sQTLs

We used stringent criteria to define high-confidence sets of

regionally ubiquitous and regionally specific sQTLs in hu-

man brain. Specifically, sQTLs reaching transcriptome-

wide significance (permutation FDR < 10%) in at least 10

brain regions were considered regionally ubiquitous

(Figure 4A), whereas sQTLs reaching transcriptome-wide

significance (permutation FDR< 10%) in at least one brain

region but having no more than 4 brain regions with the

uncorrected p value< 10�5 were considered regionally spe-

cific (Figure 4E) (see Material and Methods for details). The

reason for allowing the event to reach this more relaxed

cutoff (< 10�5) in up to 4 brain regions is to allow and ac-

count for the inherent similarity in alternative splicing
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profiles and/or RBP expression among certain GTEx brain

regions, e.g., cerebellum and cerebellum hemisphere, or

cortex and frontal cortex. In total, 148 sQTLs were defined

as regionally ubiquitous. 758 sQTLs were defined as region-

ally specific, among which 653 (86%) were significant in

only one or two brain regions.

For each sQTL exon, we obtained and plotted the coeffi-

cient from the linear regression analysis of exon splicing

levels against genotypes in each brain region, which repre-

sented the effect size of the sQTL signal in that region, us-

ing the most representative sQTL SNP across the 13 brain

regions (Figures 4A and 4E) (see Material and Methods

for details). Consistent with Figure 3D, we found that

regionally specific sQTLs were enriched for SNPs in exonic

and intronic regions, whereas regionally ubiquitous sQTLs

were enriched for SNPs in splice sites (Figure S11A, c2 test p

< 2.2 3 10�16). We observed the same trend when we

defined significant sQTLs using a transcriptome-wide sig-

nificance cutoff of permutation FDR < 5% (Figure S11B,

c2 test p < 2.2 3 10�16) or permutation FDR < 1%

(Figure S11C, c2 test p ¼ 1.8 3 10�7).

For regionally ubiquitous sQTLs, we illustrate the

example of the sQTL exon in regulator of telomere elonga-

tion helicase 1 (RTEL1), which protects telomeres during

DNA replication. Several variants in RTEL1 have been re-

ported to be associated with risk of glioma.44,45 We

observed significant associations between PSI values of

RTEL1 exon 23 and genotypes of rs6062302 in all brain re-

gions except spinal cord (Figure 4B). Figure 4C shows the

highly significant correlations in the cerebellar hemi-

sphere and the nucleus accumbens basal ganglia. SNP

rs6062302 itself is a glioma-related GWAS variant, and it

is in high LD with another glioma-related GWAS variant

(Figure 4D).

Beyond the example of RTEL1 (Figures 4B–4D), our ana-

lyses identified a total of 148 regionally ubiquitous sQTLs,

including those associated with GWAS signals. For

example, we identified a significant correlation between

rs67573812 and C8orf59 exon 2 (Figure S12A). This SNP,

located at the 50SS (dinucleotide) of C8orf59 exon 2, dis-

rupts a canonical splice site (GT to GA). A second example

involved flotillin 1 (FLOT1) exon 5 and rs1059612, located

in the proximal intronic region of exon 5 (Figure S12B).

FLOT1 is a membrane-raft associated protein that is

involved in synaptic transmission and synapse forma-

tion.46,47 Expression QTL and GWASs have associated

FLOT1 expression with genetic risks for schizophrenia

and major depressive disorder.48,49 We found that the

SNP was in high LD with GWAS variants related to schizo-

phrenia, bipolar, ADHD, unipolar depression, and ASD.

Another example involved SLC39A13 exon 5 and

rs2293576 (Figure S12C), located within the exon body

of exon 5 and in high LD with the AD-related GWAS

variant rs10838725. This finding is consistent with previ-

ous reports that SLC39A13 is within the LD block of

rs10838725, an AD-risk SNP identified by The Interna-

tional Genomics of Alzheimer’s Project.50,51
an Journal of Human Genetics 107, 196–210, August 6, 2020 203



