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The negative relationship between testosterone and inflammatory cytokines has been
reported for decades, although the exact mechanisms of their interactions are still not
clear. At the same time, little is known about the relation between androgens and acute
phase proteins. Therefore, in this investigation, we aimed to study the relationship
between androgen status and inflammatory acute phase reactants in a group of men
using multi-linear regression analysis. Venous blood samples were taken from 149 men
ranging in age from 18 to 77 years. Gonadal androgens [testosterone (T) and free
testosterone (fT)], acute phase reactants [C-reactive protein (CRP), ferritin (FER), alpha-
1-acid glycoprotein (AAG), and interleukin-6 (IL-6)], cortisol (C), and lipid profile
concentrations were determined. It was demonstrated that the markers of T and fT
were negatively correlated with all acute phase proteins (CRP, FER, and AAG; p < 0.02)
and the blood lipid profile [total cholesterol (TC), low-density lipoprotein (LDL), and
triglycerides (TG); p < 0.03]. Multivariate analysis showed that T, fT, and the fT/C ratio
were inversely correlated with the CRP, AAG, and FER concentrations independently of
age and blood lipids. When adjustment for BMI was made, T, fT, and the fT/C ratio were
negatively correlated with the AAG concentrations only. In addition, it was demonstrated
that gonadal androgens were positively correlated with physical activity level (p < 0.01).
We have concluded that a lowered serum T concentration may promote inflammatory
processes independently of adipose tissue and age through a reduced inhibition of
inflammatory cytokine synthesis, which leads to enhanced acute phase protein
production. Therefore, a low serum T concentration appears to be an independent risk
factor in the development of atherosclerosis and cardiovascular diseases. Moreover, the
positive correlation between testosterone and physical activity level suggests that exercise
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training attenuates the age-related decrease in gonadal androgens and, in this way, may
reduce the enhancement of systemic low-grade inflammation in aging men.
Keywords: androgens, inflammaging, adiposity, exercise training, alpha-1-acid glycoprotein
INTRODUCTION

Age-related upregulation of the inflammatory response (described
as “inflamm-aging”) (1) and the worsening of the blood lipid profile
are of great importance because these changes are linked to
atherosclerosis, enhanced cardiovascular risk, and the
development of metabolic syndrome. In the recent comprehensive
review on the inflammatory etiology of cardiovascular diseases by
Ruscica et al. (2), the role of evaluation of the pro- and anti-
inflammatory profiles for appropriate guidelines and treatment of
this disease was pointed out. Simultaneously, it should be
mentioned that an enhanced pro-inflammatory status after the
fifth to the sixth decade of life (1) is accompanied by a decrease in
testosterone (T) concentration, and some have suggested that
changes in the inflammatory markers and testosterone in aging
men are causally linked (3).

In recent years, connections between testosterone and the
inflammatory process have been widely studied [for a review,
see (4)], although the existence of the bidirectional mechanisms
between the immune and endocrine systems was reported at least
20 years ago (5). This concept has a strong scientific foundation
since androgens have been shown to regulate the inflammatory
response (6) by suppressing pro-inflammatory leukotriene
biosynthesis (7), decreasing pro-inflammatory mediators, and
increasing anti-inflammatory cytokines, leading to a state of
reduced inflammation (8). Moreover, the claims on the anti-
inflammatory effects of T are based on observations of the
enhanced inflammatory cytokine levels in hypogonadal men and
the reduced inflammatory markers in T supplementation studies
(4). On the other hand, an inflammatory process as a
manifestation of increased oxidative stress may negatively
influence the androgen level (9), both through direct disruption
of the reproductive tissue and through the detrimental effect on
the regulatory mechanisms of the hypothalamic–pituitary–
gonadal (HPG) axis.

The interactions between androgens and inflammation may
be influenced by adipose tissue because it is well known that the
inflammatory process results from an imbalance between the
pro- and antioxidant systems often related to dysfunctional
adipose tissue (10). We have recently demonstrated that the
BMI and body fat percentage correlated positively with the
inflammatory and oxidative stress markers in men (11), which
could explain the age-related increase in inflammation and
oxidative stress that led to a decline in endothelial function
and an increase in arterial stiffness. In addition, Bobjer et al. (12)
reported that a low T concentration was associated with elevated
tumor necrosis factor alpha (TNF-a) and pro-inflammatory
chemokines in relatively young men without any metabolic
disorders and disease. It was also demonstrated that obesity
may result in hypogonadism and T supplementation
n.org 2
interventions, leading to a eugonadal state, appear to decrease
the body fat content (13).

