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Abstract: This paper proposes a hybrid classifier for polarimetric SAR images. The feature 
sets consist of span image, the H/A/α decomposition, and the GLCM-based texture features. 
Then, a probabilistic neural network (PNN) was adopted for classification, and a novel 
algorithm proposed to enhance its performance. Principle component analysis (PCA) was 
chosen to reduce feature dimensions, random division to reduce the number of neurons, and 
Brent’s search (BS) to find the optimal bias values. The results on San Francisco and 
Flevoland sites are compared to that using a 3-layer BPNN to demonstrate the validity of 
our algorithm in terms of confusion matrix and overall accuracy. In addition, the importance 
of each improvement of the algorithm was proven. 

Keywords: polarimetric SAR; Probabilistic neural network; gray-level co-occurrence 
matrix; principle component analysis; Brent’s Search 

 

1. Introduction 

The classification of different objects, as well as different terrain characteristics, with single 
channel monopolarisation SAR images can carry a significant amount of error, even when operating 
after multilooking [1]. One of the most challenging applications of polarimetry in remote sensing is 
landcover classification using fully polarimetric SAR (PolSAR) images. 
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The Wishart maximum likelihood (WML) method has often been used for PolSAR classification [2]. 

This method uses the amplitudes of the elements in the covariance or coherency matrices. However, it 
does not explicitly take into consideration the phase information within polarimetric data, which plays 
a direct role in the characterization of a broad range of scattering processes. Furthermore, the 
covariance or coherency matrices are determined after spatial averaging and therefore can describe 
only stochastic scattering processes, while certain objects, such as man-made objects, are better 
characterized at a pixel-level [3]. 

To overcome above shortcomings, polarimetric decompositions were introduced with an aim to 
establish a correspondence between the physical characteristics of the considered areas and the 
observed scattering mechanisms. There are seven famous decomposition methods: Pauli [4],  
Krogager [5], Freeman [6], Huynen [7], Barnes [8], Cloude [9] and Holm [8]. The most effective 
method among these is the Cloude decomposition, also known as the H/A/α method.  

Recently, texture information has been extracted and used as a parameter to enhance the 
classification results. The texture parameters can be defined as many types, such as entropy [10], 
fractal dimension [11], lacunarity [12], wavelet energy [13], semivariograms [14], and gray-level  
co-occurrence matrix [15]. Particularly, the gray-level co-occurrence matrices (GLCM) were already 
successfully applied to classification problems. 

Thus, we chose the combination of H/A/α and GLCM as the parameter set of our method. The next 
problem is how to choose the best classifier. In the past, standard multi-layered  
feed-forward NNs with a back propagation (BP) algorithm have been applied for SAR image 
classification [16]. BPs are effective methods since they do not involve complex models and equations 
as compared to traditional regression analysis. In addition, they can easily adapt to new data through a 
re-training process. 

However, BP needs much effort to determine the architecture of networks and more computations 
for training. Moreover, BP yields deterministic but not probabilistic results. This makes it technically 
impractical in classifications. Probabilistic neural networks (PNNs), therefore, are effective 
alternatives that are faster in determining the network architecture and in training. Moreover, PNNs 
provide probabilistic viewpoints and deterministic classification results [17].  

The input weights and layer weights of PNN can be set directly from the available data, while the 
bias traditionally is difficult to determine, so it is usually obtained manually either by iterative 
experiments or by an exhaustive algorithm [18]. In this paper we propose a novel weights/biases 
setting method. Available input/target pairs are divided into training and validation subsets to reduce 
the number of neurons, and Brent’s method [19] is adopted to find the optimal biases values since the 
problem can be regarded as a 1-D interval location problem. In addition, Principal Component 
Analysis (PCA) is employed [20] in order to reduce the feature dimensions and computation time.  

The structure of this paper is as follows: In the next section, we introduce the concept of Pauli 
decomposition. Section 3 presents the feature set, namely, the span image, the H/A/α decomposition, 
and the feature derived from GLCM. In section 4, the mechanism, structure and shortcomings of PNNs 
are introduced. Section 5 proposes our method and expatiates on the three important improvements: 
PCA, random division and optimization by Brent’s Search. Section 6 applied our method to terrain 
classification on San Francisco site, and find that our method performs better than 3-layer BPNN 
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method. Section 7 applied our method to crop classification on Flevoland site. Section 8 discusses the 
significances of combined feature sets, random division, and PCA. Finally, Section 9 concludes  
this paper. 

2. Pauli Decomposition 

2.1. Basic Introduction 

The features are derived from the multilook coherence matrix of the polarimetric SAR data. 
Suppose S stands for the measured scattering matrix: 

 hh hv hh hv

vh vv hv vv

S S S S
S

S S S S
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (1) 

where Sqp represents the scattering coefficients of the targets, p the polarization of the incident field, q 
the polarization of the scattered field. Shv equals to Svh since reciprocity applies in a monostatic  
system configuration.  