A B C D

E F G H

Figure 4. Regionally Ubiquitous Versus Regionally Specific sQTLs
(A) Heatmap showing effect sizes (correlation coefficients between alternative splicing levels and SNP genotypes) of regionally ubiqui-
tous sQTLs. Each row represents one sQTL. Each column represents one brain region.
(B) Radar plot showing significance (�log10(p value)) of a regionally ubiquitous sQTL (RTEL exon 23 and rs6062302) in each brain re-
gion. Red circle indicates uncorrected p ¼ 10�5. Significant brain regions are highlighted in red text.
(C) Boxplot showing the significant association (p value) of SNP rs6062302 with PSI value (exon inclusion level) of RTEL exon 23 in two
brain regions: cerebellar hemisphere and nucleus accumbens basal ganglia.
(D) LD plot showing a GWAS variant (rs2297440, GWAS p value ¼ 43 10�46, glioma; green) in high LD with the sQTL SNP (rs6062302;
purple). SNP rs6062302 itself is also a GWAS variant related to glioma (GWAS p value ¼ 1 3 10�13).
(E) Heatmap showing effect sizes (correlation coefficients between alternative splicing levels and SNP genotypes) of regionally specific
sQTLs.
(F) Radar plot showing significance (�log10(p value)) of a regionally specific sQTL (SLC26A10 exon 12 and rs1871417) in each brain re-
gion. Red circle indicates uncorrected p ¼ 10�5. Significant brain regions are highlighted in red text.
(G) Boxplot showing the association (p value) of SNP rs1871417 with PSI value (exon inclusion level) of SLC26A10 exon 12 in two brain
regions: cerebellar hemisphere (significant) and nucleus accumbens basal ganglia (not significant).
(H) LD plot showing a GWAS variant (rs10876993, GWAS p value ¼ 43 10�6, immune system disease; green) in high LD with the sQTL
SNP (rs1871417; purple).
For regionally specific sQTLs, we illustrate the correla-

tion between PSI values of SLC26A10 exon 12 and geno-

types of rs1871417, which was significant only in cere-

bellar hemisphere and cerebellum (Figure 4F). Figure 4G

shows the correlation in one significant region (cerebellar

hemisphere) and one insignificant region (nucleus accum-

bens basal ganglia). The sQTL SNP of SLC26A10 exon 12

(rs1871417) was in high LD with an immune system dis-

ease-related GWAS variant rs10876993 (Figure 4H). More

specifically, rs10876993 was reported to be related to celiac

disease and rheumatoid arthritis.52 It is somewhat unex-

pected to observe strong LD between a cerebellum-specific

sQTL and GWAS SNP for immune system diseases. In

future work, it would be interesting to investigate whether

this sQTL is also present in certain types of immune cells.

We found many other sQTLs restricted to specific brain

regions. For example, the association between rs6580200

and CXXC5 exon 2 was significant only in cerebellar hemi-

sphere (Figure 5A). Previous pathway-based analysis deter-

mined CXXC5 to be a schizophrenia-associated gene.53

The SNP that we identified was in high LD with a schizo-

phrenia-associated GWAS variant. In TRIM26, the associa-

tion between rs971570 and exon 2 was significant only in
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frontal cortex (Figure 5B). Although the function of

TRIM26 is unknown, several studies found that TRIM26

was differentially expressed between individuals with

schizophrenia and control subjects.54,55 Here, we found

that this SNP was in high LD with GWAS variants related

to schizophrenia, as well as ADHD, ASD, bipolar disorder,

and unipolar depression. In POU6F1, the association be-

tween rs6580806 and exon 4 was significant only in cere-

bellum and cerebellar hemisphere (Figure 5C).

