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ABSTRACT

Microplastics (MPs), recognized as an emerging global environmental concern, have been extensively
detected worldwide, with specific attention directed towards the Yangtze River Estuary (YRE) and East
China Sea (ECS) regions. Despite their critical research significance, there remains a knowledge gap
concerning the distribution of MPs in the benthic layer within this area, particularly regarding in-
teractions governing their occurrence. Here we illuminate the distribution of MPs within the benthic
layer and unravel the intricate interplay between bottom water and sediment in the YRE and ECS. We
find that MPs are notably more abundant in bottom water, ranging from 8 to 175 times higher than in
surface water. These MPs predominantly consist of polyester fibers, exhibit a size range between 0.5 and
5.0 mm, and display distinct coloration. Co-occurrence network analysis and Principal Coordinate
Analysis confirm a robust correlation between MPs in bottom water and sediment, signifying the pivotal
role of bottom water in mediating the distribution and transportation of MPs within the benthic layer.
Furthermore, a positive correlation between MPs in sediment and bottom water turbidity underscores
the impact of surface sediment resuspension and upwelling on MPs distribution. This study clarifies the
intricate interactions within the benthic layer and highlights the crucial role of bottom water as a
mediator in the vertical distribution of MPs, advancing our understanding of the “source-to-sink”
transport processes governing MPs within water-sediment systems.
© 2023 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences,
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

the Goiana Estuary is 1.53 items L™}, several times higher than those
in the surface water (0.35 and 0.43 items L~1). The MPs can further

Increasing global attention has been paid to the occurrence and
distribution of microplastics (MPs) due to their vast presence in the
atmosphere, surface water, sediments, soils, and even many or-
ganisms [1-5]. The vertical distribution of MPs in water has been
extensively studied [6—10], with the significant findings that the
MPs abundances in surface and intermediate waters were signifi-
cantly lower than that of bottom water [7,8]. For instance, Lima
et al. [7] found that the abundance of MPs in the bottom water of
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sink and eventually deposit in river and marine sediment [11,12].
The surface sediment was also recognized as the source of pollut-
ants, and the MPs in the sediments may be potentially transferred
to the bottom water together with sediment particle resuspension
[8,13]. Additionally, the toxic effects of MPs on marine organisms in
the bottom water and sediment, especially for the bottom dwellers,
have been widely reported [3,4]. The bottom water and sediment
are closely connected as a whole system and could mutually affect
the MPs distribution. However, there remains a research gap
regarding the interactions of MPs at the water-sediment interface
[2,6,8,10,13].

Currently, many studies have been reported on the distributions
of MPs in river and marine environments, as well as delved into the
vertical profiles of MPs in water and sediment [8,10,14]. In general,
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the distribution of MPs exhibits marked variations across distinct
sampling stations, primarily attributable to factors such as point
source discharge, biological activities, and MPs transportation [9].
More abundant MPs were found in the most urbanized sites,
sewage discharges, and near the maximum turbidity front [15].
Besides, the size, shape, and density of MPs may affect their vertical
distribution in water and sediment via floatation, sinking to the
bottom, or resuspension in the water column [16,17]. Moreover,
many environmental parameters, including circulation patterns,
water temperature, salinity, and turbidity characteristics, also
affected the distribution of MPs in the water column [13,18]. A
strong correlation was reported between the MPs abundance and
the turbidity in the near-bottom water layer [13]. Oceanic fronts
were generally formed at the interface of a current system or water
with different characteristics (temperature, salinity, or turbidity)
[19], which subsequently influenced the MPs occurrence due to the
intense dynamics near the frontal zones [20]. The MPs abundance
and characteristics in the frontal zones are significant to under-
standing the MPs pollution at the water-sediment interface. How-
ever, until very recently, there was still insufficient work, especially
discussing the MPs distribution affected by typical fronts in the
bottom water layer.

