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Abstract: The advancement in nanotechnology has brought numerous benefits for humans in diverse
areas including industry, medicine, and agriculture. The demand in the application of nanomaterials
can result in the release of these anthropogenic materials into soil and water that can potentially
harm the environment by affecting water and soil properties (e.g., soil texture, pH, organic matter,
and water content), plants, animals, and subsequently human health. The properties of nanoparticles
including their size, surface area, and reactivity affect their fate in the environment and can potentially
result in their toxicological effects in the ecosystem and on living organisms. There is extensive
research on the application of nano-based materials and the consequences of their release into the
environment. However, there is little information about environmentally friendly approaches for
removing nanomaterials from the environment. This article provides insight into the application of
silver nanoparticles (AgNPs), as one of the most commonly used nanomaterials, their toxicological
effects, their impacts on plants and microorganisms, and briefly reviews the possibility of remediation
of these metabolites using phytotechnology approaches. This article provides invaluable information
to better understand the fate of nanomaterials in the environment and strategies in removing them
from the environment.

Keywords: phytoremediation; silver nanoparticles; toxicological effects; environmental sustainability

1. Introduction

Nanotechnology is a growing and advanced area of science and engineering that
focuses on the synthesis, and application of matters on the nano scale with at least one
dimension less than 100 nm [1]. The characteristics of nanomaterials are mainly derived
from their small size, high surface area/volume ratio, and high stability [2]. Compared with
conventional materials, the properties of engineered nanomaterials have improved their
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application [3,4]. They have physical properties such as high uniformity, high conductivity,
or special optical properties, making them popular in chemistry, physics, and biology [5].

Nanotechnology is used in various areas [6,7], including agriculture to improve crop
yield by offering innovative agrochemical formulations and delivery methods, which in
turn reduces the need for pesticide application [8]. Nanoparticles are also used in precision
farming [9] to achieve sustainable agriculture, as these particles are attributed to altering
critical plant life events and are used in agriculture for a variety of purposes such as
minimizing nutritional loss, reducing various environmental stresses, and increasing crop
yield [10,11]. In addition, nanoparticles are used in agriculture as nanofertilizers, nanopes-
ticides, or nanosensors to protect plants against pathogens and improve productivity [12].

Extensive research on the impacts of nanoparticles on living organisms suggests that
nanoparticles have “grey shade” by resulting in both pros and cons effects [13]. Metal-
based nanoparticles are among the most recent types of anthropogenic materials that
can potentially harm the ecosystem if used in a high concentration [14]. Nanoparticles
can be released into the soil during production, agricultural or industrial applications, or
accidental spillage [15]. Nanoparticles can also increase the bioavailability of metals in the
soil and potentially result in higher environmental risk [16].

Different types of engineered NPs are synthesized for various applications. Silver
nanoparticles (AgNPs) are among the most commonly used engineered nanomaterials
with medicinal, industrial, and agricultural applications [17]. Considering the vast usage
of AgNPs, there is a possibility of their release into the environment, and their potential
toxicological effects on plants and animals. Apart from using the particulate form of silver,
AgNPs may be transformed to silver oxide or silver sulfide via oxidation or sulfidation,
respectively, and these ones impact the soil and living organisms in a variety of ways [18].
Therefore, it is critical to address the behavior of nanoparticles in the environment and
possible methods for their removal. This review focuses on three objectives to discuss this
issue including: the possible pathways for the release of AgNPs into the environment;
the toxicological effects of AgNPs on plants and microorganisms; and the recommended
phytoremediation approaches. This review provides invaluable information for a more
sustainable application of AgNPs.