Using Regional Variation of sQTL Signals to Prioritize

Causal sQTL cis Variants and trans Regulators

To understand why the genetic regulation of alternative

splicing could be restricted to specific brain regions, we

investigated the underlying regulatory mechanisms of

regionally specific sQTLs. One hypothesis is that the brain

region-specific expression of RBPs, functioning as trans-

acting regulators of alternative splicing, could contribute

to the brain region specificity of sQTLs. To test this hypoth-

esis, we analyzed the gene expression patterns of RBPs

across brain regions. Many RBPs showed highly brain re-

gion-specific expression patterns (Figure 5D) and, thus,

could potentially provide a source of regional regulation.
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Figure 5. Regionally Specific sQTLs and RBP Expression
(A–C) Radar plots showing significance (�log10(p value)) of three regionally specific sQTLs (A: rs6580200 and CXXC5 exon 2; B:
rs971570 and TRIM26 exon 2; C: rs6580806 and POU6F1 exon 4) in each brain region.
(D) Heatmap showing gene expression (z-score-transformed TPM) of selected RBPs across all 13 brain regions. Each row represents one
RBP. Each column represents one brain region. In addition to all 102 Homo sapiens RBPs with DeepBind RBP-RNA binding models, the
heatmap includes RBFOX2, RBFOX3, NOVA1, and NOVA2.
To prioritize potential causal cis variants and identify

potential trans regulators of brain region-specific sQTLs,

we used a deep-learning model DeepBind33 to predict

the effect of a given SNP on RBP-RNA binding. DeepBind

predicts RBP sequence specificities based on sequence fea-

tures from CLIP-seq (crosslinking and immunoprecipita-

tion followed by high-throughput sequencing) experi-

ments. We assessed the RBP binding effects of all

significant SNPs within 300 bp of a given sQTL exon,

and then incorporated RBP expression data to further pri-

oritize candidate cis variants and trans regulators (see Ma-

terial and Methods). Intuitively, if a SNP regulates the

splicing of an exon through affecting RBP binding, we

would expect to see greater sQTL significance and larger

effect size in brain regions where the RBP is highly ex-

pressed. To test this, we classified the brain samples into

two groups: (1) samples from brain regions where the

sQTL is significant and (2) samples from brain regions

where the sQTL is insignificant. For each RBP, a Wilcoxon

rank sum test was performed to see whether the RBP is

differentially expressed between the two groups. Full in-

formation of the differential RBP expression analysis
The Americ
can be found in Table S6. RBPs with FDR < 5% and fold

change > 1.5 were included.

Using this strategy, we fine-mapped possible causal vari-

ants for a brain region-specific sQTL for exon 3 of microtu-

bule-associated protein tau (MAPT). MAPT encodes tau, an

abundant protein in the nervous system that promotes

microtubule assembly and stability. Aggregation of hyper-

phosphorylated tau protein is a primarymarker of AD.10,56,

57 Moreover, numerous studies have implicated tau in the

pathogenesis of other neurological disorders, including

PD.58 Human MAPT contains 16 exons (Figure 6A), with

exons 2, 3, and 10 being alternatively spliced to generate

six isoforms. The sQTL exon that we identified was exon

3. Figure 6B shows the positional distribution and sQTL

p values of SNPs within 200 kb of MAPT exon 3 in cere-

bellum. In a local window including 300 bp of upstream

and downstream intronic regions, there were six signifi-

cant SNPs that were in high LD with the top sQTL SNP

rs62055489 (>100 kb from MAPT exon 3). Testing the ef-

fects of these six SNPs against all RBPs in the DeepBind

model, we identified a strong effect of rs17651213 (G>A)

on RBFOX binding (Figure 6C). We found that the SNP
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Figure 6. Using Regional Specificity of sQTL Signals to Prioritize Causal sQTL cis Variants and trans Regulators
(A) Top: Gene structure and six isoforms of human MAPT (tau) gene. Exons �1 and 14 are in the untranslated regions (UTRs). Primary
transcript of humanMAPT contains 13 exons (exons 4A, 6, and 8 are not transcribed in human brain). Among the 13 exons, exons 2, 3,
and 10 are alternatively spliced, generating six mRNA isoforms. Bottom: Functional domains of the longest full-length MAPT protein
isoform (including exons 2, 3, and 10).
(B) Plots showing distribution of all SNPs within 200 kb (upper) and all significant SNPs within 300 bp (lower) of MAPT exon 3 in cer-
ebellum.Window is extended 30 kb (upper) and 30 bp (lower). Each dot represents one SNP, color-coded according to its LDwith the top
sQTL SNP (rs62055489). y axis shows the significance of association (�log10(p value)) between each SNP and the sQTL exon. Horizontal
line indicates the significance cutoff (p ¼ 10�5). Genes in the UCSC Genome Browser (see Web Resources) are shown in panels below
plots.
(C) Bubble plot showing effects of six SNPs on RBP-RNA binding, as predicted by DeepBind. Axes show RBP binding scores of sequences
with reference allele (x axis) or alternative allele (y axis) for each RBP. Bubble size is proportional to the difference in DeepBind scores
between the two alleles.
(D) DeepBind variant map for SNP rs17651213 with the RBFOX binding site. Star indicates the position of the SNP.
(E) Radar plots showing significance (�log10(p value)) of the sQTL (MAPTexon 3 and rs17651213) andmean gene expression level (TPM)
of the RBP (RBFOX2) in each brain region.
(F) LD plot showing SNP rs17651213 (blue) in high LD with the top sQTL SNP (rs62055489; purple), 11 PD GWAS SNPs (GWAS p values
ranging from 2 3 10�118 to 2 3 10�6, green), and 1 AD GWAS SNP (GWAS p value ¼ 6 3 10�6, green).
(G) Diagram illustrating a mechanistic model for tissue-/cell-type-specific sQTLs.
created a consensus binding site of the RBFOX family of