The possible influence of body fat content on the relationship
between androgen and inflammatory status also indicates that
the level of physical activity could be of paramount importance
in this connection. There is a fair amount of data showing that
regular exercise training may attenuate inflammation (14, 15),
even in serious neurodegenerative diseases (16). Some authors
postulated that this effect may be attributable to the training-
induced reduction in adipose tissue content (14), however, it was
also suggested that exercise may lead to anti-inflammatory effects
that are independent of weight loss (17). Although the
mechanisms of this important outcome of exercise training in
aging are at best unclear, one possible explanation lies in the fact
that both gonadal androgens and inflammatory status may be
affected by the applied training program. What is interesting is
that a heavy exercise training program is thought to unfavorably
affect the T concentration (18) and the pro- and anti-
inflammatory balance (19), whereas moderate training loads
were linked to both enhanced gonadal androgen concentrations
(20) and anti-inflammatory state (21).

Studies concerning the relationship between androgens and
inflammation have so far mainly focused on the inflammatory
cytokines such as interleukin-1 (IL-1), IL-6, and TNF-a (4). Far
less is known about the possible interactions between testosterone
and acute phase proteins [C-reactive protein (CRP), ferritin (FER),
and alpha-1-acid glycoprotein (AAG)], which are all important for
inflammatory responses and are frequently assayed in standard
laboratory tests. For this reason, we aimed to study the
relationship between androgen status and inflammatory acute
phase reactants (CRP, FER, and AAG) in a moderately large
group of men using multi-linear regression analysis. We wanted to
verify the hypothesis that a higher androgen status is related to a
better inflammatory profile independently of confounders such as
age, BMI, and lipid profile. Because of the aforementioned
potential effect of exercise on this relationship, we were also
interested in determining the importance of the level of physical
activity of the studied subjects on their androgen profile.
MATERIAL AND METHODS

Subjects
A group of 149 men ranging in age from 18 to 77 years were
investigated. The experimental data presented in this manuscript
were gathered from our previous research projects (11, 20, 22–
24), but the majority of the subjects (n = 94) involved in this
investigation participated in the study by Majerczak et al. (11).
Nevertheless, the primary goals of this work and the main
September 2021 | Volume 12 | Article 735638
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analyses reported herein are novel and do not overlap those
presented in prior publications. The inclusion criteria for the
men selected in this study were as follows: minimum 18 and
maximum 80 years old, absence of serious medical illness, no
drug or alcohol abuse in the past, and no smoking in the past 10
years. The participants underwent a standard medical evaluation
and a routine blood examination, and if these tests showed no
contraindications, they were included in the study. Each
participant responded to lifestyle questionnaires including
occupational, dietary, and physical activity and training
characteristics. The group consisted of both sedentary and
trained men, and the mean actual level of physical activity
amounted to 5.1 ± 4.8 h per week. Some of the trained men
were recreationally active and some were professionally trained
in both sprint and endurance events, currently or in the past
(former athletes). The basic anthropometric, hematological, and
blood biochemical characteristics of the studied group are given
in Table 1. Ethical approval for the experimental procedures was
obtained from the Local Ethical Committee at the Regional
Medical Chamber in Krakow, Poland (opinion no. 48/KBL/
OIL/2009), and the study protocol was conducted in
accordance with the Declaration of Helsinki. All volunteers
were fully informed about the aim of this study and gave
written consent to take part in the investigation.

Blood Collection
Overnight blood samples were taken from the antecubital vein at
rest between 7:30 and 8:30 a.m. from all participants. Blood for
Frontiers in Endocrinology | www.frontiersin.org 3
serum CRP, AAG, FER, IL-6, total cholesterol (TC), triglycerides
(TG), low- and high-density lipoproteins (LDL and HDL,
respectively), total T, cortisol (C), and sex hormone-binding
globulin (SHBG) concentrations was collected into plain tubes
and left to clot for a minimum of 30 min at room temperature
and then centrifuged at 4,000 rpm for 5 min. Blood for plasma
IL-6 was collected in plain tubes containing EDTA and then
centrifuged at 653 × g for 15 min at 4°C. Serum and plasma were
stored at −80°C until analysis. With regard to CRP, AAG, and C,
some data were unavailable and resulted in a reduced sample size
for these variables (n = 142 for CRP and AAG and n = 145 for C
and the fT/C ratio).

