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Protein sequence design with a learned potential

Namrata Anand® ', Raphael Eguchi 2 [rimpan . Mathews3, Carla P. Perez® 4, Alexander Derry =3

Russ B. Altman"® & Po-Ssu Huang® ™

The task of protein sequence design is central to nearly all rational protein engineering
problems, and enormous effort has gone into the development of energy functions to guide
design. Here, we investigate the capability of a deep neural network model to automate
design of sequences onto protein backbones, having learned directly from crystal structure
data and without any human-specified priors. The model generalizes to native topologies not
seen during training, producing experimentally stable designs. We evaluate the general-
izability of our method to a de novo TIM-barrel scaffold. The model produces novel
sequences, and high-resolution crystal structures of two designs show excellent agreement
with in silico models. Our findings demonstrate the tractability of an entirely learned method
for protein sequence design.
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omputational protein design has emerged as a powerful

tool for rational protein design, enabling significant

achievements in the engineering of therapeutics!-3,
biosensors*-%, enzymes”-8, and more®-!1. Key to such successes is
robust sequence design methods that minimize the folded-state
energy of a pre-specified backbone conformation, which can
either be derived from existing structures or generated de novo.
This difficult task!? is often described as the inverse of protein
folding—given a protein backbone, design a sequence that folds
into that conformation. The functional design of enzymes, ligand
binding sites, and interfaces all require fine-grained control over
side-chain types and conformations. Current approaches for
fixed-backbone design commonly involve specifying an energy
function and sampling sequence space to find a minimum-energy
configuration!3-1>, and enormous effort has gone into the
development of carefully modeled and parameterized energy
functions to guide design, which continue to be iteratively
refined!®17,

With the emergence of deep learning systems and their ability to
learn patterns from high-dimensional data, it is now possible to
build models that learn complex functions of protein sequence and
structure, including models for protein backbone generation!8-20
and protein structure prediction?1:2%; as a result, we were curious
as to whether an entirely learned method could be used to design
protein sequences on par with energy function methods. Recent
experimentally validated efforts for machine learning-based
sequence generation have focused on sequence representation
learning without structural information, requiring fitting to data
from experiments or from known protein families to produce
functional designs?324. We hypothesized that by training a model
that conditions on local backbone structure and chemical envir-
onment, the network might learn residue-level patterns that allow
it to generalize without fine-tuning to new backbones with topol-
ogies outside of the training distribution, opening up the possibility
for generation of de novo designed sequences with novel structures
and functions. Structure-based machine learning methods for
design thus far have focused on mutation prediction?>-39, rotamer
repacking of native sequences®!, or amino acid sequence design
without modeling side-chain conformers32-3>, with some experi-
mental validation including circular dichroism data33 and
fluorescence?6. We sought to build a model that could generalize to
unseen backbones with no homologous sequence data included in
the training, as well as to validate that designs fold into target
structures with designed side-chain conformations. As such, we
explored a method in which the neural network not only designs
the sequence but explicitly builds rotamers and evaluates full-atom
structural models, an approach not reported to date.

Conventional energy functions used in sequence design cal-
culations are often composed of pairwise terms that model inter-
atomic interactions. Given the expressivity of deep neural net-
works, or their ability to approximate a rich class of functions, we
predicted that a model conditioned on chemical context could
learn higher-order (multi-body) interactions relevant for
sequence design (e.g., hydrogen bonding networks). Furthermore,
most energy functions are highly sensitive to specific atom pla-
cement, and as a result, designed sequences can be convergent for
a given starting backbone conformation. For most native pro-
teins, however, the existence of many structural homologs with
low sequence identity suggests that there is a distribution of viable
sequences that can adopt a target fold, but the discovery of these
sequences given a fixed-backbone reference structure is difficult.
We hypothesized that a learned model could operate as a soft
potential that implicitly captures backbone flexibility, producing
diverse sequences for a fixed protein backbone.

In this study, we explore an approach for sequence design
guided only by a neural network that explicitly models side-chain

conformers in a structure-based context (Fig. 1A), and we assess
its generalization to unseen native topologies and to a de novo
TIM-barrel protein backbone. The model produces novel
sequences, and the high-resolution crystal structures of two
designs show excellent agreement with in silico models.

Results

Design algorithm. We are interested in sampling from the true
distribution of n-length sequences of amino acids Y & {1...20}"
conditioned on a fixed protein backbone. The backbone is fully
specified by the positions of each residue’s four N—C, — C— O
atoms and the C-terminal oxygen atom, whose positions are
encoded as X € R“D*3; thus, the final conditional distribution
we are interested in modeling is:

PYIX) = p(icys -+ 5Vl X) (1)

Due to the local nature of the physical interactions within pro-
teins, we can expect that the likelihood of a given side-chain
identity and conformation will be dictated by neighboring resi-
dues. Defining env; as the joint distribution over backbone atoms
X and neighboring residues yng(;) at a given residue position i, the
conditional side-chain distribution at position i can be factorized
sequentially as follows:

4 . i
POiIX, yxpiy) = ply;lenv;) = p(r;lenv;) HP(XHX}J g r;;env;)

=1
@

where r;€{1...20} is the amino-acid type at position i and
XisXisXi»Xi € [—180°,180°] are the torsion angles for the side-
chain.

We train a deep neural network conditional model 0 to learn these
conditional distributions from data. Conditioning on the local
environment, the network autoregressively predicts distributions over
residue types pe(rlenv;) and rotamer angles p,(y! |)A(;:J_l,?i,envi),
conditioning on native residue type 7; and rotamer angles j(\;:ﬁl
(Fig. 1B). Our design algorithm involves iteratively sampling side-
chains conditioned on their local chemical environments from these
network-predicted distributions. We can approximate the joint
probability of a sequence P(Y|X) by the pseudo-log-likelihood
(PLL)3¢ of the sequence under the model

PLL(Y|X) = Zi:log Po(y;lenv,) (3)

which we optimize in order to find high-likelihood sequences under
the model. Over the course of design, the algorithm builds full-atom
structural models that can be evaluated using established structure
quality metrics.