Owing to the high population density of its catchment and the
high consumption of plastics in China, the Yangtze River, ranked
among the world's largest rivers, consistently emerges as a primary
source of MPs into the ocean in global modeling studies [21,22].
Moreover, the Yangtze River Estuary (YRE) is the gateway where
the Yangtze River flows into the East China Sea (ECS), which rep-
resents multiple characteristics influenced by interactions between
marine and terrestrial environments [21,23]. Due to dense popu-
lation distribution, river discharge, and various maritime activities,
the YRE is vulnerable to plastic accumulation. Consequently, the
ecological protection of the YRE and the adjacent area has gained
worldwide attention, triggering widespread concern regarding MPs
pollution in the YRE and its adjacent sea [ 18,24—29]. Several studies
have reported that the abundance and factors were related to MPs
distribution in the surface water or/and sediment of the YRE and
ECS [18,24,27,28]. However, to our knowledge, there remains an
absence of published works on the MPs distribution and charac-
teristics in the bottom water and the interactions of MPs at the
water-sediment interface in the YRE and ECS. Although some other
studies reported a high abundance of MPs in the bottom water of
other areas [7,8], they still provided limited information about the
critical role of the bottom water on the MPs transportation at the
water-sediment interface. Thus, the MPs distribution and charac-
teristics at the bottom water in the YRE and ECS, especially the
interactions of MPs at the benthic layer, need further investigation
and discussion. In addition, there are multi-level fronts outside the
mouth of the Yangtze River, which play essential roles in the
transport of sediments and the spatial distribution of matters [30],
thus greatly affecting the transportation of the sedimentary MPs at
the water-sediment interface. Therefore, the relationship between
typical fronts and MPs distribution at the water-sediment interface
is necessary to be further studied.

Herein, this work selected the YRE and ECS as the study area to
reveal the occurrence and distribution of MPs in the benthic layer.
In addition to surface water, this study especially explored the
water-sediment correlations of MPs, with respect to their occur-
rence, characteristics, and distribution in the bottom water and
surface sediment through network analysis, Principal Co-ordinates
Analysis (PCoA), and Pearson correlation analysis. The influences of
turbidity on the MPs distribution in the benthic layer were inten-
sively discussed. Moreover, redundancy analysis (RDA) was
employed to analyze the correlation between MPs abundance and
the environmental parameters. This study will fill the knowledge
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gap of the MPs distribution in bottom water and their interactions
at the water-sediment interface in the YRE and ECS, thus improving
our understanding of the MPs pollution and source-to-sink trans-
port processes.

2. Materials and methods
2.1. Sample collection

Surface water, bottom water, and surface sediment samples
were collected at 32 sampling stations in YRE (eight stations) and
its adjacent ECS (24 stations) in March 2021 on the cruise of the R/V
Zheyuke II (Fig. 1a). The detailed information of the sampling sites
and corresponded to the water quality parameters were summa-
rized in Table S1. The sampling sites located at
121°06.912'—123°59.911" E and 29°36.343'—31°45.709' N, with
eight sites (B1 to C3) located on both sides of Chongming Island and
the other 24 sites (A5-1 to A7-8) in the ECS. The corresponding
samples were denoted as SW, BW, and SD, corresponding to those
obtained from surface water, bottom water, and surface sediment
samples.

The sampling method was selected based on some previous
studies [6,13,14] on the investigation of MPs in water and sediment
environments and was described briefly below. For each sampling
site, 5 L of surface water was collected from the top 20 cm of the
water body and filtered through a stainless-steel sieve with a mesh
size of 20 pum. 200 mL of bottom water was collected at a
7.50—67.70 m water depth. The water samples were collected
through a rosette water sampler in the SBE-911 Plus conductivity-
temperature-depth (CTD) system (Sea-Bird Scientific, USA), and
environmental variables (temperature, salinity, turbidity, and
chlorophyll a) were measured simultaneously by sensors on the
SBE-911 Plus CTD system. The water samples were filtered through
a 20 um mesh size, and all retained materials on the sieve were
repeatedly rinsed into a clean 250 mL blue wide-mouth glass bottle
with Milli-Q water. Approximately 1 kg of surface sediment was
collected from the top 10 cm layer using a Van Veen grab sampler
and then transported into the aluminum foil bags after removing
large contaminations or marine organisms. Each sample was taken
duplicated at each site. All samples were stored in the dark at 4 °C
before analysis.