The Pauli decomposition expresses the scattering matrix S in the so-called Pauli basis, which is 
given by the following three 2×2 matrices: 

 
1 0 1 0 0 11 1 1, ,
0 1 0 1 1 02 2 2a b cS S S⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (2) 

Thus, S can be expressed as: 
 a b cS aS bS cS= + +  (3) 

where:  

 , , 2
2 2

hh vv hh vv
hv

S S S Sa b c S+ −
= = =  (4) 

An RGB image could be formed with the intensities |a|2, |b|2, |c|2. The meanings of Sa, Sb, and Sc are 
listed in Table 1. 

Table 1. Pauli bases and their corresponding meanings. 

Pauli Bases Meaning 
Sa Single- or odd-bounce scattering 
Sb Double- or even-bounce scattering 

Sc 
Those scatterers which are able to return the 

orthogonal polarization to the one of the incident 
wave (forest canopy) 

2.2. Coherence Matrix 

The coherence matrix is obtained as: 

 
11 12 13
*

12 22 23
* *

13 23 33

[ , , ][ , , ]T

T T T
T a b c a b c T T T

T T T

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

 (5) 
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The average of multiple single-look coherence matrices is the multi-look coherence matrix. 
(T11,T22,T33) usually are regarded the channels of the polarimetric SAR images. 

3. Feature Extraction 

The proposed features can be divided into three types, which are explained below. 

3.1. Span 

The span or total scattered power indicates the received power by a fully polarimetric system and 
is given by: 

 
2 2 22hh vv hvM S S S= + +  (6) 

3.2. H/A/Alpha Decomposition 

Cloude and Potter [9] proposed an algorithm to identify in an unsupervised way polarimetric 
scattering mechanisms in the H-α plane. The method extends the two assumptions of traditional ways: 
1) azimuthally symmetric targets; 2) equal minor eigenvalues λ2 and λ3. 

T can be rewritten as: 

 
1

3 2 3

3

0 0
0 0
0 0

HT U U
λ

λ
λ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (7) 

 
1 2 3

3 1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

cos cos cos
sin cos exp( ) sin cos exp( ) sin cos exp( )
sin sin exp( ) sin sin exp( ) sin sin exp( )

U i i i
i i i

α α α
α β δ α β δ α β δ
α β γ α β γ α β γ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (8) 

Then, the pseudo-probabilities of the T matrix expansion elements are defined as:  

 3

1

j
i

jj

P
λ

λ
=

=
∑

 (9) 

The entropy indicates the degree of statistical disorder of the scattering phenomenon. It can be 
defined as: 

 
3

3
1

log   0 1i i
i

H P P H
=

= − ≤ ≤∑  (10) 

For high entropy values, a complementary parameter (anisotropy) is necessary to fully characterize 
the set of probabilities. The anisotropy is defined as the relative importance of the second scattering 
mechanisms [21]: 

 2 3

2 3

 0 1P PA A
P P
−

= ≤ ≤
+

 (11) 

The four estimates of the angles are easily evaluated as: 

 
3

1
[ , , , ] [ , , , ]i

i
Pα β δ γ α β δ γ

=

=∑  (12) 

Thus, vectors from coherence matrix can be represented as (H, A, α , β , δ , γ ). 
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3.3. Texture Features 

The Gray level co-occurrence matrix (GLCM) is a text descriptor which takes into account the 
specific position of a pixel relative to another. The GLCM is a matrix whose elements correspond to 
the relative frequency of occurrence of pairs of gray level values of pixels separated by a certain 
distance in a given direction [22]. Formally, the elements of a GLCM G(i,j) for a displacement vector 
(a,b) is defined as 

 ( , ) |{( , ), ( , ) : ( , ) & ( , ) } |G i j x y t v I r s i I t v j= = =  (13) 
Where (t,v) = (x+a, y+b), and |•| is the cardinality of a set. The displacement vector (a,b) can be 

rewritten as (d, θ) in polar coordinates. 
GLCMs are suggested to calculate from four displacement vectors with d = 1 and θ = 0°, 45°, 90°, 

and 135° respectively. In this study, the (a,b) are chosen as (0,1), (−1,1), (−1,0), and (−1,−1) 
respectively, and the corresponding GLCMs are averaged. 

The four features are extracted from normalized GLCMs, the sum of which is equal to 1. Suppose 
the normalized GLCM value at (i,j) is p(i,j), and their detailed definition are listed in Table 2. 

Table 2. Properties of GLCM. 