Blood Analysis
The CRP and AAG concentrations were measured using the
Siemens-Dade Behring BN ProSpec nephelometer (Marburg,
Germany). Serum TC, TG, and LDL and HDL concentrations
were determined with an enzymatic colorimetric method according
to the manufacturer’s protocol using the Cobas c501 analyzer
(Roche Diagnostics, Mannheim, Germany). Moreover, non-HDL
concentration was calculated by subtracting the HDL cholesterol
value from TC. Serum FER was measured with the
chemiluminescence method using the Architect i1000SR analyzer
(Abbott Laboratories, Chicago, IL, USA). Plasma IL-6 concentration
was determined by enzyme-linked immunosorbent assay (ELISA)
according to the manufacturer’s instruction (R&D Systems, Inc.
Minneapolis, MN, USA). The detection limit for this measurement
was 0.039 ng L−1 and the intra- and inter-assay coefficients of
variation (CVs) were <8% and 10%, respectively.

All hormone measurements were performed in duplicate,
and serum T, C, and SHBG were determined by an
electrochemiluminescence immunoassay using the Cobas e411
analyzer (Roche Diagnostics, Mannheim, Germany) with detection
limits of 0.09, 1.0, and 0.8 nmol L−1 for T, C, and SHBG, respectively.
The intra- and inter-assay CVs for these assays were 3.4% and 5.9%,
1.2% and 1.6%, and 2.4% and 3.7% for T, C, and SHBG, respectively.
The measurement method for T and C was standardized against the
isotope dilution gas chromatography–mass spectrometry (ID GC/
MS) reference method. SHBG measurement was standardized
against the 1st International Standard for SHBG from the National
Institute for Biological Standards andControl (NIBSC, code 95/560).
Moreover, fT was calculated using the assumption-free empirical
equations (25), as it was shown that this method is very useful in
providing more detailed information about the androgen and
anabolic/catabolic status of the body (26).

Statistical Analysis
In this study, the bivariate correlations were evaluated using
Spearman’s correlation coefficient because of the non-normal
distribution of the inflammatory and lipid profile variables and
the time spent on physical activity. Multiple regression analysis
was performed to evaluate the independent contribution of
androgens to inflammatory markers, adjusting for age, BMI,
and blood lipids. We have calculated that a sample size of 134
individuals would be needed to obtain an effect size of f = 0.1
(conventionally attributed to a small effect) with five predictors, a
significance level of 0.05, and power of 0.90. Non-normally
TABLE 1 | Basic anthropometric, hematological, biochemical, and hormonal
parameters of the studied subjects (n = 149).

�x ± SD 95% CI Min–Max

Anthropometric data
Age (years) 38.6 ± 19.1 35.5–41.6 18.0–77.0
Height (cm) 178.0 ± 7.1 176.9–179.2 160.0–196.5
Body mass (kg) 77.8 ± 10.6 76.1–79.5 48.1–108.6
BMI (kg m−2) 24.56 ± 3.15 24.05–25.07 18.49–33.94
Hematological and blood biochemical data
Hct (%) 46.1 ± 2.3 45.8–46.5 40.9–51.4
Hb (g dl−1) 15.6 ± 0.84 15.4–15.7 13.5–17.4
E (×1012 L−1) 5.13 ± 0.30 5.08–5.18 4.43–5.87
L (×109 L−1) 5.98 ± 1.20 5.79–6.18 3.44–9.45
Na+ (mmol L−1) 140.1 ± 1.8 139.8–140.4 136.0–145.0
K+ (mmol L−1) 4.24 ± 0.29 4.20–4.30 3.57–5.06
Cr (mmol L−1) 89.0 ± 11.6 87.1–90.9 65.0–121.9
Alb (g L−1) 43.1 ± 3.1 42.6–43.6 36.9–52.3
Hormonal data
T (nmol L−1) 20.8 ± 5.8 19.9–21.8 7.1–37.5
fT (nmol L−1) 0.328 ± 0.091 0.313–0.342 0.095–0.551
C (nmol L−1) 511 ± 130 489–532 161–852
fT/C ratio (×103) 0.669 ± 0.257 0.626–0.711 0.217–1.495
SHBG (nmol L−1) 41.9 ± 19.1 38.8–44.9 9.2–93.1
Data are given as the mean ± SD, 95% confidence interval (95% CI), and minimum and
maximum values (min–max).
BMI, body mass index; Hct, hematocrit value; Hb, hemoglobin concentration; E,
erythrocyte count; L, leukocyte count; Na+, sodium concentration; K+, potassium
concentration; Cr, creatinine concentration; Alb, albumin concentration; T, testosterone
concentration; fT, free testosterone concentration; C, cortisol concentration; fT/C, free
testosterone-to-cortisol ratio; SHBG, sex hormone-binding globulin concentration.
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distributed variables were log-transformed prior to analysis in
order to reduce skewness of the data. The data points that
deviated from the group means by more than 3 SDs were
treated as outliers and excluded from further analysis. Then,
the assumptions of the multiple regression analysis were verified
and were not violated. The significance level was set at p ≤ 0.05,
and all data are presented as the mean ± SD. The analyses were
performed using STATISTICA software, version 10 (StatSoft,
Inc., 2011; www.statsoft.com).
RESULTS