2.2. Extraction and identification of microplastics

The protocols of MPs extraction from water and sediment fol-
lowed the procedures of our previous studies [31,32]. Briefly, the
water samples were treated with 30% H,0; for 12 h before each was
filtered through the GF/C glass microfiber filter paper (47 mm
diameter, 0.45 um pore size), and the sediment samples were
separated by flotation. A certain quality of wet sediment (100 g dry
weight) was randomly selected to perform with 30% H20; (v/v). To
separate the MPs from the sediment, the samples were floated
repeatedly with ZnCl, solution (approximately 1.7 g cm™>) by
magnetic stirring for 4 h in a beaker. After settling for 48 h, the
supernatants were filtered through the filter paper aided by a
vacuum pump and then rinsed with Milli-Q water to remove the
salt. All the filters after extraction processes were transferred into
the glass culture dish and dried at room temperature for further
identification and observation. To avoid potential artificial and
airborne plastic contamination in the laboratory, all instruments
and vessels were carefully rinsed with ultrapure water and tightly
wrapped in aluminum foil paper. Cotton laboratory coats and
plastic-free gloves were worn during the entire sample collection
and laboratory analysis process. Meanwhile, blank experiments
were conducted twice to avoid MPs contamination from the
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Fig. 1. a, Location of the 32 sampling stations at the YRE and its adjacent Sea (Bailonggang Wastewater Treatment Plant, refer to Refs. [18,27]). b—d, Spatial distribution of MPs

abundance in surface water (b), bottom water (c), and sediment (d).

laboratory environment. In addition, the water content of the
sediment samples was obtained after oven-drying the wet samples
at 60 °C for 48 h.

The particle size of the MPs was sorted into three ranges:
20—100 um (SPM), 100—500 um (MPM), and 500—5000 um (LPM),
and the size was measured by Image ] (Fiji) software. MPs were
assessed visually and categorized by different morphotypes such as
sphere, fiber, film, and fragments according to their physical char-
acteristics. The color was classified as transparent/white, black,
blue, red, gray, purple, and others (green, pink, yellow, and orange).
Moreover, the shape and the color of MPs were recognized by
Stereomicroscope (Leica DVM6 V). Polymer types were identified
using the micro-Fourier transform infrared spectroscope (u-FTIR,
Nicolet iN10 MX, Thermo Scientific, USA) equipped with an atten-
uated total reflection (ATR). Spectra were processed by OMNIC™
Spectra™ software and compared with spectral libraries (including
Aldrich Polymers, Hummel Polymer & Additives, Polymer Additives
& Plasticizers, Sprouse Polymer Additives, and Synthetic Fibers by
Microscope). For accurate polymer identification, particles with
spectra matching rates >70% were accepted. The MPs abundance
was calculated by the mapping area of the filter paper via u-FTIR.
The unit of the MPs abundance in the surface and bottom water was
recorded as the number of MPs per liter (items L~'), while that of
the sediment was kilogram dry weight (items per kg d.w.).

2.3. Statistical analysis

Graphs of MPs spatial distribution in water and sediment were
drawn by ArcGIS 10.8 software (ESRI, CA, USA). Spearman correla-
tion was conducted to display the correlation of water-water or
water-sediment systems with respect to the MPs abundance and
characteristics using the “magrittr” and “corrplot” packages in R
(R>0.9 and p < 0.05) [8,33]. Redundancy analysis (RDA) performed
via Canoco 5. Pearson correlation was adopted to establish the co-
occurrence network of MPs characteristics variables in water and
sediment via Gephi-0.9.2 (R > 0.5 and p < 0.05) (https://gephi.org/).
The Principal Coordinate Analysis (PCoA) based on Bray-Curtis
Distance was performed using PAST 3.0.