Property Description Formula 

Contrast Intensity contrast between a pixel and its neighbor  
2

,

| | ( , )
i j

i j p i j−∑  

Correlation 
Correlation between a pixel and its neighbor (μ denotes the 

expected value, and σ the standard variance) ,

( )( ) ( , )i j

i j i j

i j p i jμ μ
σ σ

− −
∑

Energy Energy of the whole image 
2

,
( , )

i j
p i j∑  

Homogeneity Closeness of the distribution of GLCM to the diagonal 
,

( , )
1 | |i j

p i j
i j+ −∑  

3.4. Total Features 

The texture features consist of 4 GLCM-based features, which should be multiplied by 3 since there 
exist three channels (T11,T22,T33). In addition, there are one span feature, and six H/α parameters. In all, 
the total features are 1 + 6 + 4 × 3 = 19. 

4. Probabilistic NN 

4.1. Mechanism of PNN 

Neural networks are widely used in pattern classification since they do not need any information 
about the probability distribution and the a priori probabilities of different classes. PNNs are basically 
pattern classifiers. They combine the well known Bayes decision strategy with the Parzen  
non-parametric estimator of the probability density functions (PDF) of different classes. PNNs have 
been of interest because they yield a probabilistic output and are easy to implement. 
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Taking a two categories situation as an example, we should decide the known state of nature θ to be 
either θA or θB. Suppose a set of measurements is obtained as p-dimensional vector x = [x1, …, xp], the 
Bayes decision rule becomes: 

 A A A A B B B

B A A A B B B

if ( ) ( )
d( )

if ( ) ( )
h l f x h l f x

x
h l f x h l f x

θ
θ

>⎧
= ⎨ <⎩

 (14) 

Here, fA(x) and fB(x) are the PDF for categories A and B, respectively. lA is the loss function 
associated with the wrong decision d(x) = θB when θ = θA, lB is the loss function associated with the 
wrong decision d(x) = θA when θ = θB, and the losses associated with correct decisions are taken to  
be zero. hA and hB are the a priori probability of occurrence of patters from category A and B, 
respectively.  

In a simple case that assumes the loss function and a priori probability are equal, the Bayes rule 
classifies an input pattern to the class with higher PDF. Therefore, the accuracy of the decision 
boundaries depends on what the underlying PDFs are estimated. Parzen’s results can be extended to 
estimate in the special case where the multivariate kernel is a product of univariate kernels. In the 
particular case of the Gaussian kernel, the multivariate estimates can be expressed as:  

 
T

A A
A /2 2

1

( ) ( )1 1( ) exp
(2 ) 2

m
i i

p p
i

x x x xf x
mπ σ σ=

⎡ ⎤− −
= −⎢ ⎥

⎣ ⎦
∑  (15) 

Here, m is the number of training vectors in category A, p is the dimensionality of the training 
vectors, xAi is the ith training vector for category A, and σ is the smoothing parameter. It should be 
noted that fA(x) is the sum of small multivariate Gaussian distributions centered at each training sample, 
but the sum is not limited to being Gaussian.  

4.2. PNN Structure 

Figure 1 shows the outline of PNN. When an input is presented, the first layer computes distances 
from the input vector to the input weights (IW), and produces a vector whose elements indicate how 
close the input is to the IW. The second layer sums these contributions for each class of inputs to 
produce as its net output a vector of probabilities. Finally, a compet transfer function on the output of 
the second layer picks the maximum of these probabilities, and produces a 1 for that class and a 0 for 
other classes. 

The mathematical expression of PNN can be expressed as: 
 radbas( IW )a x b= − i  (16) 
 compet(LW )y a= i  (17) 

In this paper, the radbas is selected as:  
 2radbas( ) exp( )n n= −  (18) 

The compet function is defined as: 
 compet( )= [0 0 ... 0 1 0 ... 0], ( ) max( )i i

n e n i n= =  (19) 

This type of setting can produce a network with zero errors on training vectors, and obviously it 
does not need any training.  
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Figure 1. Outline of PNN (R, Q, and K represent number of elements in input vector, 
input/target pairs, and classes of input data, respectively. IW and LW represent input 
weight and layer weight, respectively). 

 

4.3. Shortcomings of Traditional PNN 

Suppose P and T denote the set of training vector x and corresponding target vector y, namely,  
P = [x1, x2, …xQ], and T = [y1, y2, yQ]. IW and LW are set traditionally as follows: 

 IW P=  (20) 
 LW T=  (21) 

However, it is obvious that Q is usually very large, and then the net will be too big and consume too 
much computation time. On the other hand, to simplify the setting of bias b, all of its components are 
considered as equal [23]. Even so, the setting of b is still a challenge. Although errors on training 
vectors are always zero, the errors on test vectors are greatly dependent with the value of b.  