2. Applications of Silver Nanoparticles

The application of silver particles has a centuries-old history due to their therapeutic
nature in medicine and storage vessel for beverages [19]. AgNPs are among the most
commonly used nanoparticles, broadly due to their numerous uses. In 2015, the AgNPs
market was reported to be $1 billion, which is expected to rise to $3 billion by 2024 [20,21].
Due to the antibacterial, antifungal, antiseptic, and antiviral properties, AgNPs are of prime
importance in medical applications and were broadly used as an antimicrobial agent before
the discovery of antibiotics [19,22,23]. Up until now, AgNPs have been utilized in a diverse
range of applications in many fields, with some examples of health (immunity-based food
supplements, pharmaceuticals, disinfectants, burn treatment products, and wound heal-
ing/dressings, radiotherapy), other biomedical products, optics, biosensing, environmental
remediation, food industries, cleaning, water and air disinfection, electronics, textile, pack-
aging, skincare products, detergents, plastics, paints, and even children toys [21,24–27].
AgNPs have also been used in agriculture as plant growth promoter/fertilizer, fruits ripen-
ing and preservation agent, plant disease control fungicide, and insecticide [25,28]. AgNPs
also have several distinctive physicochemical properties, such as high thermal and electrical
conductivity, improved surface Raman scattering, catalytic activity, and non-linear optical
behavior [29]. This widespread use of AgNPs ensures particle release into the environment
and makes it one of the most exploited nanomaterials [30,31] resulting in unknown impacts
on plants, microorganisms, animals, and humans in the exposed environment.

AgNPs have the average production of 500 tons per year [32] and are known for
their widespread application which has made their entry into many commercial prod-
ucts [33–35]. They have diverse applications and are becoming more common in industrial
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processes [36]. The high usage of AgNPs can result in the direct or indirect release of
these nanomaterials into the environment and can potentially cause toxicity for various
organisms including aquatic organisms, plants, and humans. The direct transformation
includes aerial deposition, run-off, or sewage discharges (release from industrial and
household products into water bodies). The indirect release includes discharges from
organic or inorganic fertilizers and engineered plant growth substances used as fertilizer
substitutes that can be accumulated in soil and underground water, accidental spills during
manufacturing and transport, and biosphere pollutions through atmospheric emissions
from smelting, coal combustion, and cloud seeding [37–41]. AgNPs can be oxidized in
the environment and be transformed into the ionic form of the silver (Ag+) which can be
more toxic than the particulate form of silver [42]. AgNPs and Ag+ can make their way
into the water bodies and soils during or after the lifetime of the product and eventually
affect the ecosystem [30,43,44].

Prior to evaluating plant’s potential to remove nanomaterials from the environment,
it is critical to understand the environmental toxicology effects of these materials and their
effects on plants and microorganisms.

3. Environmental and Toxicological Effects of AgNPs

The heavy inclusion of AgNPs in today’s world has not been assessed and correlated
with environmental risks [45,46] and balance between nanoparticles and biodiversity. Re-
cently, the application of nanomaterials has gained more popularity in different areas [47,48]
which raises the risk of their release into the environment and potential toxicological effects.
AgNPs are considered as enormously toxic on the basis of L(E) C50 values (the amount
which causes 50% death of tested animals when the material was given at once) for environ-
mentally related organisms at the levels of L(E) C50 b 0.1 mg L−1 [32], while on the other
hand, the predicted environmental concentration (PECs) of AgNPs in the environment
ranges between 0.03 to 0.08 mg L−1 [49]. As per the World Health Organization (WHO) and
Environmental Protection Agency (EPA), the maximum contamination limit (MCL) of toxic
range of silver is 0.1 mg L−1 [50–54], although naturally occurring silver concentrations are
generally low in the environment (surface waters) but are continuously increasing at higher
levels due to runoff and wastewater from urban and industrial areas [50]. AgNPs released
into the environment can be oxidized and generate the ionic form of silver that is more
reactive than the particulate form. The high concentration of AgNPs and their potential
to be oxidized in the environment can cause toxicity for living organisms. Consequently,
this dilemma, if not addressed on time, will more negatively affect the ecosystem also by
inhibiting growth of plants, polluting drinking water, and causing harm to human health.
This will ultimately curtail the fauna and flora. Therefore, sustainable methods for the
remediation of contaminated soil with AgNPs must be investigated.