Basic Characteristics
The means for the basic anthropometric, hematological, blood
biochemical, and hormonal parameters of the studied group of
subjects were all in the range of the reference values (Table 1), but
there were individuals on the borderline of the normal ranges
(hematocrit value, hemoglobin and albumin concentrations,
Frontiers in Endocrinology | www.frontiersin.org 4
erythrocyte and leukocyte counts, and all hormonal parameters).
However, in these cases, further medical evaluation did not reveal
any pathological conditions. Moreover, only one subject presented
with T and fT concentrations slightly below the healthy adult male
reference ranges, but even in this case, a late-onset hypogonadism
(LOH) syndrome was not diagnosed because there were no
symptoms suggestive of testosterone deficiency [see, e.g., (13)].

Bivariate Correlations
It was demonstrated that androgens (T and fT concentrations)
and the fT/C ratio were significantly inversely correlated with the
blood lipid profile in all studied men (in the case of the correlation
between fT/C and TG, there was a clear tendency, p = 0.06)
(Figure 1). Similarly the T and fT concentrations were all
significantly inversely correlated with the inflammatory markers
(Figure 2). The weakest relationship was observed between
androgens and IL-6, however, the correlation between fT and
IL-6 was significant, and there was also a tendency to significance
between the fT/C ratio and the IL-6 concentrations (see Figure 2).
A B

D E F

G IH

C

FIGURE 1 | Spearman’s rank correlations between testosterone (T), free testosterone (fT), free testosterone-to-cortisol ratio (fT/C), and total cholesterol (TC)
concentrations (A–C); low-density lipoproteins (LDL) (D–F); and triglycerides (TG) (G–I).
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On the other hand, there was no significant correlation between
serum androgens and the HDL concentration (p > 0.05).

Simultaneously, age and BMI correlated positively with most
of the inflammatory markers (CRP, AAG, FER, and IL-6) and the
lipid profile variables (TC, LDL, non-HDL, and TG) and
negatively with the androgen profile parameters (T, fT, and fT/
C ratio) and HDL concentration. The only exceptions were a
non-significant correlation between age and the AAG
concentration and between age and the HDL concentration
Frontiers in Endocrinology | www.frontiersin.org 5
(see Table 2). Moreover, in the case of a correlation between
age and the fT/C ratio, a clear tendency was observed (p = 0.07).

Moreover, we also determined the relationship between T, fT,
and the fT/C ratio and physical activity level. It was
demonstrated that there were significant positive correlations
between all the androgen profile variables and the time spent on
physical activity and sports (r = 0.23, p = 0.005; r = 0.25, p =
0.002; and r = 0.21, p = 0.01, respectively, for T, fT, and the fT/C
ratio and time spent on physical activity).
A B