3. Results and discussion
3.1. Microplastics abundance and characteristics

The MPs abundance at 32 sampling sites in the surface water,
bottom water, and sediment of the YRE and ECS was illustrated in
Fig. 2 with detailed data in Table S2. The MPs abundance ranged
from 1.26 to 13.84 items L~! with an average of 3.69 + 2.87 items
L' (surface water), 3145 to 220.14 items L~! with an average of
118.91 + 46.39 items L~! (bottom water), and 16.00 to 1335.00
items per kg d.w. with an average of 544.15 + 305.70 items per kg
d.w. (sediment), respectively. The MPs abundance in the YRE and
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Fig. 2. The abundance of MPs in the surface water, bottom water, and sediment of 32
sampling sites in YRE and ECS.

Table 1
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ECS of this study was compared with the data published in other
works in this area and other major estuaries in China (Table 1)
[26,28,34—37]. As shown in Table 1, the MPs abundance in surface
water of this study is less abundant compared with that reported in
the Pearl River Estuary [35] and Bohai Bay (such as Yongding New
Estuary) [26], but a moderate level value was found for the sedi-
ment. In comparison with those previously reported data in YRE
and ECS by other studies [24,36], the data obtained in this study
showed a comparable level for the surface water but a higher
average value in the sediment, which may be caused by the vari-
ances in the sampling methodology like different mesh sieves for
filtering, different sampling time (year and season) and sites [18].
Most importantly, the MPs in the bottom water of the YRE and ECS
were recorded for the first time in this study, showing the notice-
ably higher MPs abundance in the bottom water than those in the
surface water.

MPs characteristics, including particle size, shape, color, and
polymer types of all samples collected from the surface water,
bottom water, and sediment, are summarized in Fig. 3a—d. Large
particle MPs with the size range of 500—5000 um (LPM) were
dominant at all sampling sites, comprising 64.0 + 24.0% of the total
particle number (Fig. 3a). Specifically, fibers were predominant
(83.0 + 16.0%) together with a much smaller amount of fragments
(7.0 = 11.0%) and films (10.0 + 13.0%) (Fig. 3b). The predominance of
fibers was derived from wastewater discharge by clothes washing
and textile industries [38,39], and the maritime activities (e.g.,
packaging, fishing gear) [40,41]. As shown in Fig. 3¢, a wide array of
colors was detected for MPs at all sampling sites, while the colored
MPs (including blue, red, purple, green, pink, etc.) comprised the
majority of MPs at all sampling locations, which were commonly
used in packaging, clothing materials, and many other applications
[18]. Among the colorful MPs, blue MPs were the most abundant
(47.0 + 26.0%). Several factors may contribute to this prevalence.
Firstly, blue is a universally prevalent color (jeans, shirts, etc.) and

Comparison of MPs abundance in water and sediment from different watershed estuaries.

Watershed System Abundance range® Mean abundance® Sampling time Sampling Reference
methods
Yangtze River Estuary & East China Sea Surface 1.26—13.84 items L™! 3.69 + 2.87 items L ™! March 2020 20 pm mesh This
water study
Yangtze River Estuary Surface 0.50—10.20 items L ™! 4.14 + 2.46 items L ™! July 2013 333 um mesh [24]
water
Pearl River Estuary Surface 7.85-10.95 items L™ 8.90 items L' December 50 pm mesh [35]
water 2017
Bohai Bay (Haihe Estuary) Surface - 1.49 + 0.82 items L™! - - [26]
water
Bohai Bay (Yondingxinhe Estuary) - - 7.88 + 0.46 items L' - -
Yangtze River Estuary (Chongming Surface 0-0.26 items L' - June 2019 300 pm mesh [28]
Island) water
Lower Yellow River near Estuary Surface 380.00—582.00 items L~ (wet - July 2018 50 pm mesh [34]
water seasons)
623.00—1392.00 items L' (dry - March 2019 50 um mesh [34]
seasons)
Yangtze River Estuary & East China Sea Bottom 31.45-220.14 items L' 118.91 + 46.39 items L™! March 2020 20 um mesh This
water study
Yangtze River Estuary & East China Sea Sediment 162.00—1335.00 items per kg d.w.  544.15 + 305.70 items per kg March 2020 0-10 cm This
d.w. study
Yangtze River Estuary Sediment ~ 20.00—340.00 items per kg d.w. 121.00 + 9.00 items per kg d.w. September 5-10 cm [27]
2015
Bohai Bay (Haihe Estuary) Sediment - 216.10 + 92.10 items per kg - - [26]
d.w.
Bohai Bay (Yondingxinhe Estuary) Sediment - 85.0 + 40.10 items per kg d.w. - - [26]
Yellow Sea and East China Sea Sediment 60.00—240.00 items per kg d.w. - March 2017 Upper 10 cm [25]
Pearl River Estuary Sediment 100.00—7900.00 items per kg d.w.  851.00 + 177.00 items per kg November Top 5 cm [37]
d.w. 2015