We use a 3D convolutional neural network as our classifier 0,
training the model on X-ray crystal structures of CATH 4.2 S95
domains37-3%, with train and test set domains separated at the
topology level. For the amino-acid type prediction task, our
conditional model achieves a 57.3% test set accuracy, either
outperforming?? or matching?41:42 previously reported machine
learning models for the same task. The predictions of the network
correspond well with biochemically justified substitutability of the
amino acids (Supplementary Fig. 1A-C); this learned substitut-
ability is a necessary feature for design, as we expect proteins to
be structurally robust to mutations at many residue positions. The
residue type-conditioned rotamer prediction module by con-
struction learns the backbone-dependent joint rotamer angle
distribution p(x},x7,x7,x{|1X, ;). The network-learned indepen-
dent y distributions match empirical residue-specific rotamer
distributions, which rotamer libraries typically seek to capture
(Supplementary Fig. 2).
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Fig. 1 Fully learned sequence and rotamer design onto fixed protein backbones. A Sequences are designed onto fixed protein backbones by (1) iteratively
selecting a candidate residue position, (2) using a neural network model to sample amino-acid type and conformation, and (3) optimizing the negative
pseudo-log-likelihood of the sequence under the model via simulated annealing. (Inset, left) Given the local chemical environment around a residue
position (box, dashed, not to scale), residue type and rotamer angles are sampled from network-predicted distributions. B The neural network model is
trained to predict residue identity and rotamer angles in an autoregressive fashion, conditioning on ground-truth data (black). The trained classifier predicts
amino-acid type as well as rotamer angles conditioned on the amino-acid type. Cross-entropy loss objectives are shown in pink.

Design algorithm generalizes to unseen backbone topologies.
We sought to assess the degree of generalization of the algorithm
to native backbones from the test set, which have CATH-defined
topologies not seen by the model during training. We selected
four test case backbones that span the major CATH classes—all
alpha, alpha-beta, and all-beta (Fig. 2A). To validate the entirely
learned approach, we challenged the model to fully redesign
sequences given starting backbones. If the model has generalized,
it should be able to recover native rotamers and sequence to a
degree during design, as well as design key structural and bio-
chemical elements typically seen in folded proteins.

Given the native sequences for the test cases, the model recovers
native rotamers with high accuracy for the test case backbones across
5 design trajectories each (rotamer angles are within 20 degrees of the
native angle on average 72.6% of the time) and with higher accuracy
in the hydrophobic core regions of the protein (90.0% accurate
within 20 degrees) (Fig. 2B, C and Supplementary Figs. 3A, B); this
performance is on par with top benchmarked methods such as
Rosetta?* and another learned method for scoring rotamers3!.
Tasked with designing the sequence and rotamers from scratch (see
“Methods” section), the model designs recapitulate between 25 and
45% of the native sequence in general, with a greater overlap in the
buried core regions of the protein that are more constrained and
therefore might accommodate a limited set of residue types (Fig. 2D
and Supplementary Figs. 3C). The model designs are more variable in
solvent-exposed regions, akin to sequences homologous to the native
structure found through multiple sequence alignment (MSA)
(Fig. 2E). Furthermore, the secondary structure prediction accuracy

for model-designed sequences are comparable to that of the native
sequence (Fig. 2F and Supplementary Fig. 4C), indicating that despite
the variation, the designed sequences retain local residue patterns that
allow for accurate backbone secondary structure prediction.

Model designs tend to have well-packed cores (Supplementary
Fig. 7A, B) and in general, the model-designed sequences tend not
to have hydrophobic residues in solvent-exposed positions, likely
due to the abundance of cytosolic protein structures available
(Supplementary Fig. 7C). Additionally, the model designs match
the native structure in terms of numbers of side-chain and
backbone buried unsatisfied hydrogen bond acceptors and donors
(Supplementary Fig. 7D-F); this indicates that over the course of
model design, polar side-chains that are placed in buried regions
are adequately supported by backbone hydrogen bonds or by the
design of other side-chains that support the buried residue.

We also see a number of expected structural features across the
test case designs, including placement of glycines at positive ¢
backbone positions (Supplementary Figs. 2G and 4D), N-terminal
helical capping residues (Fig. 2H and Supplementary Figs. 4E),
universal design of a proline at the cis-peptide position P21 for
Icc8 (Supplementary Fig. 4F), and, by inspection, polar networks
supporting loops and anchoring secondary structure elements
(Supplementary Fig. 5).

For each test case backbone, we selected 4 out of 50 designs for
further characterization based on ranking by the model PLL and
other metrics (Supplementary Tables 22-26). Importantly, this
ranking uses no information about the native sequences. We
validated these sequences by computational structure prediction
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Fig. 2 Generalization of model design to unseen topologies. Data are presented as mean values + 95% Cl or as box plots with a median center, bounds of
boxes corresponding to interquartile range (IQR), whisker length 1.5*IQR, and outliers rendered outside of this range. A The trained model is used to either
repack rotamers or design entirely new sequences onto unseen test set structures with non-train-set CATH topologies. B, C Model-guided rotamer
recovery for native test cases. B Rotamer repacking accuracy for buried core residues versus solvent-exposed residues as a function of degree cutoff.
C 5 models superimposed with side chains shown as black lines compared to the native conformation shown in purple outline for test case 3mx7.