Since the 1980s, the U.S. Environmental Protection Agency (EPA) regulated AgNPs
usage and release into the environment to limit their impacts on the ecosystem [55]. To
curb their impacts on living organisms, the concentration of total silver in aquatic systems
is limited to 1.2–13 ppb (depending on CaCO3 concentration) [55]. Over the last decade,
the vast application of AgNPs called for examination of these particles to determine their
long-lasting effects on ecosystems. The occurrence of silver species in the environment,
particularly the water supply, can result in bioaccumulation across several trophic levels
with potentially severe toxic effects [56]. Due to the increasing consumption of these
materials, the aquatic environments are prone to silver contamination. The released AgNPs
into the environment can be transformed into more toxic forms such as chloride, nitrate,
etc. [57]. Among these silver species, silver nitrate is the most toxic due to dissociation
into Ag+ and nitrate interaction with other elements. Therefore, it is crucial to increase our
understanding about the toxicity effects of AgNPs [56].

Silver is considered as the second most toxic metal to aquatic organisms after mer-
cury [58]. The toxicity mechanisms of AgNPs and Ag+ are different but both are fatal
to a variety of organisms including bacteria, animals, and plants [37,59]. The cellular
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structure and organelles of these organisms are affected by silver species through unfa-
vorable binding interactions [60]. Silver cations can potentially enter cells through metal
transporters such as copper ion transporters or transmembrane potassium channels [24].
Moreover, silver species translocation is attributed to variations in toxicity among Ag+,
AgNPs, and insoluble silver salts [37,61]. The potential pathway for AgNPs released into
the environment and its remediation is illustrated in Figure 1.

Figure 1. Potential pathway for AgNPs leakage into the environment and its remediation.

3.1. Effects of AgNPs on Plants

Unsustainable application of nanoparticles and their release into the environment
can also negatively affect the economy by reducing the quality of crops and affecting
human health. AgNPs released in waste or ground water can end up in plant growth
environment. The small size of nanoparticles enables them to enter plant roots and travel
short distances cell by cell or long distances, roots to shoots, via xylem cells [62]. AgNPs
accumulated in plant tissues can subsequently enter the human body via the food chain.
Numerous studies have reported the toxicological effects of AgNPs on plants (Table 1). The
level of toxicity and the impact of AgNPs on plants depend on various factors namely the
size, type, and concentration of nanoparticles as well as plant species, soil type, hydraulic
conductivity, and the availability of essential nutrients in soil [63,64]. As small as the NPs
are, their toxicity is still significant since they can be dissolved easier in water and enter
living organisms [65]. As mentioned above, AgNPs have a tendency to be oxidized in
the environment and form the ionic form of silver (Ag+). Therefore, plants exposed to
AgNPs are also affected by Ag+ that is more interactive and toxic than the particulate
form. Noori, et al. [21] detected both the ionic and particulate forms of silver in leaves
of tomatoes (Lycopersicon esculentum L.) exposed to 10, 20, 30 mg L−1 of 20 nm AgNPs
for 7 days via roots. It confirms that AgNPs can be directly taken up by plants and be
stored in tissues in the form of particulates. The presence of AgNPs or Ag+ in cells affects
cellular components, metabolism, and plant growth at the morphological, molecular, and
physiological level. At the morphological level, AgNPs affect seed germination, root devel-
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opment, and cellular compartments [66,67]. The study by Qian et al. [68] showed that the
thylakoid membrane and the structure of chloroplasts were affected in A. thaliana exposed
to AgNPs. This impacts photosynthesis, metabolism, and plant growth rate. The study on
Oryza sativa seedlings exposed to 0.5–1 mg L−1 of AgNPs showed significant lowering of
mitochondrial membrane potential [69]. A significant decrease in the photosynthetic rate,
CO2 assimilation, and plant growth is also reported in tomatoes exposed to 10 mg/kg of
7–14 nm AgNPs for 72 weeks [70]. Plant responses at the physiological level are modified
by the expression of genes and proteins. Kaveh, et al. [71] reported the effects of AgNPs
on the expression of over 300 genes. They reported the upregulation of 286 genes and
downregulation of 81 genes in Arabidopsis thaliana seedlings exposed to up to 20 mg/L of
20 nm AgNPs for 10 days. Proteomics studies also show that AgNPs affect the expression
of proteins involved in signal transduction, defense, and oxidative stress responses [72,73].
It implies that the effect of AgNPs on plants is related to the production of ROS and
increased production of antioxidant enzymes which further affect the decrease in shoot
and root growth and other pigments. This decreases photosynthesis, plant biomass and
crop productivity.