If it is too small, the spread of each radial basis layer function becomes too large, and the network 
will take too many nearby design vectors into account, moreover, the radial basis neurons will output 
large values (near 1) for all the inputs used to design the network. If it is too larger, the spread 
becomes near zero, and the network will degrades as a nearest neighbor classifier. 

Figure 2. The outline of our method. 

A single 
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optimization 
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5. A Novel Method of Weights/Biases Setting 

Here we propose a novel method to solve the above two problems. The main idea is shown in 
Figure 2. Our improvement lies in the PCA, the random division, and the single variable optimization. 

5.1. Feature Reduction 

Excessive features increase computation times and storage memory. Furthermore, they sometimes 
make classification more complicated, which is called the curse of dimensionality. It is necessary to 
reduce the number of features. 

Principal component analysis (PCA) is an efficient tool to reduce the dimensionality of a data set 
consisting of a large number of interrelated variables, while retaining most of the variations. It is 
achieved by transforming the data set to a new set of ordered variables. This technique has three 
effects: it orthogonalizes the components of the input vectors so that uncorrelated with each other, it 
orders the resulting orthogonal components so that those with the largest variation come first, and 
eliminates those components contributing the least to the variation in the data set.  

It should be noted that the input vectors should be normalized to have zero mean and unity variance 
before performing PCA, which is shown in Figure 3. 

Figure 3. Using normalization before PCA. 

 

The normalization is a standard procedure. Details about PCA can be found in Ref. [24]. 

5.2. Random Division 

Realistic sample numbers Q are generally very large, which leads to a quite large PNN. Thus, we 
divide the available data into two subsets: training subset and validation subset. The ratio of each is 
called trainRatio and validRatio respectively. In order to save the storage room of the net and to fasten 
the computation, the trainRatio is set as small as possible, and meanwhile it should not affect the 
accuracy of the NN.  

5.3. Optimization by Brent’s Search 

The goal of finding optimal b can be obtained by solving this problem: find the minimum MSE on 
validation subset of the corresponding b. This can be depicted as a single-variable optimization 
problem in the dash-line rectangle in Figure 2. Brent’s Search (BS) method is adopted to solve this 
optimization problem. 

BS is a linear search, a hybrid of the golden section search and a quadratic interpolation. Golden 
section search has a first-order rate of convergence, while polynomial interpolations have an 
asymptotic rate faster than super-linear. On the other hand, the rate of convergence for the golden 
section search starts when the algorithm is initialized, whereas the asymptotic behavior for the 
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polynomial interpolations can take many iterations to become apparent. BS attempts to combine the 
best features of both approaches. BS has the advantage that it does not require computation of the 
derivative, which greatly fits the optimization problem. 

6. Terrain Classification 

The NASA/JPL AirSAR L-band data for the San Francisco (California, USA) area was used for the 
experiments. Its size is 1,024 × 900. In order to reduce the computations, the sub-area with size 
600 × 600 was extracted from the left-upper point of original image. The ground truth of the test site 
can be found at Ref. [2]. 

Quantitative information about the experiment is described as follows, where ‘●’ denotes 
parameters known before simulation and ‘♦’ denotes the parameters obtained at the initial stage of  
the experiment. 

 Number of features: 19 
 Number of reduced features by PCA: 11 

(obtained by performing PCA on total 
available pairs) 

 Location of Sub San Francisco Area:  
 X-range: 1–600 
 Y-range: 1–600 

 Location of Training/Test Rectangular 
Area (the first and second pixels denote 
the coordinate of the left-upper point of 
the rectangle, the third and forth pixels 
denote the width and length of the 
rectangle) 

 Sea:  
 Training Area1 [100 500 60 60]  
 Training Area2 [300 200 60 60] 
 Test Area [500 50 60 60] 

 Urban: 
 Training Area1 [450 400 60 60] 
 Training Area2 [500 250 60 60] 
 Test Area [500 530 60 60] 

 Vegetated 
 Training Area1 [50 50 60 60] 
 Training Area2 [50 250 60 60] 
 Test Area [320 450 60 60] 

 Parameters of GLCM 
 local area: 5 × 5 (pixels) 

 Number of gray levels: 8 
 Offset: [0 1] 

 Properties of available training/target 
pairs 

 Pairs = 21,600 
 R = 11 
 K = 3 
 P (size 11 × 21,600) 
 T (size 3 × 21,600) 

 Training Ratio: 0.01 (obtained 
by simple iterative tests) 

 Validation Ratio: 0.99 
 Properties of NN optimized by our 

approach 
 Q = Pairs × trainRatio = 216 
 b = 4.73(obtained by BS method) 
 IW = P (size: 216 × 11) 
 LW = T (size: 3 × 216) 