D-H Performance of sequence design onto test case backbones. D Native sequence recovery rate across 50 designs for all residues vs. buried core
residues. E Position-wise amino-acid distributions for test case Tcc8. Columns are normalized. (Top) Native sequence and aligned homologous sequences
from MSA (n=670). (Bottom) Model designs (n = 50). F Cross-entropy of Psipred secondary structure prediction from a sequence with respect to DSSP
assignments>465-68,76_G Fraction occurrence of glycines at positive ¢ backbone positions across test cases. H Fraction occurrence of N-terminal helical
capping residues across designs for test cases with capping positions. I, J Far UV circular dichroism (CD) spectroscopy data for selected test case designs.
I Mean residue ellipticity ®urw (103 deg cm? dmol=1) for CD wavelength scans at 20 °C for native structures (blue, dashed) vs. select model designs
(orange, solid) Tacf d3, Tbkr d2, 1cc8 d2, and 3mx7 d4. Sequence identity to native reported within each panel. J Thermal melting curves for select model

designs monitoring Oprw (103 deg cm?2 dmol=1) at 222 nm or 217 nm for 3mx7.

by the Rosetta ab initio application (Supplementary Figs. 9 and
10). The model designs achieved far better recovery than a 50%
randomly perturbed control, suggesting that close recovery of the
native backbone is due to features learned by the model and not
simply due to sequence identity with the native. Interestingly, the
model designs converge on some sequence features that are not
seen in the native sequence, yet appear in homologous sequences
(Supplementary Fig. 6).

Given the method’s strong performance under these sequence
quality metrics, we sought further confirmation that the model
designs would express and be soluble and folded. Of the 16 designs
tested, 15 expressed well in bacteria, and 10 appeared well-folded
under circular dichroism (CD) wavelength scans (Supplementary
Figs. 11 and 12). For each test case, at least 1 of 4 designs appeared

folded and had the expected secondary structure signature under CD.
For example, the top design for 1bkr has 208 nm and 222 nm alpha-
helical signal as expected for a helical bundle, while all of the 3mx7
designs have clear 217 nm beta-strand signal, but no alpha signal,
consistent with all-beta proteins (Fig. 2I). CD spectra for the top
model designs match the native spectra well, and the designs were
found to be more thermally stable than the native as well (Fig. 2] and
Supplementary Fig. 13). Overall, these results indicate that the neural
network model generalizes to topologies that are strictly unseen by
the model during training.

Model captures sequence-structure relationship. Unlike analy-
tical energy functions for macromolecular design, the model is
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Fig. 3 Model captures sequence-structure relationship. A, B Decoy ranking by model negative pseudo-log-likelihood (PLL) of the native sequence.

A Model negative PLL vs. alpha-carbon RMSD (A) to the native structure for Rosetta ab initio decoys. Points are colored by average side-chain RMSD to
native (A). In some cases, the model assigns low negative PLL to high RMS backbones; for example, for Tcc8 an alternative pattern of beta-strand pairing is
shown (Inset). B Model negative PLL of low backbone RMS structures (CA RMSD <5 A) vs. average side-chain RMSD (A). Box highlights low model
negative PLL assigned to low side-chain RMSD decoys. € Spearman rank correlation between model negative PLL or Rosetta energy vs. structure alpha-
carbon RMSD (A) as a function of increasing RMSD cutoff. In the low RMS regime (<5 A), the model and Rosetta are able to rank low RMS structures to a

similar extent.

not expected to generalize to structures far from the training
distribution (e.g., unfolded, distended, or highly perturbed
backbones), as it is trained by conditioning on the correct context.
However, the model can in fact detect out-of-distribution back-
bones for a given sequence. Across a set of structures (decoys)
generated via fragment sampling during Rosetta ab initio pre-
diction, the model negative PLL is lowest for decoys with low
RMSD to the native backbone (Fig. 3A and Supplementary
Fig. 14A). There are cases where the model assigns low negative
PLL to high RMS backbones (Fig. 3A and Supplementary
Fig. 14A, inset); for example, for lacf an alternative N-terminal
helix conformation and for Icc8 an alternative pattern of beta-
strand pairing are assigned low negative PLLs.

Additionally, in the low backbone RMS regime (<5 A from the
native), the model can further identify decoys with low RMSD
side-chain conformations (Fig. 3B and Supplementary Fig. 14B).
In essence, though the model is trained to learn sequence
dependence on structure, it makes correct predictions about
structures given sequence. Notably, the model demonstrates
sensitivity to large perturbations, while remaining robust to small
perturbations in the backbone (<2.5 A) and side-chains (<0.40 A),
a desirable property for the design method. In the low RMS
regime (<5 A), the model is able to identify and rank low RMS
structures to a similar extent as Rosetta (Fig. 3C).

Model-based sequence design of a de novo TIM-barrel. To
assess whether the model could perform sequence design for de
novo structures, we tested our method on a Rosetta-generated
four-fold symmetric de novo TIM-barrel backbone, a (Bofa)y
topology consisting of an eight-stranded barrel surrounded by
eight alpha helices**. The design of de novo proteins remains a
challenging task as it necessitates generalization to non-native
backbones that lie near, but outside the distribution of known
structures. Successful de novo protein designs often lack homol-
ogy to any known native sequences despite the fact that de novo
structures can qualitatively resemble known folds#4-40. For a
design protocol to perform well on de novo backbones it must
therefore supersede simple recapitulation of homologous
sequences. The TIM-barrel design case is of particular interest, as
about ~10% of known enzymes are thought to adopt a TIM-barrel
fold4’, making the fold a prime candidate for the rational design
of enzymes and more generally for substrate binding.

We had the model fully redesign 50 four-fold symmetric
sequences for the backbone and selected 8 designs for further
characterization based on ranking by the model PLL and other
metrics (see “Methods” section), using no information about
previously confirmed sequences (Supplementary Table 27 and
Supplementary Fig. 28). A subset of these 8 structures was
predicted to fold with low backbone deviation (<4 A) into the
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target backbone by Rosetta (F2C, F4C) and trRosetta (F2C, F4C,
F8C) (Supplementary Fig. 15).