Table 1. The effects of AgNPs on plants.

Species Size (Diameter in nm) Concentration mg L−1 Impacts References

Solanum tuberosum L. 20 2, 10, 20

Increase in superoxide anion (O2¯) and reactive
oxygen species (ROS); Significant induction in
the activities of superoxide dismutase (SOD),

ascorbate peroxidase (APX), glutathione
reductase (GR), and catalase (CAT)

[74]

Oryza sativa L. 20 0.2, 0.5, 1

Significant decrease in fresh weights, root
elongation, shoot and root, carotenoids

contents, total chlorophyll; Increased level of
hydrogen peroxide (H2O2) and lipid

peroxidation (MDA) in shoots and roots,
increased foliar proline accumulation, and

decreased sugar contents

[69]

Wolffia globosa 10 1, 2, 5, 8, 10
Elevated level of malondialdehyde (MDA),
ROS content, and SOD activity. Decrease in

chlorophyll a, carotenoids, and soluble protein
[75]

Lycopersicon esculentum 10–15 100, 1000
Reduced in fruits productivity, significant

decreases in root growth, chlorophyll contents,
and increased activity of higher SOD content

[76]

Lycopersicon esculentum 20 10, 20, 30

Decrease in biomass, increased oxidative stress
indicators content (H2O2 and MDA), induced

antioxidative stress responses such as
flavonoids, anthocyanins, CAT, peroxidase

(POD), reduced chlorophyll content,
upregulation of the expression of membrane

transporters and xylem cells enlargement

[24]

Lycopersicon esculentum 7–14 10
Lower fruit production, induction of oxidative
stress, decrease in photosynthetic rate, elevated

activity of antioxidant enzymes
[70]

Arabidopsis thaliana 10 0.2, 0.5, 3

Root growth inhibition, decreased in
chlorophyll content and disruption of the

thylakoid membrane structure; alteration of
transcription of antioxidant and aquaporin

channels

[68]

Arabidopsis thaliana 20 10–150

Inhibition of Arabidopsis root gravitropism,
lower auxin accumulation in root tips, also,
downregulation of the expression of auxin

receptor-related genes

[77]
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Table 1. Cont.

Species Size (Diameter in nm) Concentration mg L−1 Impacts References

Arabidopsis thaliana
Populus deltoids × nigra,

DN-34
5, 10, 25 0.01–100

Toxicity of AgNPs increased with decreasing
nanoparticles size; however, the stimulatory

effect on fresh weight, evapotranspiration, and
root elongation at sublethal concentrations

[78]

Arabidopsis thaliana 10 12.5

delay in flowering, decrease in petal
development and vegetative growth, and
pollen viability, downregulation of genes

involved in floral development

[79]

Lemna minor 10–80 0.005–0.04 number of fronds decreased, growth reduction,
chlorosis in leaves [80]

Cymodocea nodosa 35 0.0002–0.2

length of leaves decreased, induction of
oxidative stress indicator (H2O2), and

antioxidative enzymes activity, less actin and
tubulin filaments

[81]