 Properties of BS Method 
 Tolerance X Value: 1e-3 
 Tolerance Function Value: 1e-5 
 Maximum Iterative Steps: 30 

 Hardware: Pentium 4 CPU 1.66 GHz, 
512 MB of RAM 

 Software: PolSARpro v4.0, Neural 
Network Toolbox of Matlab 7.8(R2009)
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6.1. Denoising by Lee Filter 

The sub-area (600 × 600) is shown in Figure 4(a). The Refined Lee filter (Window size = 7) is used 
to reduce the speckle noise and the results are shown in Figure 4(b). The Lee filter adapts the amount 
of filtering to the local statistics. Homogeneous areas are filtered with the maximum strength where 
point scatterers are let unfiltered. The refined filter could use directional windows to preserve edges 
and heterogeneous features [25].  

Figure 4. Pauli image of sub-area of San Francisco. 

    
    (a) The original      (b) The refine Lee filter results 

6.2. Full Features Set 

Then, the basic span image and three channels (T11,T22,T33) are easily obtained and shown in  
Figure 5. The parameters of H/A/Alpha decomposition are shown in Figure 6. The GLCM-based 
parameters of T11, T22, T33 are shown in Figures 7–9. 

Figure 5. Basic span image and three channels image. 

    
(a) Span (dB)   (b) T11 (dB)  (c) T22 (dB)   (d) T33(dB) 

Figure 6. Parameters of H/A/Alpha decomposition. 

    
(a) H   (b) A    (c) α    (d) β  
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Figure 6. Cont. 

  
(e) δ    (f) γ  

Figure 7. GLCM-based features of T11. 

    
(a) Contrast    (b) Correlation (c) Energy (d) Homogeneity 

Figure 8. GLCM-based features of T22. 

    
(a) Contrast      (b) Correlation (c) Energy (d) Homogeneity 

Figure 9. GLCM-based features of T33. 

    
(a) Contrast      (b) Correlation (c) Energy (d) Homogeneity 

6.3. Feature Reduction by PCA 

The curve of cumulative sum of variance with dimensions of reduced vectors via PCA is shown in 
Figure 10. The detailed data are listed in Table 3. It shows that only 11 features, half the original 
features only, could preserve 96.36% of variance. 
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Figure 10. The curve of cumulative sum of variance with dimensions. 
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Table 3. Detailed data of PCA on 19 features. 

Dimensions 1 2 3 4 5 6 7 8 9 
Variance (%) 37.97 50.81 60.21 68.78 77.28 82.75 86.27 89.30 92.27
Dimensions 10 11 12 13 14 15 16 17 18 

Variance (%) 94.63 96.36 97.81 98.60 99.02 99.37 99.62 99.80 99.92
 

Thus, 11 new features obtained via PCA are input to the NN for classification training. 

6.4. Training Preparation 

The classification is run over three classes, the sea, the urban areas and the vegetated zones. The 
training and testing areas are selected manually shown in Figures 11(a)-(b), respectively. Each square 
has a size of 60×60. In total, there are 21,600 pixels for training, and 10,800 pixels for testing. In this 
experiment, trainRatio is adjusted finally as 0.01, namely, the validRatio equals 0.99. In this way, the 
network only has 1% neurons of that constructed by traditional approach. The training subset and 
validation subset of the training area are divided randomly. 

Figure 11. Sample data of San Francisco (Red denotes sea, green urban areas, blue 
vegetated zones). 

     

(a) Training area    (b) Testing area 

6.5. Weights/Biases Setting 

The IW and LW are easily set according to our novel approach, and the number of neurons 
decreases from 21,600 to only 216. The b is estimated by BS method. Its initial range is set  
as [0.01, 20], which is large enough to contain the optimal point. The curve of classification error 
versus the steps is shown in Figure 12. It is evident that the classification error converges at only three 
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steps shown in the red dot. However, BS will continue to search the best b value since the tolerance of 
b is set as small as 1e-3. The whole process of the change of b is shown in Figure 13. 

Figure 12. The curve of error versus step. 
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Figure 13. The curve of b versus step. 
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The optimal b is found as 4.73, with the smallest error 1.557%, namely, the highest classification 

accuracy 98.44%. 

6.6. Application to the Whole Image 

We use the trained PNN to classify the whole image, and the results are shown in Figure 14. The 
brims of length 3 are not calculated considering the local area of GLCM, so the size here is only 
594 × 594. 

Figure 14. Classification results of the whole image. 
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From Figure 14 it makes clear that the sea can be classified perfectly, while the vegetated and urban 
areas are easily inter-confused. The next section will calculate the confusion matrix which reflects the 
degree of confusion between the three classes. 