Of these 8 designs, 4 are cooperatively folded proteins, as
indicated by circular dichroism (CD) wavelength scans and by the
presence of clear two-state transitions in thermal melt curves
(Supplementary Figs. 16 and 17). All of the folded proteins
designed by our model have higher thermal stability than the
initial designs reported in the original study, with melting
temperatures for 3 of the 4 ranging between 84 and 87 °C while
the fourth protein (F5C) remains folded at 95 °C (Supplementary
Fig. 17B). Folded sequences reported in the original study also
require manual intervention to introduce a key aspartate residue
required for the structure to cooperatively fold; while automated
Rosetta design is unable to produce foldable sequences, our model
produced the sequences with no manual intervention.

We successfully crystallized 2 model designs, F2C (146 A
resolution) and F15C (1.9 A resolution), and the crystal structures
validate that the sequences indeed fold into the TIM-barrel structure
in agreement with the designed backbone (Fig. 4A and Supplemen-
tary Figs. 18A, 19A, Supplementary Table 31). For F2C, the
C-terminal helix is dislodged, although the complete barrel is
formed. We hypothesize that the design of Ala3 (and symmetric
positions Ala49, Ala95, Ala141) reduces the hydrophobic volume in
the core, possibly allowing other interactions in the crystallization
conditions to dislodge the helix (further discussion in Supplementary
Note 1). In the structure, we see that the C-terminal His tag for F2C
interacts with the surface of the beta-barrel, which might also
contribute to the dislodging of the C-terminal helix (Supplementary

F2C

1.45 A resolution F15C A

0.88 A CARMSD
(first 3/4 units) / 3.346 A

)

Figs. 18A, E), although 3 of the 4 symmetric subunits are folded as
expected. To elucidate this, we crystallized the protein with an
N-terminal His-TEV tag (F2N, 1.58 A resolution). Since the
structure is a closed toroid, the N- and C-termini are proximal, and
we see that the N-terminal tag is partially resolved folded against the
barrel, displacing the C-terminal helix (Supplementary Fig. 18C).
F15C adopts the full TIM-barrel fold, but for two of four monomers
in the asymmetric unit of F15C, one of the f-a loops shifts to
interact with an adjacent monomer in the crystal (Supplementary
Fig. 19B, C). However, we note that F15C primarily elutes as a
monomer in size exclusion chromatography (Supplementary Fig. 16),
and the interactions observed in the crystal structure resemble
crystal packing, rather than a stable dimer interface. Apart from the
described deviations, the structures fold as expected.

The model designs tend to recapitulate previous core sequences
for the region of the protein between the helices and outer part of
the barrel (Supplementary Fig. 20A), as well as for the inner part
of the barrel, although some model designs do introduce novel
features into these regions (Supplementary Fig. 20B).

These similarities aside, the model designs are in general more
varied than other previously characterized designs, predomi-
nantly due to variation in non-buried residue positions (Fig. 4B
and Supplementary Fig. 20C, Supplementary Table 29). Of
particular interest are mutations in the interfaces between the
helices surrounding the barrel where, remarkably, the design
algorithm is able to find novel structural features that have not
been discovered by Rosetta and human-guided design
methodologies**8 (Fig. 4C, D and Supplementary Fig. 21A, B).

Model designs

sequence
overlap

3

0% 100%

Fig. 4 Model discovery of novel sequence features. A Overlay of crystal structures (blue) with template TIM-barrel backbone for F2C (pink) and F15C
(yellow). Alpha-carbon RMSD (A) and sequence identity to sTIM-11 sequence?# are given below structures. B Percent sequence identity (indicated by
graph edge color and thickness) between TIM-barrel subunits for model TIM-barrel designs (orange) and previously characterized sequences for the same
scaffold (blue), including sTIM-11 (5bvl, S11)44, DeNovoTIM15 (6wvs, D15)77, and DeNovoTIMs (N6, N13, N14a, N14b)48. N14a and N14b are two-quarters
of the two-fold symmetric DeNovoTIM14. C, D Investigation of sequence features for the symmetric subunit near the top of the barrel (cyan shadow) and
the helix interface between symmetric subunits (orange shadow) for € F2C and D F15C. Crystal structures are shown in blue overlaid with the design

template (pink—F2C, yellow—F15C). E-H Closer inspection of novel sequence features designed by the model.
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For F2C, the model uses an isoleucine to wedge between the long
and short helices and forming a Tyr-Glu-Ser polar network that
extends to coordinate the loop from the beta-sheet to the short
helix (Fig. 4E); for F15C, the model has a different solution,
designing phenylalanine and valine residues (F10, V14) to pack
the long helix against the shorter one near the top of the barrel
(Fig. 4G). Particularly interesting are the Tyr-backbone contact
and the His-Glu-backbone polar network for F2C and F15C,
respectively, that help coordinate the helices across symmetric
subunits at the base of the structure; these are the only hydrogen
bonding solutions designed at this position among all previous
structure-confirmed sequences for this scaffold (Fig. 4F, H).

Discussion

Our results demonstrate that a design algorithm guided by an
entirely learned neural network potential can generate viable
sequences for a fixed-backbone structure, generalizing to unseen
topologies and de novo backbones. The method is flexible: the
design protocol easily allows for adding position-specific con-
straints during design, and other neural network models such as
graph networks or rotationally equivariant networks, could be
used in place of the classifier network presented without funda-
mentally changing the method. Though presented in a stand-
alone manner, in practice this method could be used in tandem
with energy function-based methods for design, for example by
using the model as a proposal distribution, while optimizing an
external energy function. We anticipate that this type of approach
could be used for the design of interfaces, protein-nucleic acid
complexes, and ligand binding sites.