Zea mays (seedlings) 49 7.5
Inhibition of root and leaf growth, induction of

O2¯, H2O2, and MDA, increased activity of
antioxidative enzymes (SOD, GR, APX),

[82]

Vicia faba 25, 50, 75 100
Size dependent growth decrease, leaf necrosis

and damage, and stomatal conductivity
decrease

[83]

In addition, several studies have reported a significant increase in the concentration
of hydrogen peroxide (H2O2), hydroxyl radical (◦OH), and malondialdehyde (MDA) as
oxidative stress indicators upon exposure to AgNPs [81,84]. It means exposure to AgNPs
can result in oxidative stress in plants. Oxidative stress increases ROS in plants under
various environmental stresses, which is then countered by enzymatic and non-enzymatic
molecules [85–87]. The level of oxidative stress and plant’s ability to cope with NPs varies
based on plant species, the size of nanoparticles, and environmental conditions [64,65,80].
Plants that can tolerate NPs in their environment have higher potential to synthesize
antioxidants. Antioxidative metabolites (e.g., flavonoids, anthocyanins, or phenols) and
enzymes (e.g., catalase, peroxidase, and superoxide dismutase) improve plants ability to
reduce the oxidative stress induced by AgNPs.

Despite the extensive research on the toxicity effects of AgNPs on plants, there are
reports on induced seed germination and plant growth upon exposure to AgNPs [88,89].
This could be due to AgNPs’ role in improving water and nutrient uptake [90]. It is
suggested that high concentration of NPs in the environment results in the aggregation
of particles and creates larger particles (>100 nm). The aggregated particles do not easily
enter plant cells and are less toxic than smaller particles [91]. On the other hand, AgNPs,
as a type of oxidative stressor, can induce plant antioxidative and defense responses and
improve plant tolerance in stressed condition. Kruszka et al. [92] reported upregulation of
secondary metabolites involved in defense responses in A. thaliana exposed to 0.5–5 mg L−1

AgNPs. They suggested that AgNPs have a role in improving the bioavailability of nitrogen.
Elevated level of antioxidant enzymes and metabolites induce plant’s ability to tolerate
other environmental stresses as well. Khan et al. [93] reported that exposure to 30 mM
AgNPs induced antioxidative responses of Pennisetum glaucum L. exposed to 150 mM
NaCl. It suggests that plants with potential to tolerate AgNPs in their environment can
be considered for phytotechnology approaches to simultaneously remove AgNPs and
other contaminants from the environment. In summary, the effects of AgNPs on plants
can be either induction or inhibition of growth, development, or defense responses based
on various factors such as the type, size, concentration of AgNPs, as well as plant species
and the period of exposure. The plant microbe interaction and the effects of AgNPs on
microorganisms should be taken into consideration in phytotechnology approaches.
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3.2. The Effects of AgNPs on Soil Microorganisms