D E F

G IH

J K L

C

FIGURE 2 | Spearman’s rank correlations between testosterone (T), free testosterone (fT), free testosterone-to-cortisol ratio (fT/C), and C-reactive protein (CRP)
(A–C); ferritin (FER) (D–F); alpha-1-acid glycoprotein (AAG) (G–I); and interleukin-6 (IL-6) (J–L).
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Multivariate Correlations
In order to assess the independent relationship between
androgen status and inflammatory markers, we have created
three linear regression models with CRP, AAG, FER, and IL-6 as
separate dependent variables. As is shown in Table 3, the
correlations between each inflammatory marker and the
androgen profile parameters (T, fT, and fT/C ratio) were
adjusted for age (model 1), age and lipid profile (model 2), and
age, lipid profile, and BMI (model 3). In this multiple regression
Frontiers in Endocrinology | www.frontiersin.org 6
analysis, there were significant inverse correlations (or clear
tendency for it) between all the androgen profile variables and
the age- and lipid profile-adjusted CRP, AAG, and FER
concentrations. However, when adjustment for BMI was made
(model 3), these associations stayed significant only for the
androgen profile variables and the AAG concentrations (see
Table 3). The associations between fT and fT/C ratio and IL-6
concentration observed in the bivariate analysis (Figure 2) were
no longer significant when controlling for other covariates (age,
lipid profile, and BMI) (see Table 3).

DISCUSSION

The findings presented in this study demonstrated that a lower
serum T concentration is related to chronic low-grade
inflammation and an unfavorable blood lipid profile, which
may have important impacts on increasing atherosclerosis risk
in humans. This statement is supported by the negative
correlations between the markers of androgen status (T, fT,
and fT/C ratio) and blood lipid profile (TC, LDL, and TG) and
between the markers of androgen status and the inflammatory
markers (CRP, FER, AAG, and IL-6) (see Figures 1 and 2).
However, it should be pointed out that, although the associations
between androgens and the acute phase proteins (CRP, AAG,
and FER) were independent of age and blood lipid profile
(Table 3), only the correlations between the markers of
androgen status and AAG were independent of BMI. It must
also be acknowledged that these results, which are based on
correlations, do not infer causation.

Androgens and Adipose Tissue
The development of chronic low-grade inflammation depends
on both visceral fat content and sex hormones [see, e.g., (27)],
TABLE 3 | Associations between the inflammatory markers (CRP, AAG, FER, and IL-6) used as dependent variables and the androgen status (T, fT, and fT/C ratio),
age, lipid profile (LDL, HDL, and TG), and BMI entered as independent variables in three linear regression models.

T fT fT/C

b p aR2 b p aR2 b p aR2

CRP

Model 1: age adjusted −0.20 0.01 0.21 −0.22 0.01 0.20 −0.17 0.04 0.19
Model 2: adding LDL, HDL, and TG to model 1 −0.16 0.05 0.20 −0.17 0.06 0.19 −0.16 0.05 0.20
Model 3: adding BMI to model 2 −0.09 0.24 0.28 −0.11 0.17 0.28 −0.13 0.09 0.28

AAG

Model 1: age adjusted −0.35 <0.0001 0.12 −0.28 0.002 0.06 −0.25 0.003 0.06
Model 2: adding LDL, HDL, and TG to model 1 −0.30 0.0003 0.18 −0.22 0.01 0.13 −0.21 0.01 0.14
Model 3: adding BMI to model 2 −0.25 0.003 0.21 −0.18 0.05 0.17 −0.18 0.03 0.18

FER

Model 1: age adjusted −0.13 0.08 0.20 −0.18 0.03 0.21 −0.15 0.05 0.20
Model 2: adding LDL, HDL, and TG to model 1 −0.11 0.14 0.22 −0.17 0.05 0.23 −0.14 0.08 0.22
Model 3: adding BMI to model 2 −0.09 0.25 0.23 −0.15 0.08 0.23 −0.12 0.12 0.22

IL-6

Model 1: age adjusted −0.002 0.98 0.29 0.005 0.94 0.29 −0.06 0.43 0.29
Model 2: adding LDL, HDL, and TG to model 1 −0.02 0.80 0.28 0.006 0.94 0.28 −0.08 0.28 0.28
Model 3: adding BMI to model 2 0.02 0.80 0.29 0.04 0.65 0.29 −0.06 0.42 0.29
September 202
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BMI, body mass index; T, testosterone; fT, free testosterone; fT/C, free testosterone-to-cortisol ratio; CRP, C-reactive protein; AAG, alpha-1-acid glycoprotein; FER, ferritin; IL-6,
interleukin-6; LDL, low-density lipoprotein; HDL, high-density lipoprotein; TG, triglycerides; b, standardized beta coefficient; p, significance value; aR2, adjusted coefficient of determination.
TABLE 2 | Bivariate correlations between age and inflammatory markers, lipid
profile, and androgen profile and between BMI and inflammatory markers, lipid
profile, and androgen profile.