Notably, the design algorithm reflects key characteristics of
energy functions, such as the ability to (1) accurately determine
side-chain conformations, (2) differentiate the hydrophobic
interior and polar exterior of the proteins, and (3) design
hydrogen-bonding networks. With classical molecular mechanics
force-fields, capturing these effects require terms that accurately
describe Van der Waals, solvation, hydrogen bonding, as well as
many other interactions; it also likely requires an independent
hydrogen-bonding network search algorithm#® and discrete side-
chain representations from rotamer libraries. None of these are
required with this approach. In contrast to energy function
development, the model took only hours to train.

In this study, we sought to tackle key challenges with machine
learning-based protein sequence design, including generalization
to new folds and angstrom-level recovery of target structures. The
learned neural network potential is able to guide high-
dimensional sampling and optimization of the structure-
conditioned sequence distribution. Our results show the prac-
tical applicability of an entirely learned method for protein
design, and we believe this study demonstrates the potential for
machine learning methods to transform current methods in
structure-based protein design.

Methods
Model training. Our model is a fully convolutional neural network, with 3D
convolution layers followed by batch normalization®® and LeakyReLU activation.
We regularize with dropout layers with dropout probability of 10% and with L2
regularization with a weight 5 x 107%. We train our model using the PyTorch
framework, with orthogonal weight initialization®!. We train with a batch size of
2048 parallelized synchronously across eight NVIDIA v100 GPUs. The momentum
of our BatchNorm exponential moving average calculation is set to 0.99. We train
the model using the Adam optimizer (8; = 0.5, 8, = 0.999) with learning rate
7.5 x 107552, We use the same model architecture and optimization parameters for
both the baseline (prediction from backbone alone) and conditional models
(Supplementary Data 1).

Our final conditional classifier is an ensemble of four models corresponding to
four concurrent checkpoints. Predictions are made by averaging the logits
(unnormalized outputs) from each of the four networks. Trained models are

available at https://drive.google.com/file/d/1cHoyel0H_Jo9bqgFH4z0dfx2s9as9)p1/
view?usp=sharing.

Data. To train our classifier, we used X-ray crystal structure data from the Protein
Data Bank (PDB)?’, specifically training on CATH 4.2 $95 domains3%3, We first
applied a resolution cutoff of 3.0 A and eliminated NMR structures from the
dataset. We then separated domains into train and test sets based on CATH
topology classes, splitting classes into ~95% and 5%, respectively (1374 and 78
classes, 53,414 and 4372 domains each, see Supplementary Data 1). This ensured
that sequence and structural redundancy between the data sets was largely elimi-
nated. During training, we did not excise domains from their respective chains but
instead retained the complete context around a domain. When a biological
assembly was listed for a structure, we trained on the first provided assembly. This
was so that we trained primarily on what are believed to be functional forms of the
protein macromolecules, including in some cases hydrophobic protein-protein
interfaces that would otherwise appear solvent-exposed.

The input data to our classifier is a 20 x 20 x 20 A3 box centered on the target
residue, and the environment around the residue is discretized into voxels of
volume 1 A3, We keep all backbone atoms, including the C, atom of the target
residue, and eliminate the Cy atom of the target residue along with all of its other
side-chain atoms. We center the box at an approximate Cg position rather than the
true Cg position, based on the average offset between the C, and Cg positions across
the training data. For ease of data loading, we only render the closest 400 atoms to
the center of the box.

We omit all hydrogen atoms and water molecules, as well as an array of small
molecules and ions that are common in crystal structures and/or possible artifacts
(Supplementary Data 1). We train on nitrogen (N), carbon (C), oxygen (O), sulfur
(S), and phosphorus (P) atoms only. Ligands are included, except those that
contain atoms other than N, C, O, S, and P. Bound DNA and RNA are also
included. Rarer selenomethionine residues are encoded as methionine residues. For
the baseline model, we omit all side-chain atoms while training, so that the model
conditions only on backbone atoms. For the conditional model, the input channels
include: atom type (N, C, O, S, or P), indicator of backbone (1) or side-chain (0)
atom, and one-hot encoded residue type (masked for backbone atoms for the
center residue). For the baseline model, the input channels only encode atom type,
since all atoms are backbone atoms and we assume no side-chain information
is known.

We canonicalize each input residue environment in order to maximize
invariance to rotation and translation of the atomic coordinates. For each target
residue, we align the N-terminal backbone N — C, bond to the x axis. We then
rotate the structure so that the normal of the N — C, — C plane points in the
direction of the positive z axis. Finally, we center the structure at the effective Cs
position. By using this strategy, we not only orient the side-chain atoms relative to
the backbone in a consistent manner (in the positive z direction), but also fix the
rotation about the z axis. We then discretize each input environment and one-hot
encode the input by atom type.

Design algorithm set-up. We would like to sample from the probability dis-
tribution of n-length sequences of amino acids Y € {1...20}" conditioned on a fixed
protein backbone configuration. The backbone is specified by the positions of the
residues’ non-hydrogen atoms whose positions are encoded as X € R*"+1>3; thus,
the final conditional distribution we are interested in modeling is

POYNX) = p(yizts - 0s yulX)-

This is a high-dimensional structured probability distribution, and we make the
following simplifying assumption to make the task of learning this distribution
from data more tractable: identity and conformation (rotamer) of each side-chain
i is independent of all other side chains y; conditioned on the identity of the side
chains in its neighborhood yng;).