2 The unit of MPs abundance in water was normalized as “items L~ for convenient comparison.
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Fig. 3. The characteristic distribution of MPs in surface water, bottom water, and
sediment of 32 sampling sites, including size (a), shape (b), color (c), and polymer type

(d).

may not be attractive for ingestion [42]. Secondly, fishing nets and
ropes, widely used in the fishing industry, may represent additional
sources of blue MPs [43]. Furthermore, decolorized microplastics
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were discovered at various locations as the original color of these
microplastics had faded due to weathering processes [27]. Notably,
the MPs extraction process in this study could not influence the
MPs color and transparency. In terms of polymer types (Fig. 3d),
polyester (PES), rayon, polyethylene (PE), polypropylene (PP),
polyethylene terephthalate (PET), acrylic, polystyrene (PS), others
(Nylon, PP-PE copolymer, etc.) were identified. Fig. S1 presents the
representative polymer types and their corresponding microscope
images. The PES (49.0 + 22.0%) and rayon (27.0 + 20.0%), as the
component of synthetic fibers, were dominantly found in the
sampling sites. Besides, other common polymer types were also
found, such as PE (12.0 + 13.0%) and PP (2.0 + 6.0%) as the widely
used plastic types [44]. The PES and rayon in both water and
sediment might be released from clothes washing and textile in-
dustries [38,39], while the sources of PE and PP can be derived from
packaging, containers, pipes, agricultural film, automotive parts,
fishing gears, and houseware [44].

The network analysis was conducted with particle size, shape,
color, and type of MPs in water and sediment based on Pearson's
correlation analysis to reveal the co-occurrence correlations among
MPs characteristics (Fig. S2). The network analysis showed that
fibrous MPs and films mainly were PES with a large size (LPM) and
PP as transparent/white. PE mainly existed as films and fragments
with a blue color in a small size range (SPM). In addition, a positive
correlation was observed between the SPM as the size and the film/
fragments as the shape. This indicated that films and fragments
were present in the water and sediment with small sizes.

3.2. Horizontal and vertical distribution characteristics of MPs

The spatial (horizontal and vertical) distribution of MPs abun-
dance in the surface water, bottom water, and sediment in all
sampling sites are illustrated in Fig. 1b—d, showing their wide ex-
istence and distinct variation (indicated by circle sizes). For the
surface water, more MPs were mainly observed in the estuary and
the saltwater-freshwater interface, indicating decreased MPs
abundance with prolonged distance from the shore. For the sedi-
ment, MPs abundance was comparatively higher in the inshore
areas than in estuary and far shore areas. Notably, cross-section A5
defied this trend by displaying higher MPs abundance in all sam-
pling sites of this section. Similarly, relatively more abundant MPs
were also detected in the bottom water of the inshore area, but
without an obvious trend from nearshore to farther sites. However,
several far shore sites of cross-sections A5—A7 were also observed
with higher MPs abundance. Among all sampling sites, the highest
MPs abundance was recorded as 13.84 items L™! of the surface
water at site A6-1,1335.63 items per kg d.w. of the sediment at site
A5-2, and 220.14 items L~! of the bottom water at site A6-7. For the
YRE, the ocean is well stratified with light, fresh water on the
surface and dense salty water in the bottom layer. The pycnocline
separates the water column into two parts with different densities.
Considering buoyancy, the low-density MPs will stay in the surface
layer (freshwater), while the high-density MPs will sink into the
bottom layer (salt water). As seawater density is mainly decided by
the temperature and salinity, we found significant correlations
between MPs abundance and temperature and salinity for surface
water in Fig. S3. However, the real ocean is more complicated;
dynamic processes will also affect the distribution of MPs in the
seawater. Along the pycnocline, friction caused by the horizontal
flow will induce vertical mixing and raise the denser particles;
strong tidal flow will even resuspend the particles up (sediments,
including MPs). Horizontal ocean currents could also transport
MPs, leading to different horizontal distributions. Furthermore,
ocean fronts will be a barrier limiting horizontal transportation. All
these physical processes could lead to control of both vertical and
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horizontal distributions of MPs.