Age (years) BMI (kg m−2)

Spearman’s r p-value Spearman’s r p-value

Inflammatory markers
CRP (mg L−1) 0.39 <0.0001 0.49 <0.0001
AAG (g L−1) 0.11 ns 0.33 <0.0001
FER (mg L−1) 0.43 <0.0001 0.33 <0.0001
IL-6 (ng L−1) 0.53 <0.0001 0.36 <0.0001
Lipid profile
TC (mmol L−1) 0.50 <0.0001 0.30 0.0002
LDL (mmol L−1) 0.49 <0.0001 0.33 <0.0001
HDL (mmol L−1) 0.06 ns -0.20 0.02
Non-HDL (mmol L−1) 0.46 <0.0001 0.36 <0.0001
TG (mmol L−1) 0.30 0.0003 0.32 0.0001
Androgen profile
T (nmol L−1) −0.20 0.01 −0.31 0.0001
fT (nmol L−1) −0.46 <0.0001 −0.34 <0.0001
fT/C (×103) −0.15 0.07 −0.18 0.03
BMI, body mass index; CRP, C-reactive protein; AAG, alpha-1-acid glycoprotein; FER,
ferritin; IL-6, interleukin-6; TC, total cholesterol; LDL, low-density lipoprotein; HDL, high-
density lipoprotein; non-HDL, non-high-density lipoprotein; TG, triglycerides; T,
testosterone; fT, free testosterone; fT/C, free testosterone-to-cortisol ratio.
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and the interactions between fat mass and androgens may have
important outcomes on its progression (28). In the present study,
we have demonstrated that the relationship between T and the
inflammatory markers (CRP and FER) is not independent of
BMI, which suggests that this association is conditioned by body
fat (Table 3). The unfavorable impact of a higher body mass on
the inflammatory status is well known (29), and the chronic low-
grade inflammatory state may exist even when the fat content is
within the physiologically acceptable limits (11). Nevertheless,
from the results of the present study, it could be postulated that a
higher body fat adversely influences not only the inflammatory
status (by increasing CRP, AAG, FER, and IL-6), which was
observed in our earlier report (11), but also the androgen status
(decreasing T, fT, and fT/C ratio). The significant bivariate
correlations between BMI and the markers of both androgen
and inflammatory profiles (see Table 2) support such
conclusions. They also correspond to the results of Svartberg
et al. (30), who reported that the inverse correlation between T
and cIMT (carotid intima–media thickness, a marker of artery
atherosclerosis) was BMI-dependent.

The negative relationship between T concentration and fat
mass has often been demonstrated (31, 32). Moreover, it was
stated that a change in BMI from “non-obese to obese” may be
equivalent to a 15-year fall in the T concentration (32) and that
interventions reducing BMI are expected to increase serum T in
men (33). Although the exact mechanism of the negative effect of
a higher fat mass on the T concentration is not fully understood,
it seems that hypothalamic–pituitary inhibition of gonadotropin
release takes place through different central and peripheral
signals. However, it should also be pointed out that there is a
mutual relation between fat mass and androgens since androgens
have been shown to affect a number of adipose tissue functions
including adipocyte differentiation, lipid metabolism, and their
secretory activity (34). Additionally, testosterone replacement
therapies have been proven to be effective in decreasing adipose
tissue mass (35), and this effect may be related to lipoprotein
lipase activity inhibition, decreased triglyceride accumulation,
and lipolysis stimulation [see, e.g., (36)]. These data are in
accordance with the inverse relationship between T and the
lipid profile variables (TC, LDL, and TG) observed in this study
(Figure 1). On the other hand, the results showing that
testosterone promotes the commitment of the mesenchymal
pluripotent cells to the myogenic lineage and inhibits their
differentiation into the adipogenic lineage (37) were used to
elucidate the reciprocal effects of androgens on the muscle and
fat mass in men, and they may also be considered as the potential
explanation of the inverse correlation between androgens and
BMI presented in this study (Table 2) and by others (31).