This assumption motivates the use of a Conditional Markov Random Field
(MREF) to model the target distribution, wherein the nodes of the MRF correspond
to the residues and rotamer configurations, edges between nodes indicate the
possibility of correlation between the residues or rotamers, and each node is
conditionally independent of all other nodes, conditioned on the nodes in its
Markov Blanket. More precisely, the input backbone X defines a graph structure,
where nodes correspond to side chain y; and edges exist between pairs of residues
(y»y) if and only if the corresponding backbone atoms are within some threshold
distance of each other. Defining env; as the joint distribution over backbone atoms
X and the spatial neighborhood yyp(;), we see that the conditional distribution of
residue and rotamers at a single position i can be factorized sequentially as follows:

4
POiIX. ynpy) = py;lenv;) = p(r;lenv;) HP(XHX:‘IJ?I» r;; €nv;) (4)

j=1

where r; €{1...20} is the amino-acid type of residue i and x;,x?, x?,x} €
[—180°,180°] are the torsion angles for the side-chain.

We train a deep neural network conditional model 6 in an autoregressive
manner to learn these conditional distributions from data. We also train a baseline
model that has only backbone atoms as an input, as a means to initialize the
backbone with a starting sequence.
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Sampling procedure. Given a residue position i and a local environment env;
around that residue with either just backbone atoms (baseline model) or other
residue side-chains as well (conditional model), the sampling procedure is as fol-
lows. First, sample a residue type 7; € {1... 20} conditioned on the environment.
Then, conditioned on the environment and the sampled amino-acid type, sample
rotamer angle bins ¥, € [~180°,180°] for j=1...4 in an autoregressive manner.
The model in this instance learns a distribution over 24 rotamer bins (7. 5° per bin).
After a discrete rotamer bin has been sampled, the final rotamer angle ¥’ is sampled
from a uniform distribution over the bin.

X~ PR i eny) )

X, ~ Unif [ BinLeft (§/), BinRight (¢))] (6)

Note that the subsequent autoregressive step conditions on the discrete rotamer
bin, not the sampled continuous rotamer angle.

As residues and rotamers are sampled at different positions along the protein
backbone, we monitor the negative pseudo-log-likelihood (PLL) of the sequence

4 . "
PLL(Y[X) = Ylogpy(yjlenv,) = Slogp(rlenv,) + 3 logp(xllx;” ', 7;, env;)
i i j=

@)

as a heuristic model energy. Note that most residues have fewer than four y angles.
At sampling time, after a residue type has been sampled, only the corresponding y
angles for that residue are sampled. For residues that do not have a particular y/, an
average value for the log probability of )/ under the conditional model across the
train set and across the rotamer bins is used instead in the PLL calculation.

In this study, we do simulated annealing to optimize the average PLL across
residue positions. The acceptance criterion for a step is

N
exp <7 ﬁ ;1 logp, ()/i\envi)>
Paccept = min | 1, = T ®

where temperature T is annealed over the course of a design run.

In order to speed up convergence, we do blocked sampling of residues. In
practice, we draw edges in the graph between nodes where corresponding residues
have Cj atoms that are less than 20 A apart, guaranteeing that non-neighboring
nodes correspond to residues that do not appear in each other’s local
environments. During sampling, we use greedy graph coloring to generate blocks of
independent residues. We then sample over all residues in a block in parallel,
repeating the graph coloring every several iterations. Additionally, we restrict the
model from designing glycines at non-loop positions, based on DSSP
assignment®3>4,

Implementation and runtime. The algorithm is implemented in Python, using
PyTorch for loading and evaluating the trained networks and PyRosetta for
building structural models based on the network predictions for residue type and
rotamer angles. Code for the algorithm is available at https://github.com/
ProteinDesignLab/protein_seq_des.

The runtime for our method for sequence design is determined primarily by
two steps: (1) sampling residues and rotamer angles and (2) computing the model
energy (negative PLL). These times are determined by the speed of the forward pass
of the neural network, which is a function of the batch size, the network
architecture, the GPU itself, and the number of GPUs used in parallel. Note that to
compute the model energy, a forward pass of the network is done at each residue
position about which the environment has changed.

Annealing for 2500 steps takes between 1 and 3 h for the native test cases on a
computer with 32 GB RAM and on a single GeForce GTX TITAN X GPU, with up
to 3 design runs running on the same machine/GPU in parallel (Supplementary
Data 2). Rosetta-RelaxBB takes 20-30 min per design, while Rosetta-FixBB takes
5-15 minutes per design. Compressing the network or modifying the architecture
and parallelizing the sampling procedure across more GPUs would improve the
overall runtime. In addition, a faster annealing schedule and early stopping of
optimization would also reduce the runtime.

Native test case rotamer repacking experiments. Five rounds of rotamer
repacking were done on each of the four test case backbones (Supplementary
Movie 1). Repacking is done by fixing the native sequence and randomizing
starting rotamers, or using baseline model predictions on backbone atoms only to
initialize rotamers. Rotamer prediction at each step and each residue position
conditions on the true native residue identity. Model negative PLL averaged by
protein length was annealed for 2500 iterations with starting temperature 1 and
annealing multiplicative factor 0.995. Commands to reproduce experiments are
provided in Supplementary Data 2.

Native: test case sequence design gxperiments. Native test case structures lacf
(2.00 A), 1bkr (1.10 A), 1cc8 (1.022 A), and 3mx7 (1.76 A) belong to the beta-
lactamase (CATH:3.30.450), T-fimbrin (CATH:1.10.418), alpha-beta plait

(CATH:3.30.70), and lipocalin (CATH:2.40.128) topology classes, respectively. We
selected these test structures because they span the three major CATH3839 protein
structure classes (mostly alpha, alpha-beta, and mostly beta) and because their
native sequences were recoverable via structure prediction with Rosetta ab initio,
ensuring they could serve as a positive control for later in silico folding experi-
ments. Fifty rounds of sequence and rotamer design were done on each of the four
test case backbones (Supplementary Movie 2). Sequences were initialized via pre-
diction by the baseline model given backbone atoms alone. Model negative PLL
averaged by protein length was annealed for 2500 iterations with starting tem-
perature 1 and annealing multiplicative factor 0.995. Commands to reproduce
experiments are provided in Supplementary Data 2. Sequences for further char-
acterization were first filtered by specific criteria including all helices capped at the
N-terminal, packstat > 0.55 pre and post-RosettaRelax, and for some cases other
cutoffs for side-chain and backbone buried unsatisfied hydrogen bond donors or
acceptors (Supplementary Table 22). After filtering, sequences were ranked by
model negative PLL for selection. No changes were made to the sequences pro-
duced by the model. Top sequences highlighted in Fig. 21, J are Iacf d3, 1bkr d2,
Icc8 d2, and 3mx7 d4.