6.7. Comparison with Other Approaches 

Finally, our method is compared to the 3-layer BPNN [16]. The confusion matrices (CM) by each 
methods on training area and testing area are listed in Table 4. The element of ith row and jth column 
in the 3 × 3 matrix represents the amount of pixels belonging to class j as user defined are assigned to 
class i after the supervised classification.  

Table 4. Comparison of confusion matrix.(O denotes the output class, T denotes the target class). 

  Training Area Testing Area 
  Sea(T) Urb(T) Veg(T) Sea(T) Urb(T) Veg(T)

3-layer BPNN 

Sea(O) 
7158 

33.1%
4 

0.0% 
60 

0.3% 
3600 

33.3%
42 

0.4% 
5 

0.0% 

Urb(O) 
0 

0% 
6882 

31.9% 
136 

0.6% 
0 

0.0% 
3429 

31.7% 
355 

3.3% 

Veg(O) 
42 

0.2% 
314 

1.4% 
7004 

32.4% 
0 

0.0% 
129 

1.2% 
3240 

30.0% 

Our Method 

Sea(O) 
7150 

33.1%
0 

0.0% 
76 

0.4% 
3597 

33.3%
33 

0.3% 
0 

0.0% 

Urb(O) 
2 

0% 
7074 

32.8% 
74 

0.3% 
0 

0.0% 
3445 

31.9% 
354 

3.3% 

Veg(O) 
48 

0.2% 
126 

0.6% 
7050 

32.6% 
3 

0.0% 
122 

1.1% 
3246 

30.1% 
 

It is obvious that the classification accuracies of our proposed method in training area are all higher 
than 32.5% (33.3% denotes the perfect classification). For the testing area, classification accuracies are 
all higher than 30.1%. The main drawback is around 3.3% of vegetated zones are misclassified as 
urban area. 

Table 5. Overall accuracies (values are given in percent). 

 Training Area Testing Area
3-layer BPNN 97.4% 95.1% 
Our Method 98.5% 95.3% 

The overall accuracies are calculated as CM11 + CM22 + CM33 and listed in Table 5, that 
demonstrates our method has a higher overall accuracy in both training area and testing area than those 
of 3-layer BPNN. The reason our method outperforms the 3-layer BPNN lies in not only the fact  
that PNN is adept at predicting the probabilistic results, but also the selected features sets are  
more discernable. 
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7. Crop Classification 

Flevoland, an agricultural area in The Netherlands, was chosen as another example. The site is 
composed of strips of rectangular agricultural fields. The scene is designated as a supersite for the 
earth observing system (EOS) program, and is continuously surveyed by the authorities. The ground 
truth of the test site can be seen in Ref [26].  

 
 Number of features: 19 
 Number of reduced features by PCA: 13 

(obtained by performing PCA on total 
available pairs) 

 Location of Train/Test Rectangular 
Area  

 Bare Soil 1:  
 Train Area [240 300 20 20]  
 Test Area [770 490 20 20] 

 Bare Soil 2 
 Train Area [335 440 20 20] 
 Test Area [420 425 20 20] 

 Barley 
 Train Area [285 500 20 20] 
 Test Area [765 425 20 20] 

 Forest 
 Train Area [959 155 20 20] 
 Test Area [900 490 20 20] 

 Grass 
 Train Area [535 240 20 20] 
 Test Area [500 303 20 20] 

 Lucerne 
 Train Area [550 495 20 20] 
 Test Area [505 550 20 20] 

 Peas 
 Train Area [523 330 20 20] 
 Test Area [436 200 20 20] 

 Potatoes 
 Train Area [32 40 20 20] 
 Test Area [655 307 20 20] 

 Rapeseed 
 Train Area [188 200 20 20] 
 Test Area [280 250 20 20] 

 Stem Beans 
 Train Area [800 350 20 20] 
 Test Area [777 384 20 20] 

 Sugar beet 

 Train Area [877 444 20 20] 
 Test Area [650 225 20 20] 

 Water 
 Train Area [965 50 20 20] 
 Test Area [961 201 20 20] 

 Wheat 
 Train Area [780 710 20 20] 
 Test Area [700 520 20 20] 

 Parameters of GLCM 
 local area: 5×5 (pixels) 
 Number of gray levels: 8 
 Offset: [0 1] 

 Properties of available training/target 
pairs 

 Pairs = 5200 
 R = 13 
 K = 13 
 P (size 13 × 5200) 
 T (size 13 × 5200) 

 Training Ratio: 0.2 (obtained 
by simple iterative tests) 

 Validation Ratio: 0.8 
 Properties of NN optimized by our 

approach 
 Q = Pairs × trainRatio = 1040 
 b = 1.0827(obtained by BS method) 
 IW = P (size: 13 × 1040) 
 LW = T (size: 13 × 1040) 

 Properties of BS Method 
 Tolerance X Value: 1e-3 
 Tolerance Function Value: 1e-5 
 Maximum Iterative Steps: 30 

 Hardware: Pentium 4 CPU 1.66 GHz, 
512 MB of RAM 

 Software: PolSARpro v4.0, Neural 
Network Toolbox of Matlab 7.8(R2009)

7.1. Refine Lee Filter 

The Pauli image of Flevoland is shown in Figure 15(a), and the refined Lee filtered image (Window 
Size = 7) is shown in Figure 15(b). 
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Figure 15. Pauli Image of Flevoland (1024 × 750). 