Androgens and Inflammation
Adipose tissue may be involved in enhanced oxidative stress and
inflammation with aging (11), but the results of this study
suggest that the inflammatory process may be independently
associated not only with body fat and age but also with androgen
level. We based this conclusion on the observation of the
significant correlation between the markers of androgen profile
Frontiers in Endocrinology | www.frontiersin.org 7
and the AAG concentration in the multiple regression analysis
including age and BMI as relevant and independent potential
confounders (see Table 3). Although the physiological
mechanisms behind this relationship are unclear, the direct
influence of androgens on the different stages of the
inflammatory process has been reported (7, 8), and Norata
et al. (38) have demonstrated that, in endothelial cells, the
anti-inflammatory role of androgens is exerted through the
inhibition of the nuclear factor kappa B (NF-kB)-dependent
expressions of adhesion molecules, cytokines, and proteases. This
effect may occur through a testosterone-induced decrease of the
expression of Toll-like receptor 4 (TLR4), which is known to
stimulate different signaling pathways such as the NF-kB
pathway (39). Suppression of NF-kB in endothelial cells by
testosterone was later confirmed by Jin et al. (40), who also
demonstrated that the physiological concentration of T alleviates
the downregulation of TNF-a-mediated tissue factor pathway
inhibition (TFPI), resulting in a reduction of blood coagulation.

Although AAG was first described in 1950 [see (41)], its
complex regulation and immunomodulatory effects are still
under extensive investigation (42). Taking into account that we
have reported a significant positive correlation between the AAG
concentration and BMI [see Table 2 and “Results” in (11)], one
may suggest that a higher body fat stimulates AAG production
by hepatocytes through the secretion of pro-inflammatory
cytokines, mainly TNF-a and IL-6. Nevertheless, the multiple
regression analysis revealed that the best predictive parameter for
AAG was testosterone (b = −0.25, compared to b = 0.20 and b =
−0.17 for BMI and age, respectively), suggesting a connection
between these two parameters that is unrelated to adipose tissue–
testosterone interactions. The exact mechanism by which
androgens may influence the AAG level is unclear, but based
on the above-mentioned effects of androgens on the
inflammatory process, it may be suggested that testosterone
may diminish AAG production through its inhibitory action
on inflammatory cytokine synthesis. The negative association
between T concentration and the inflammatory markers, which
is frequently reported (12, 43), supports this conclusion. On the
other hand, the BMI-independent relationship between
androgens and AAG could be explained by the fact that
extrahepatic AAG expression occurs in cell types other than
the adipose tissue and may be regulated by inflammatory
mediators, as in hepatocytes (41).

It should also be mentioned that AAG was demonstrated to
maintain metabolic homeostasis and to suppress inflammatory
processes (44), similar to the functions of IL-6 and CRP that may
also be elevated in the absence of an inflammatory state and exert
anti-inflammatory effects, as recently reviewed by Del Giudice
and Gangestad (45). However, in our subjects, the higher
concentrations of AAG, CRP, and IL-6 were positively
correlated with a higher FER, an oxidative stress marker (r =
0.20, p = 0.02; r = 0.33, p < 10−4; and r = 0.17, p = 0.05,
respectively), a higher BMI, and a lower androgen profile (see
Results), which, together, represent a hallmark of the
inflammatory state, especially in the absence of other medical
conditions. It seems that the role of AAG in inflammatory
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progression needs to be further investigated, also in view of the
recent data that demonstrated the importance of IL-6 and IL-6R
(interleukin-6 receptor) in cardiovascular diseases (46, 47).

Androgens and Aging
It is widely accepted that aging per se decreases the T and fT
concentrations in men (48), especially after the fifth decade of life
(49), but the degree of this process also depends on the health
status of the studied men (50). In the European Male Ageing
Study, it was demonstrated that, in older men, with over 4 years
of follow-up, T decreases annually by 0.1 nmol L−1 and fT by 3.83
pmol L−1 (0.04% and 0.77%, respectively) (31). However,
Sartorius et al. (51) reported that, in aged men characterized
by “very good or excellent” health, serum sex steroids are not
reduced. This finding led the authors to the conclusion that the
changes in the androgen levels observed in other studies may be
rather attributable to comorbidities in the aging population than
to the aging process itself. This conclusion seems to be in
contrast to the results presented in this paper. Although we
have demonstrated that physically active men tend to have
higher sex hormone concentrations than do the inactive ones
(see Results, Bivariate Correlations), there was a significant
negative correlation between age and the androgen status,
especially the fT concentration, i.e., the biologically active form
of gonadal androgens (see Table 2). These findings suggest,
according to the classic view (49), that the T and fT
concentrations diminish with aging, however, at the same time,
it may be postulated that lifelong moderate-intensity exercise
training may attenuate this process.