TIM-barrel design experiments. The TIM-barrel template backbone is a circu-
larly permuted variant of the reported design sTIM-11 (PDB ID 5bv))*, and the
template was prepared using RosettaRemodel with sSTIM-11 sequence, circularly
permuted and without the originally designed cysteines which did not successfully
form a disulfide (C8Q, C181V). Native TIM-barrels are included in the training set;
however, 5bvl is excluded from the training set. 5bvl is distant in sequence and
structure from any known protein, and contains local structural features that differ
significantly from naturally occurring TIM-barrels*4. The original design sTIM-11
was designed using a combination of Rosetta protocols and manual specification of
residues. Fifty rounds of sequence and rotamer design were done on the TIM-
barrel template backbone. Sequences were initialized via prediction by the baseline
model given backbone atoms alone. Model negative PLL averaged by protein length
was annealed for 2500 iterations with starting temperature 1 and annealing mul-
tiplicative factor 0.995. Residue and rotamer four-fold symmetry was enforced by
averaging predicted logits across symmetric positions before normalizing to a
discrete distribution and sampling. Commands to reproduce experiments are
provided in Supplementary Data 3. Sequences for further characterization were
filtered by the following criteria: all helices capped at the N-terminal and packstat >
0.55 pre and post-RosettaRelax. 13 sequences were selected based on structure and
sequence metrics (Supplementary Table 27) and from these 8 sequences were
selected based on structural features and a set of simple criteria (Supplementary
Table 28). No changes were made to the sequences produced by the model, except
a single cysteine to valine mutation for F1 and F15 in each symmetric subunit
(C5V) made ahead of testing for ease of purification, and the valine mutation was
ranked highly by the model.

Design baselines. Rosetta design®>°¢ is a method for sequence design that has
been broadly experimentally validated.”>>¢. We use Rosetta to design sequences in
order to have a point of comparison with the model across the metrics used to
evaluate design quality. Further observations about Rosetta performance can be
found in Supplementary Note 1. The Rosetta-FixBB baseline uses the Rosetta
packer?’, invoked via the RosettaRemodel®’ application, to perform sequence
design on fixed backbones. This design protocol performs Monte Carlo optimi-
zation of the Rosetta energy function over the space of amino-acid types and
rotamers>®. Between each design round, side-chains are repacked, while backbone
torsions are kept fixed. Importantly, the Rosetta design protocol samples uniformly
over residue identities and rotamers, while our method instead samples from a
learned conditional distribution over residue identities. The Rosetta-RelaxBB pro-
tocol is highly similar to the Rosetta-FixBB protocol but performs energy mini-
mization of the template backbone in addition to repacking between design cycles,
allowing the template backbone to move. Starting templates for both baselines have
all residues mutated to alanine, which helps eliminate early rejection of sampled
residues due to clashes. The REF2015 Rosetta energy function was used for all
experiments!®%8. In order to remove potentially confounding artifacts that emerge
during construction and optimization of PDB structures, we additionally relax the
test case backbones with constraints to the original atom positions under the
Rosetta energy function and run design on these constrained relaxed backbones, as
well as for the crystal structure. This step is necessary in order for the Rosetta
protocols to in theory be able to recover the native sequence via optimization of the
Rosetta energy function.

Metrics. To assess biochemical properties of interest for the designed sequences,
we use the following three metrics: (1) packstat, a non-deterministic measure of
tight core residue packing®, (2) exposed hydrophobics, which calculates the
solvent-accessible surface area (SASA) of hydrophobic residues®, and (3) counts of
buried unsatisfied backbone (BB) and side-chain (SC) atoms, which are the number
of hydrogen bond donor and acceptor atoms on the backbone and side-chains,
respectively, that are not supported by a hydrogen bond. We use PyRosetta
implementations of these metrics. Backbone relaxes for designs were done with the
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RosettaRelax application , with the ex1 and ex2 options for extra y! and 2

rotamer sampling.

Rosetta ab initio structure prediction. Rosetta ab initio uses secondary structure
probabilities obtained from Psipred® -8 to generate a set of candidate backbone
fragments at each amino-acid position in a protein. These fragments are sampled
via the Metropolis-Hastings algorithm to construct realistic candidate structures
(decoys) by minimizing Rosetta energy. Native test case runs used Psipred pre-
dictions from MSA features after UniRef90%° database alignment. TIM-barrel
design runs used Psipred predictions directly from sequence. All designs were
selected without using any external heuristics, manual filtering, or manual reas-
signments. We obtained Psipred predictions, picked 200 fragments per residue
position”0, and ran 10* trajectories per design. Folding trajectories in Fig. 3, Sup-
plementary Fig. 14 were seeded with native fragments.

trRosetta structure prediction. We also use the trRosetta online server to get
structure predictions for designed sequences?2. trRosetta uses a deep neural net-
work to predict inter-residue distance and orientation distributions from sequence
and multiple sequence alignment (MSA) data. These distributions are used to
encode restraints to guide Rosetta structure modeling. No homologous structure
templates were used for specifying distance constraints in the model-building step.
We report alpha-carbon RMSD and GDTMM (Global Distance Test score using
Mammoth for structure alignment) as another measure of structure
correspondence.