The antimicrobial activities of AgNPs affect soil-borne microorganisms including
pathogenic and beneficial bacteria and fungi [94,95]. The release of AgNPs in soil de-
creases soil microorganisms’ population [96,97] and results in higher toxicity in soil. In
addition to the effects on the soil microbial community, AgNPs also affect the activity
of soil microorganisms [27,98]. AgNPs can both induce or inhibit enzymatic activities of
soil microbes [99,100] depending on the type of the microorganisms, soil texture, osmotic
potential, size, shape, and the concentration of AgNPs [101]. Jain et al. [102] reported that
the enzymatic activity of decomposing bacteria and fungi depends on the concentration
of NPs. They reported that exposure to 2.5 µM AgNPs induced the enzymatic activity of
several fungi and bacteria, while 25 and 50 µM exposure had the opposite effect Tripathi,
et al. [103] summarized the effects of AgNPs on soil microorganisms. They highlighted that
AgNPs and Ag+ affect cell membrane integrity and enter the bacterial cell by disrupting the
structure of the cell membrane. The impact on the membrane is the key in the antibacterial
properties of AgNPs [104]. Exposure to AgNPs also interrupts the activity of membrane
transporters and the transportation of essential elements in cells such as potassium and
chloride. AgNPs and Ag+ entered bacterial cells interfere with DNA replication [105] and
bacterial growth. Based on recent studies, it is suggested that the antibacterial properties
of AgNPs are mostly related to their impacts on the structure of membrane and cellular
division. Similar to plants and bacteria, other studies on the interaction of AgNPs and
fungi suggest that the size of AgNPs play a vital role in this interaction [25,103,106]. The
presence of chitin gives a semipermeable structure to the fungal cell wall and reduces the
penetration of larger size AgNPs into fungal cells [107]. In addition to soil bacteria and
fungi, AgNPs can also affect decomposers. The study on plant decomposing invertebrate
Limnephilus sp. showed that the leaf shredding behavior of this organism is affected by
the size and concentration of AgNPs [108]. Invertebrates play a vital role in soil struc-
ture and are important in inducing plant defense responses. It is important to note that
changes in soil microbial population and activity affect soil properties and subsequently
plant growth, physiological, and molecular responses. These impact the plant’s potential
to remove nanoparticles from the environment. Table 2 lists the impacts of AgNPs on
soil microorganisms.

Table 2. Overview on phytotoxicity functions of AgNPs on soil species.

Species Size Concentration Major Functions References

Escherichia coli and
Nitrifying bacteria 16 nm 0.1–1 mg L−1

AgNPs inhibit respiration and nitrification
(lack of change in dissolved oxygen); the
effect varies depending on the size and

bioavailability of the NPs.

[109]

Ammonia-oxidizing
bacteria (AOB) 118 ± 11 nm 0.5–50 mg L−1

Silver treatments affect ammonia-oxidizing
bacteria (AOB), reducing Nitrification

potential rates.
[110]

Bacillus subtilis 27 nm 0.5–50 mg L−1
The growth of B. subtilis is affected by AgNPs
depending on the size of the AgNPs which
probably plays a role in toxicity differences.

[110]

Nitrosomonas europaea AgNPs (35 nm)/AgNO3 0.075–0.75 mg L−1

The oxidation and production of NO2 by
regulating the gene expression (nitric oxide
reductase, ammonia monooxygenase, and

nitrite reductase).

[111]

Nitrosomonas europaea AgNPs (25.5 nm)/Ag+

0.1 mL/h of solution,
0.05–2 ppm Ag+,

1.5–20 ppm
AgNPs

Low concentrations of AgNPs cause
enzymatic inhibition (of ammonia
monooxygenase enzyme) and high

concentrations cause cell death.

[112]

Soil microbial
community

BAM-N001 (20
nm)/AgNO3

0.01 mg/kg

The toxicity of AgNPs increases over time
(possibly due to Ag+ release). AgNPs cause a
decrease in biomass and the activity of soil

microorganisms.

[97]
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Table 2. Cont.

Species Size Concentration Major Functions References

Soil bacterial phyla BAM-N001 (20 nm)/AgNO3 0.01 mg/kg

Long-term exposure to AgNPs cause a
decrease in several phyla of bacteria,

affecting important functions of soil like
nitrification or organic carbon

transformation.

[113]

Bacterial and fungal
assemblages

AgNPs (20 nm)/
AgMPs (3000 nm) 0.066% and 6.6%

Small particles are more toxic (cause a
decrease in respiration, signature bacterial

fatty acids, changes in richness and
evenness in bacterial and fungal DNA

sequence assemblages).

[114]

Heterotrophic
bacterial and

nitrifying
communities

NM-300K (15 nm)
1.67 and 5 mg/kg

supplied in one or three
applications

Single application has a stronger effect on
potential nitrification than split doses (i.e.,
same dose applied in 3 doses), whereas of
respiration an opposite pattern is observed.