  
 (a) The original    (b) The refined Lee filter results 

7.2. Full Features 

The basic span image and three channels (T11,T22,T33) are easily obtained and shown in Figure 16. 
The parameters of H/A/Alpha decomposition are shown in Figure 17. The GLCM-based parameters of 
T11, T22, T33 are shown in Figures 18–20. 

Figure 16. Basic span image and three channels image. 

    
(a) Span (dB)             (b) T11 (dB)          (c) T22 (dB)           (d) T33(dB) 

Figure 17. Parameters of H/A/Alpha decomposition. 

   
 (a) H                         (b) A                    (c) α   

   
(d) β                      (e) δ                    (f) γ  
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Figure 18. GLCM-based features of T11. 

    
(a) Contrast  (b) Correlation  (c) Energy  (d) Homogeneity 

Figure 19. GLCM-based features of T22. 

    
(a) Contrast  (b) Correlation  (c) Energy  (d) Homogeneity 

Figure 20. GLCM-based features of T33. 

    
(a) Contrast  (b) Correlation  (c) Energy  (d) Homogeneity 

7.3. Feature Reduction 

The curve of cumulative sum of variance with dimensions of reduced vectors via PCA is shown in 
Figure 21. The detailed data are listed in Table 6. It shows that only 13 features, which are only half 
the original features, could preserve 98.06% of variance. 

Figure 21. The curve of cumulative sum of variance with dimensions. 
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Table 6. Detailed data of PCA on 19 features. 

Dimensions 1 2 3 4 5 6 7 8 9 
Variance (%) 26.31 42.98 52.38 60.50 67.28 73.27 78.74 82.61 86.25
Dimensions 10 11 12 13 14 15 16 17 18 

Variance (%) 89.52 92.72 95.50 98.06 98.79 99.24 99.63 99.94 99.97

7.4. Training Preparation 

The classification is run over 11 classes, bare soil 1, bare soil 2, barley, forest, grass, Lucerne, 
peas, potatoes, rapeseed, stem beans, and sugar beet. They are selected manually according to the 
ground truth [26]. The training set and testing set are shown in Figure 22. Each square has a size of 
20 × 20. In total, there are 5,200 pixels for training, and 5,200 pixels for testing.  

Since the types of classes increase (3 to 13) while the available data decrease (21,800 to 5,200), 
thus, we should dispose more data to the training subset. Finally, trainRatio is adjusted as 0.2, while 
validRatio is set as 0.8. In this way, the network only has 1/5 neurons of that constructed by traditional 
approach. The training subset and validation subset of the training area are divided randomly. 

Figure 22. Sample data areas of Flevoland. 

    

BareSoil 1

BareSoil 2

Barley

Forest

Grass

Lucerne

Peas

Potatoes

RapeSeed

StemBeans

SugarBeet

Water

Wheat

 
(a) Training Set (b) Testing Set   (c) Legend of Colors 

7.5. Weights/Biases Setting 

The IW and LW are easily set according to our novel approach, and the number of neurons 
decreases from 5200 to only 1040. The b is estimated by BS method. Its initial range is set as before. 
The curve of classification error versus the steps is shown in Figure 23. It is evident that the 
classification error reaches the minimum at 17th steps shown in the red dot. The whole process of the 
change of b is shown in Figure 24. 

Figure 23. The curve of error versus step. 
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Figure 24. The curve of b versus step. 
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The optimal b is found as 1.0827, with the smallest error 7.8%, namely, the highest classification 

accuracy on the validation subset of training area is 98.44%. 

7.6. Classification Results 

The confusion matrices on training area and testing area are calculated and listed in Figure 25 and 
Figure 26. The overall accuracy of our method on training area and test area are 93.71% and  
86.2% respectively.  

We apply our method on the whole image. The results are shown in Figure 27. From Figure 27 it is 
clear that our method can classify most of areas correctly. 

Figure 25. Confusion matrix comparison on train area (values are given in percent) 
The overall accuracy is 93.71%. 
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Figure 26. Confusion matrix comparison on test area (values are given in percent) 
The overall vccuracy is 86.2%. 
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Figure 27. Classification Map of our method. 