Protein purification. Native test case proteins and FXN TIM designs were pro-
duced as fusions to an N-terminal 6xHis tag followed by a Tobacco Etch Virus
(TEV) cleavage sequence (ENLYFQS). FXC TIM designs were produced as fusions
to a C-terminal 6xHis tag. Expression was performed in E. coli BL21(DE3) using
the pET24a expression vector under an isopropyl -p-thiogalactopyranoside
(IPTG) inducible promoter. Cultures were induced at OD600 0.5-0.8 by 1mM
IPTG at 16 °C for 18-20 h. Proteins were purified by Ni-NTA-affinity resin
(Qiagen). Purity and monomeric state were confirmed using a Superdex 75
increase 10/300 GL column (GE Healthcare) and SDS-PAGE gels. Size exclusion
chromatography (SEC) data reported is immediately post-Ni-NTA purification
without additional purification steps in either Phosphate Buffered Saline (PBS) at
pH 7.4 or in 50 mM MES, 50 mM NaCl buffer at pH 6.0. Sample-specific buffers
and protein concentrations ahead of SEC are reported at https://drive.google.com/
file/d/1lyTwBMm72GpN_qVWLvoK2dMChYuazOTR/view?usp=sharing. Protein
concentration was determined using predicted extinction coefficients and 280 nm
absorbance measured on a NanoDrop spectrometer (Thermo Scientific).

Circular dichroism spectroscopy. Circular dichroism spectra were collected using
a Jasco 815 spectropolarimeter with all measurements taken in Phosphate Buffered
Saline (PBS) at pH 7.4 using a 1.0 mm path length cuvette. Cleanest post-SEC
fraction(s) with sufficient protein were used for CD measurements. Wavelength
scans were collected and averaged over 3 accumulations. Melting curves were
collected monitoring CD signal at 222 nm over a range of 25 to 95°C at 1°C
intervals, 1 min equilibration time and 10 s integration time. For 3mx7 designs, CD
signal was monitored at 217 nm. Spectra are normalized to mean residue ellipticity
(103 deg cm? dmol 1) from millidegrees, using cuvette path length, protein length
including tags, and concentration measurement from 280 nm absorbance as
described in the previous section. Melting temperatures were determined by fitting
a sigmoid function to melting curves.

Crystallography. F2N, F2C, and F15C were prepared in a 50 mM MES 50 mM
NaCl pH 6.0 buffer at the following concentrations as measured by 280 nm
absorbance: F2N (23 mg mL~1), F2C (23 mgmL~1), and F15C (15.6 mgmL~1).
Samples used for crystallography were from Ni-NTA and SEC fractions, without
additional purification. Crystallization trials were done by screening for crystal-
lization conditions using INDEX (HR2-134), Crystal Screen HT (HR2-130), BCS
screen (Molecular Dimensions), MemGold HT-96 (Molecular Dimensions), and a
96-well buffer-selective crystal screen developed at SSRL. A number of crystal hits
came from the SSRL screen using Bis Tris (pH 6.0) as the buffer. The best dif-
fracting crystals for F2C were from a well solution consisting of 25% PEG 3350,
0.150 M Li,SO4 H,0, and 0.1 M Bis Tris (pH 6.0). The F15C crystals were from a
well solution consisting of 30% PEG 3350, 0.150 M Mg(OAc), 4H,0, 0.1 Bis Tris
(pH 6.0). The F2N crystals were from a well solution consisting of 25% PEG 3350,
0.15 M Mg(OAC),, 0.1 M Bis Tris (pH 6.0). The final crystal drops were setup
manually as sitting drops in 3 drop crystallization plate that holds 40 puL well
solution with each drop consisting of 1 uL of protein and 1 L of well solution. The
F2C crystals appeared after 2 days and the F2N and F15C crystals appeared after
3-4 days. Diffraction data was collected at 100 K using Stanford Synchrotron
Radiation Lightsource (SSRL) beamlines 12-2 and the Pilatus 6M detector. Data
were indexed and integrated using XDS package’!. The criteria used for high-
resolution cutoff for the diffraction data are I/sigma >1.5 and CC(1/2) 270%. The
sigma cutoff used for the F2N data is 1.4 because of the high redundancy (33) and
high CC(1/2) value (82%). Initial phases were obtained by molecular replacement
by using the program Phaser’? and the coordinates of the designed structures as

the search model. The high-resolution F2C structure was traced with Buccaneer’3

and went through manual fitting using COOT’# and refinement using REFMAC?".
The F15C structure refinement involved several cycles of manual model building
and refinement. The refinement statistics are provided in Supplementary Table 30.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Data generated and analyzed in this paper are available at this link: https://drive.google.com/
drive/folders/1gBfu5LG8-kp907qBMkCdBSRCAOES8R6 Te?usp=sharing. Crystal structures
have been deposited in the Protein Data Bank with accession codes 7MCC (F2C), 7MCD
(F15C), and 7SMJ (E2N). All data generated in this study are included in the manuscript,
supplementary data files, and links listed in our open-source repository. Training data is
publicly available from the PDB (Protein Data Bank) but also provided in prepared form at
this link: https://console.cloud.google.com/storage/browser/seq-des-data. Trained models
are available at https://drive.google.com/file/d/1X66RLbaA2-qTIJLIG9TI53cao8gaKnEt/
view?usp=sharing. The following databases were used for multiple sequence alignments:
UniRef90, UniRef100, UniProtKB/Swiss-Prot (SP).

Code availability

Training data and code to train the model and run the method are available at https://
github.com/ProteinDesignLab/protein_seq_des. Commands to reproduce all design runs
are provided in Supplementary Data 2 and 3.
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