splicing factors downstream of MAPT exon 3 (Figure 6D).

When we checked the expression levels of RBFOX1,

RBFOX2, and RBFOX3, we found that RBFOX2/3 had the

highest expression levels in cerebellum and cerebellar

hemisphere, two brain regions where the sQTL was also

significant (Figures 6E and S13).

RBFOX2 is a well-characterized splicing factor whose

binding downstream of alternative exons promotes exon
206 The American Journal of Human Genetics 107, 196–210, August
inclusion.59 SNP rs17651213 was located 88 bp down-

stream of MAPT exon 3. When the alternative allele that

creates the RBFOX binding site was present, we observed

greater inclusion of the exon (Figures S14 and S15), consis-

tent with the position-dependent effect of RBFOX2 bind-

ing on alternative splicing.59 Finally, in accordance with

the importance of tau protein in AD and PD pathogenesis,

we found that rs17651213 was in high LD with 11 PD

GWAS variants and 1 AD GWAS variant (Figure 6F).
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Overall, by integrating RBP motifs, region-specific RBP

gene expression, and sQTL pattern, we identified

rs17651213 as the likely causal variant that regulates

MAPT exon 3 splicing by creating an RBFOX2 binding

site downstream of the exon.

We also identified other brain region-specific sQTLs with

potential causal SNPs and RBP regulators. For example,

DeepBind prediction suggested that the SNP rs6580200

regulates splicing of CXXC5 exon 2 by disrupting an

HNRNPK binding site (Figure S16). This sQTL was signifi-

cant in cerebellar hemisphere, where HNRNPK had the

highest level of expression among 13 brain regions

(Figure S17). A second example was rs4077093, which

may regulate splicing of POU6F1 exon 4 by disrupting

NOVA1 binding (Figure S18). The sQTL was significant in

cerebellum and cerebellar hemisphere, where NOVA1 was

highly expressed (Figure S19). Using the well-defined

consensus motif of NOVA1 (YCAY), we performed a motif

scan and identified the effect of rs4077093 on NOVA1

binding. Specifically, rs4077093 (A>C) was predicted to

disrupt a NOVA1 motif within the exon and found to be

associated with increased exon inclusion, consistent with

previous reports that NOVA1 binding within alternative

exons promotes exon skipping.60
Discussion

Alternative splicing is known to influence biological func-

tions and disease processes, but much remains unknown

about the disease causality and underlying regulatory

mechanisms of genetically regulated alternative splicing

events. A number of studies have performed sQTL analyses

to interrogate genotype-splicing associations in human

cell lines or tissues, including brain where alternative

splicing is highly prevalent.20,26,61 However, previous

studies largely conducted sQTL analyses one tissue at a

time and did not compare and contrast sQTL signals across

multiple tissues or cell types. In this work, we analyzed

sQTLs in 1,209 human brain samples across 13 brain re-

gions. We identified regionally ubiquitous sQTLs with sig-

nificant signals across a large number of brain regions, as

well as regionally specific sQTLs whose significance was

restricted to specific brain regions. Many sQTLs were asso-

ciated with GWAS signals. Together, our study provides a

comprehensive catalog of genetically regulated alternative

splicing events in human brain and reveals their associa-

tions with neurological traits and diseases.