[115]

Azotobacter vinelandii 10 and 50 nm

2 and 10 mg L−1 for
nano-Ag 10; 10 and

100 mg L−1 for
nano-Ag 50

10 and 50 nm AgNPs induced apoptosis by
20.23% and 3.14%, reduced cell number,

structural damage, inhibition of biological
nitrogen fixation (BNF), ROS generation

[116]

Nitrosomonas europaea
ATCC-19718

7 ± 3 (PVA doped) 40 ± 14
(Na2ATP doped) 1, 5 and 10 mg L−1

Capping and size dependent decrease in
NH3 oxidation, cell wall damage, and

disintegrated nuclei
[117]

Ammonia oxidizing
microorganisms 15 nm 1, 10, and 100 µg g−1 dry

soil

10 and 100 µg g−1 AgNPs significantly
inhibited soil urease activity and

nitrification
[118]

Soil microbial activity 20.4 and 10 nm 0.1, 1, and 10 mg kg−1 soil

Decreased soil microbial metabolic activity,
nitrification ability, and the abundances of

ammonia-oxidizing bacteria at
0.1–10 mg kg−1 AgNPs

[119]

Mycorrhizal clover
(Trifolium repens)

20.6 ± 3.1
(AgNPs) 0.01–1 mg kg−1

Drastic decrease in biomass of mycorrhizal
clover, root nutrient acquisition of AMF,

and glomalin content
[120]

Glomus
aggregatum-Faba bean 5–50 800 µg kg−1 sandy

soil-loam mixture

Lowered mycorrhizal colonization,
glomalin content, and mycorrhizal

responsiveness
[121]

AMF
(unspecified)-Tomato 2 and 15 nm 12–36 mg kg−1 soil

Dose dependent AgNPs decrease in AMF
colonization [25]

Soil microbial activity 20 nm ± 10 50 mg kg−1
Decrease in urease and dehydrogenase

activity, bacterial and archaeal amoA gene
abundance in soil

[122]

Soil microbial activity 2–50 nm (average 35 nm) 550 mg/pot

Pyrosequence analysis showed no
significant effect on soil microbial richness;

however, individual analysis affected
bacterial groups

[123]

Soil microbial activity 15–20 nm 220 mg kg−1
Decrease in C and N biomass and

modification of microbial community
structure

[124]

Soil microbial activity 21 ± 17 nm 0.14 mg kg−1 AgNPs caused a modification in the
bacterial community [125]

Soil microbial activity 10 and 50 nm 1600, or 3200 µg Ag kg−1

dry soil
Decreases in enzymatic activities due to

AgNPs [126]

Soil microbial activity 20.08 nm ± 2.24 1–1000 mg kg1 AgNPs induced effects on enzymes [99]

The consequences of the release of AgNPs in the environment and their toxicological
effects on organisms in their vicinity provokes the need to consider sustainable approaches
to reduce their harmful effects on living organisms. Phytotechnology, the application of
plants in removing or sequestering pollutants, is a promising and environmentally friendly
method that can be applied in environments contaminated with NPs.
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4. Nanoparticle’s Phytotechnology

Many soil remediation technologies (physical and chemical methods) have been
established to reduce soil contamination [127,128]. However, most of these methods
are laborious, time-consuming, and costly. Therefore, such technologies are not best
for combating environmental pollution and remediation strategies for a long period [127].
Phytoremediation is an alternate technology applied for the remediation of pollutants using
plants [129]. Plants being indispensable elements of ecosystems play a crucial role in the
uptake, accumulation, and transport of elements including metal-based nanoparticles [130].