 

8. Discussion 

The BS has an important effect on our algorithm as shown in Figure 12 and Figure 23. It can guide 
users to find the optimal b value in quite short steps. Otherwise, the users will take a long time with the 
help of exhaustive search algorithm. The function of the combined feature, random division and PCA 
will be discussed in detail at following paragraphs. 
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8.1. Single Type of Feature Set versus Combined Feature Sets 

The feature sets can be divided into two types. One is the polarimetric feature set, which contains 
the span, the six H/A/α parameters; the other is the texture feature set, which contains the properties 
extracted from the GLCM. 

Table 7 lists the classification accuracy of classifiers using polarimetric feature set, texture feature 
set, and combined feature set. It indicates that the polarimetric features contribute most to the 
classification while the texture feature contribute less. Then, we can find that the combined feature set 
performs better than each single. Thus, our classifier using combined feature set can be regarded as an 
feature fusion method. 

Table 7. Comparison of PNNs using polarimetric feature set, texture feature set, and 
combined feature set (TR denotes Classification Accuracy of Total Random). 

Site 
Polarimetric feature 

set 
Texture feature 

set 
Combined feature 

set 
San Francisco 

(TR=33.3%) 
Training Area 97.1% 59.9% 98.5% 

 Test Area 87.4% 45.9% 95.3% 
Flevoland 
(TR=7.69%) 

Training Area 92.2% 48.0% 93.7% 

 Test Area 72.2% 24.1% 86.2% 

8.2. With and without Random Division 

If we do not use the random division, the structure of PNN will increase 1/trainRatio times. 
Consequently, the computation will become a burden with very little improve on classification  
overall accuracy. Taking the San Francisco area as the example, four square areas of different size are 
picked out randomly from the image, and are classified by PNNs with and without random division. 
The computation time and overall accuracy of each are listed in Table 8. 

Table 8. Comparison of PNN with and without our weights/biases setting (RD denotes 
Random Division). 

Area Size 
Computation Time Overall Accuracy 

Without RD With RD Ratio Without RD With RD 
10 × 10 1.0818 0.0231 46.8 94.8% 94.9% 
20 × 20 4.0803 0.0386 105.7 95.5% 95.5% 
30 × 30 22.4270 0.0751 298.6 96.3% 96.2% 
40 × 40 58.1409 0.1125 516.8 95.9% 95.4% 

 
Table 8 indicates that the computation time of traditional method is only 46 times of that of our 

method for 10 × 10 area, however, the ratio rockets to 516 for 40 × 40 area. Moreover, for a larger size 
area, such as 50 × 50, it cannot work because of the lack of memory. 
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From another point of view, the overall accuracy of traditional method was expected to be much 
higher than that of our method since it uses a great many neurons, whereas, in fact, they are nearly the 
same. The reason may consist of the optimization of b in our method. Accordingly, our method of 
weights/biases setting is valid and effective, and it is superior to traditional method in terms of 
computation time and storage room while it can maintain a high overall accuracy. 

8.3. With and without PCA 

PNNs with and without PCA are investigated in the same manner as in Section 7.1. Their 
computation times are depicted in Figure 28, which indicates that PNN with PCA enjoys a less 
computation time than that of PNN without PCA. Their time differences are gradually becoming large 
as the width of the randomly selected area is increasing. 

In addition, the overall accuracies of these two PNNs are observed. It should be noted that input 
data of the PNN without PCA still should be normalized although the PCA is omitted, otherwise the 
performance of PNN will decrease rapidly. 

The overall accuracies obtained by the two PNNs are pictured in Figure 29. It demonstrates that the 
PNN with PCA outperforms PNN without PCA on the small test area (width < 40). As the area 
becomes large (40 < width < 47), the PNN without PCA is better. Finally, as the area becomes large 
enough (width > 47), these performances of the two PNNs are nearly equivalent. Therefore, our 
method embedding PCA can performs faster, and has no loss of overall accuracy. 

Figure 28. Computation time with square width. 
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Figure 29. The overall accuracy versus square width. 
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9. Conclusions 

In this paper, a hybrid feature set has been introduced which is made up of the span image, the 
H/A/α decomposition, and the GLCM-based texture features. Then, a probabilistic neural network has 
been established. We proposed a novel weights/biases setting method based on Brent’s method and 
PCA. The method can decrease the feature set, reduce the number of neurons, and find optimal  
bias values. 

Experiments of terrain classification on a San Francisco site and a crop classification on Flevoland 
show that our method can obtain good results which are more accurate than those of 3-layer BPNN. 
Afterwards, combined feature set, random division and PCA are assumed to be omitted in turn, and the 
results prove the indispensability of each improvement. 
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