Androgens and Exercise
The data regarding the effect of exercise training on gonadal
androgens in aging males are, however, inconsistent (52, 53).
Nevertheless, based on our earlier studies (20, 26, 54, 55), we can
suggest that the basal T and fT concentrations change in response
to exercise training accordingly to the applied training load.
Therefore, it can be postulated that a low-to-moderate training
load leads to an increase in the T concentration (20, 54), a
moderate-to-heavy training load does not change it (26), and a
heavy-to-maximal training load leads to a decrease in its
concentration (55). This concept was recently supported in the
review byMatos et al. (56), and it can also explain why Lovell et al.
(52) did not observe any changes in the resting T and fT
concentrations during training of progressively increasing loads
in older men, whereas Hayes et al. (53) found enhanced basal T
and fT concentrations after training of shorter durations and lower
total loads (although partly of higher intensities).

The training-induced changes in the androgen concentrations,
regardless of whether they are related to the direct stimulation of
the HPG axis or to the effects of body fat–androgens interactions,
may be of great importance because we have demonstrated that
they are inversely correlated with markers of inflammation and
blood lipids (Figures 1 and 2). It should also be emphasized that a
lower T level is associated with muscle weakness (57) and a faster
VO2 peak decline during aging (58), which decreases the muscle
power-generating capabilities and the willingness to engage in
spontaneous physical activity. The reduced physical activity might,
Frontiers in Endocrinology | www.frontiersin.org 8
in turn, further compromise systemic T availability and contribute
to the unfavorable changes in the inflammation and blood lipid
profile. This hypothesis, together with our results, is consistent
with previous studies showing that T is negatively correlated with
the CRP (59), TC (60), and TG concentrations (60, 61) and
positively with the HDL concentration (61) and that men with
lower T concentrations have unfavorable lipid profile (HDL < 0.90
and TG > 1.80) (62). Although the correlation between T and
HDL was not significant in this paper (p > 0.05), it should be noted
that exercise training may induce an enhanced HDL
concentration. One may speculate that a moderately higher level
of physical activity affects positively both the testosterone and
HDL concentrations, however, recent data have indicated that a
more important risk factor for cardiovascular events is HDL
cholesterol efflux capacity (63), which could be influenced by
gonadal androgens (64).

Based on the above literature data, it may be inferred that the
correlation between androgens and inflammatory markers
observed in this study is not accidental. Simultaneously, we are
aware of the limitations of our study, especially that related to the
cross-sectional design of the research and the limited number of
studied men, which impeded us from establishing a firm
causality between the androgen status and the inflammatory
markers and blood lipid profile. We also acknowledge that
measurements of the apolipoproteins and oxLDL (oxidized
LDL) and determination of anti-inflammatory markers would
reinforce our results. Nevertheless, the multiple regression
analysis, including androgen, inflammatory, and blood lipid
profile, in this moderately large group of men (see Table 3)
enabled us to claim that testosterone may affect the inflammatory
process independently of adipose tissue and age, which confirms
other findings (43) and suggests a direct connection between the
T and fT concentrations and inflammatory markers.
CONCLUSION

Summing up, we have shown that chronic low-grade inflammation
might be linked to lowered androgen levels in men. Based on the
results of this study and on previously published data, we have
concluded that a lowered androgen profile is related to a reduced
inhibition of inflammatory cytokine synthesis, which leads to an
enhanced production of acute phase proteins. Accordingly, we
postulate that a low serum T concentration should be considered
as an independent risk factor in the development of atherosclerosis
and cardiovascular diseases. Moreover, the positive correlation
between testosterone and physical activity level suggests that
exercise training may reduce the age-related decrease in gonadal
androgens, which seems to be one of the main beneficial effects
(anti-inflammatory one) of physical activity in aging men.
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