Furthermore, Fig. 3 illustrates the variation of MPs characteris-
tics among the sampling sites in the YRE (eight sites) and ECS (24
sites). Higher amounts of SPM (20—100 pm) were observed in the
estuary, but MPs with larger sizes were found in the sea areas,
especially in the sampling sites of cross-section A7. Although fibers
were the predominant MPs shape, the higher variation in MPs
shape was investigated in the surface water of the estuary. No
apparent tendency was detected for the MPs color and polymer
type among the sampling sites in different areas. From the
perspective of vertical distribution, a much higher MPs amount was
observed in the bottom water than in the surface water (Fig. 2),
indicating the significant variation of MPs distribution in waters
affected by depth [45].

The vertical distribution of MPs characteristics is further
depicted in Fig. 4, showing the dominance of LPM (size,
52.4—66.7%), fibers (shape, 76.8—86.2%), blue (color, 46.0—47.9%),
and PES and rayon (polymer types, 64.7—82.8%) in the water to
sediment samples. Besides, the surface water exhibited the highest
ratio of minor species with respect to each characteristic of the
MPs, in comparison with the corresponding value of bottom water
and sediment. For example, with lower densities [9,35], more PE
and PP were found in the surface water (23.0%) than the bottom
water (13.0%) and sediment (10.1%), while transparent/white MPs
were more likely to exist in the surface water (20.5%) other than
those in the sediment (13.0%) and bottom water (7.2%).

The spatial redistribution of MPs was affected by point source
discharges, biological activities, and vertical/horizontal transport of
the MPs [9]. As demonstrated in Fig. 1a, some wastewater treat-
ment plants and fishery farms located in the river estuary caused
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higher MPs abundance directly in the surface water of this area, as
reflected in Fig. 2. In this area, Bailonggang Wastewater Treatment
Plant is one of the largest sewage treatment plants, with a capacity
of 1.2 million m® d~! and accounting for almost 25% of the total
capacity of wastewater treatment in Shanghai, China [46]. Although
90% of MPs can be removed after treatment [47], the remaining
plastics can still be transported from land to sea. After MPs are
released, the monsoons, currents, Changjiang plume, and tides may
further affect the MPs distribution [48]. The strong hydrological
force of the estuary carried plastic waste from the land to the sea,
resulting in higher MPs abundances in the bottom water and
sediment of the inshore area because of MPs deposition
[18,21,23,28]. Moreover, the Changjiang diluted water and other
water masses moved from the mouth of the estuary section C to A5,
which brought MPs particles from the estuary to the northeastern
region [18]. Therefore, being carried by coastal circulation, more
MPs were subsequently deposited and accumulated in the sedi-
ment of the northeast part of the study area. In addition, the similar
MPs characteristics between the eight sites in the estuary and 24
sites of the sea (Fig. 3) further indicated the importance of terres-
trial MPs sources from the river to its adjacent sea. Theoretically,
MPs with high densities are more likely to deposit while those with
low densities are prone to be transported over a relatively long
distance [2], which is consistent with our results that higher pro-
portions of PES+Rayon+PET in the sediment and more PE+PP in
the surface water. However, the vertical distribution of MPs at the
water-sediment interface was also affected by multifactorial hy-
drodynamics (Ekman pumping, upwelling, and downwelling, etc.)
[49,50], which could explain the majority of PES+Rayon+PET in the
bottom water.
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Fig. 4. Vertical distribution of the MPs among surface water, bottom water, and sediment in different characteristics (size, shape, color, and polymer type).
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3.3. Microplastics in the benthic layer