One major challenge in genetic association studies of

molecular and phenotypic traits is to identify the causal

variants and regulatory mechanisms underlying the

observed association. In an sQTL analysis, multiple SNPs

in LD with each other can be significantly associated

with the levels of exon splicing, and it is difficult to

pinpoint the specific variant(s) causal for the observed

sQTL signal. Our analysis of SNP significance as a function

of distance to sQTL exons suggests that the majority of
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sQTLs, especially those with strong effects on splicing,

likely have their causal variants located within the exonic

or proximal intronic (%300 bp of exon) regions. This

observation is consistent with prior findings that sequence

information within this window has a high predictive po-

wer for alternative splicing patterns.61,62 By examining the

SNP positions for regionally ubiquitous and regionally spe-

cific sQTLs, we uncover the likely molecular mechanisms

responsible for generating these two types of sQTLs.

Regionally ubiquitous sQTLs are enriched for SNPs located

on the 50 or 30 splice site. As splice sites play an essential

role in splicing, it is not surprising that SNPs strengthening

or weakening splice site signals have ubiquitous effects

across different brain regions or tissue types. By contrast,

regionally specific sQTLs tend to have SNPs located outside

the 50 or 30 splice site and are enriched for SNPs located in

exonic and intronic regions. Causal SNPs underlying

regionally specific sQTLs likely affect splicing by modu-

lating the interactions of tissue- or cell-type-specific

splicing factors with the pre-mRNA.

We developed an integrative strategy to fine map the

likely causal variants for brain region-specific sQTLs. We

assessed SNP effects on RBP-RNA binding and compared

brain region-specific RBP gene expression patterns and

sQTL signals to identify potential causal cis variants and

trans regulators for regionally specific sQTLs. Using this

strategy, we identified and highlighted the likely molecular

mechanisms for several brain region-specific sQTLs (MAPT,

CXXC5, POU6F1), in which SNPs created or disrupted the

binding sites of splicing factors with region-specific expres-

sion patterns. As the research community continues to

accumulate population-scale RNA-seq datasets61 as well

as RNA binding profiles and specificities of RBPs,63 we

envision that this integrative strategy can be applicable

to fine map causal variants of tissue- or cell-type-specific

sQTLs in diverse biological systems.

Our study highlights a molecular mechanism of how ge-

netic variants of broadly expressed genes can have tissue-

or cell-type-specific effects on splicing. As one example,

we found that a G-to-A SNP in MAPT (rs17651213) was

associated with increased inclusion of MAPT exon 3 and

created the consensus binding site of the splicing factor

RBFOX2. This association was specific to cerebellar tissues,

where RBFOX2 was highly expressed. This example illus-

trates a general scenario that a SNP alters the putative bind-

ing site of a trans splicing regulator within the RNA, but its

molecular impact is dependent on the concentration of

the regulator such that the SNP only alters splicing in tis-

sues or cell types where the regulator is highly expressed

(Figure 6G).

We should note that in our sQTL analysis, we defined

one sQTL SNP for an alternative splicing event in each

brain region by selecting the closest SNP with the most sig-

nificant association. One limitation of this approach is that

an alternative splicing eventmay possibly be influenced by

multiple independent (i.e., non-LD) SNPs in each brain re-

gion, but this scenario is not currently addressed by our
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analysis. Another limitation of this study is that it used

bulk tissues from the GTEx project, and samples from

each brain region represented a mixture of multiple cell

types. This may dilute the power of detecting tissue- or

cell-type-specific sQTLs, especially if the cell type affected

represents a minor population of cells in the bulk

tissues. For example, it is well known that RBFOX2 expres-

sion is highest in neuronal cells64–66 and the cerebellum

has the highest density of neurons among brain re-

gions.67,68 Therefore, the significant association between

rs17651213 and MAPT exon 3 in cerebellar tissues could

be related to neuron-specific splicing regulation through

RBFOX2, and it is possible that a stronger SNP-splicing as-

sociation can be observed specifically in neurons. Future

studies using population-scale RNA-seq data of purified

cell types or single cells may further expand the catalog

and our mechanistic understanding of genetically regu-

lated alternative splicing events in human brain.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2020.06.002.
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