3.3.1. Interactions of microplastics in water and sediment

To reveal the co-occurrence correlations of MPs among the
surface water, bottom water, and sediment, a network based on
Spearman correlation analysis (Fig. 5a) was applied with respect to
the data of MPs abundance, particle size, shape, color, and polymer
types. In the bottom water, a strongly positive correlation was
found for C5 vs. A6-4 and A5-4 vs. A5-7, while in the sediment, the
sites were A5-6 vs. A7-2, A5-8 vs. A7-8. In the surface water, the
highly correlated sites were A5-6 vs. A7-1 and A6-8 vs. A7-8. The
correlation results among the sampling sites suggested that the
horizontal migration of the MPs could cause a close relationship
between nearby locations. Furthermore, significant correlations
were also observed between some sites in the vertical direction,
especially between the bottom water and sediment. For example,
the MPs at SD_B2 were highly correlated with those at BW_C5 and
BW_A6-4, respectively. Meanwhile, the following sites were also
highly interacted, e.g., SD_A7-3 vs. BW_C5, SD_A6-1 vs. BW_A7-4,
and SD_C2 vs. BW_BL1. It indicated that the MPs in the bottom
water and the sediment were more strongly related than the sur-
face water. This further suggested that the bottom water might
mediate the MPs distribution at water-sediment. The critical role of
the bottom water layer for the vertical distribution of other pol-
lutants was also reported, showing the highest level of di(2-
ethylhexyl) phthalate (DEHP) in the bottom layer of the water

-
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Fig. 5. a, Co-occurrence analysis based on the Spearman correlation analysis using
network (R > 0.9, p < 0.05). b, PCoA based on the Bray-Curtis Distance for MPs vari-
ables (abundance and characteristics) in the surface water, bottom water, and sediment
of the sampling sites.
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column and a significant correlation between the bottom water
layer and the bed sediment [51]. Thus, the resuspension and
deposition of MPs at the water-sediment system led to the much
higher MPs abundance in the bottom water.

The PCoA (Fig. 5b) showed a much stronger correlation of the
variables between the sediment and bottom water, consistent with
the network analysis results in Fig. 5a, further proving the critical
role of bottom water on MPs distribution at the benthic layer. Be-
sides, as shown in Fig. 5b, the diversity of MPs among different
sampling sites was the highest in the bottom water, followed by the
sediment and the surface water. The complex distribution of MPs in
the bottom water can be explained by the reasons that selective
sedimentation of some high-density MPs and MPs resuspension
from sediment to bottom water caused by disturbance [16,17,52].
Moreover, the redundancy analysis (Fig. S4a) was applied to reflect
the relationship of MPs types between the bottom water and
sediment. For instance, Rayon, PES, and PE in the bottom water
were primarily affected by the MPs type in the sediment. To specify,
a positive correlation was found for the PE in the bottom water and
the sediment, while a negative correlation was observed for the
Rayon and PES. The MPs with high density (e.g., Rayon and PES)
tended to deposit in the sediment, while the low-density MPs (e.g.,
PE) were prone to transport over a relatively longer distance [45].
Therefore, these results demonstrated that the bottom water
mediated the distribution and transportation of MPs at water-
sediment.

3.3.2. Impact of environmental factors on MPs distribution in the
benthic layer

Pearson's correlation analysis was conducted among the MPs
abundance (surface and bottom water), the longitude and latitude
of the sampling sites, sampling water depth, as well as the water
temperature, salinity, content of chlorophyll a, and turbidity, with
results illustrated in Fig. S3. According to the correlation analysis,
an obvious correlation in the surface water was found between the
MPs abundance and the environmental parameters above (except
the sampling water depth). However, there was no significant
correlation between the MPs abundance in the bottom water and
these parameters. This might be because the distribution of MPs in
the bottom water was more likely to be affected by sediment
disturbance. In addition, there was a significant correlation
(p < 0.001) between the MPs abundance and temperature in the
surface water (Fig. S3). The density of the seawater in the semi-
enclosed sea varies considerably with temperature and salinity,
which potentially causes changes in MPs transportation when the
salinity or temperature changes [53]. The high flow velocity in the
bottom water layer was observed to facilitate the transport of
sedimental MPs [45]. The MPs in the surface sediment could
transfer to both overlying water and deeper sediment during the
disturbance process [54]. Iribarne et al. [52] also reported that the
disturbance processes, such as trawling and bioturbation, influ-
enced the distribution of plastic litter in marine sediment and the
overlying water column. In addition, dynamic processes of the
seawater will also control both the horizontal and vertical distri-
bution of MPs, including the turbulence mixing-induced vertical
motion and resuspension in the bottom, ocean currents-induced
horizontal transportation, and convergence along the ocean fronts.

Rather than the general environmental parameters, the
disturbance-induced resuspension process may significantly affect
MPs' distribution and migration in the benthic layer. As shown in
Fig. S4b, a positive correlation was observed between MPs abun-
dance in the sediment and the turbidity of the bottom water, which
suggested that either the resuspension of surface sediment or the
sedimentation could influence the turbidity of the bottom water,
further affecting the MPs distribution in the benthic layer. Another
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recent study also reported that bottom currents could firmly con-
trol the movement of MPs at the seafloor and regulate their vertical
distribution [55]. Thus, a further analysis was conducted based on
the interactions for sections A5, A6, and A7. Beyond the sites with
the maximum turbidity (A5-1, A6-1, A7-1), the MPs abundance of
the bottom water declined accordingly with the turbidity
decreasing (A5-2 to A5-5, A6-2 to A6-5, and A7-4 to A7-8). This
phenomenon can be explained by the effects of the upwelling in the
winter (cold currents) in the research region of the ECS [56]. The
strongest upwelling region tends to appear in the turbidity front
zone, which may also be related to the resuspension of the sedi-
ment. Upwelling was probably an efficient pathway for the trans-
port of MPs from the bottom water to surface water [9]. It could be
concluded that the gradually decreased MPs abundance at those
sampling sites might be due to the resuspension process of bottom
water through upwelling. Therefore, the resuspension processes
largely affected the distribution of MPs in the benthic layer.

4. Conclusions and perspectives

This study comprehensively investigated the occurrence of hor-
izontal and vertical distribution characteristics of MPs in the YRE and
ECS. A particular emphasis is placed on understanding the critical
role of the benthic layer in MPs distribution and transportation.
Notably, we discovered a significant abundance of MPs in the bottom
water for the first time in this region, surpassing the quantity found
in surface water by 8—175 times. Also, higher amounts of MPs in the
sediment were obtained in this research area compared to the pre-
vious studies. The similar MPs characteristics distribution in the
bottom water with sediment, 0.5—5.0 mm particle size, fibrous and
colorful MPs particles, as well as PES and rayon, accounted for a
larger percentage at most sampling sites. Besides, large amounts of
blue MPs were observed in the research area. These morphological
characteristics, density, and chemical compositions of MPs provided
clues about their potential sources of MPs pollution in the region,
primarily originating from terrestrial discharge and fishery activ-
ities. The co-occurrence network analysis results showed strong
correlations among some sites owing to the horizontal trans-
portation of MPs, as well as the two compartments of bottom water
and sediment due to the influence of resuspension and deposition
processes. In addition, PCoA further revealed the strong correlation
between the bottom water and sediment in the benthic layer, indi-
cating the critical role of the bottom water as a mediator in the
vertical distribution of MPs. Moreover, a positive correlation was
also found for the MPs abundance in the sediment and the turbidity
of the bottom water, highlighting the predominant influence of
resuspension processes on MPs distribution in the benthic layer.
Overall, this study mainly focused on a field investigation and pre-
liminary discussion to indicate the critical role of the benthic layer in
the vertical distribution of MPs. However, the natural environment
is inherently complex, making it challenging to precisely elucidate
the multifaceted impacts of various factors, such as temperature,
salinity, and water turbidity, via field investigation. Therefore, future
laboratory experiments should be intensively conducted to deeply
explore the details of multiple environmental factors affecting the
distribution and transportation of MPs in the benthic layer.
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