Phytotechnology refers to a technology that uses plants to remove, uptake, absorb,
transform, transfer, attenuate, accumulate, degrade, or metabolite organic, inorganic, metal-
lic, or metalloid contaminants from soil, water, or air [131–135]. Phytotechnology consists
of several sub-methods such as rhizosphere biodegradation, phytoextraction, phytoseques-
tration, phytovolatilization, phytodegradation, or phytoremediation. Although the phrase
phytotechnology is used interchangeably with phytoremediation, the latter generally refers
to a method of phytotechnology that removes pollutants from the environment. Phytoreme-
diation is a natural, simple, cost effective, and widespread bioremediation technology that
works on the principle of plant’s metabolic system to clean, recover, and remediate contam-
inated sites by storing pollutants in plant biomass to ensure environmental safety [129,136].
Phytoremediation strategies [136] are namely (a) phytostabilization—when plants reduce
bioavailability of pollutants in soil (b) phytovolatilization—when pollutants are converted
as volatile compounds by plants (c) phytoextraction—when plants take out pollutants
from soil (d) phytofiltration—when cultured plants absorb pollutants from water or waste
materials. There are many advantages of such phytoremediation strategies, viz. phytosta-
bilization temporarily counter the hazardous materials as compared to phytoextraction
which is a permanent one, phytovolatilization converts to gaseous compounds and is
more suitable [136].

In comparison to other methods, phytoremediation provides aesthetic appearance,
less destruction, and high public acceptance [137–141]. Since the 1980s, phytoremediation
has been significantly studied, practiced, and used in field studies at contaminated sites
with heavy metals, metalloids, radionuclides, oil spills, fertilizers, pesticides, chlorinated
solvents, and explosives [142,143]. In Table 3, we have showed some examples of AgNPs
phytoremediation description and its effects.

Table 3. Phytoremediation of AgNPs.

Plant Type of NPs Description Effect Reference

Phragmites australis AgNPs It accumulated silver only in roots and in leaves
and stems there was no metal accumulation

Phytoremediation in
estuarine areas,

Phytostabilization
[49]

Pistia stratiotes AgNPs Extracted silver from source in short period of time,
Easy handling and can be used in polyculture

Phytoremediation of
water source [51]

Egeria densa AgNPs
Plants absorbed AgNPs at concentrations as low as

5 ppm, bioaccumulation proportional to
concentration of NPs

Phytoremediation of
water source [56]

Phanerochaete chrysosporium AgNPs Uptake of NPs in presence of cysteine amino acids Phytoremediation of
aquatic source [144]

Zea mays AgNPs NPs increase the bioremediation potential of three
PGPRs isolated from municipal wastewater

Phytoremediation of
municipal wastewater [134]

Ipomoea carnea, Plantago major,
Camellia sinensis AgNPs Green synthesized NPs from few medicinal plants

displayed bioremediation potential
Fipronil (an insecticide)

contaminated water [145]

Lagerstroemia speciosa AgNPs methyl orange and methylene blue showing 310-
and 290-min degradation time, respectively

methyl orange and
methylene blue dyes [146]

Aloe barbedensis, Azadirachta
indica and Coriandrum sativum

AgNPs and
CuNPs

Green synthesized NPs from three plants
decontaminated naphthalene in water Wastewater remediation [147]
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Plant remediation technologies are recommended as a viable option for maintaining
environmental sustainability among the various options for repairing these pollutants [148].
Recent advances in phytoremediation, molecular and metabolic engineering and nanotech-
nology have opened up new avenues for the effective handling of emerging organic and
inorganic contaminants [149–151]. Plants with high potential to take up contaminants
and store them in their tissues are considered as “hyperaccumulators”. These hyperac-
cumulators accumulate metals or metalloids at a greater level than other plants. These
hyperaccumulators are found in metalliferous soils rich in any particular metals [152].
Some examples are, Thlaspi caerulescens [153], Arabidopsis halleri [154], Pteris vittata [155]
Pteris vittata accumulates arsenic and three others namely Thlaspi rotundifolium, Thlaspi
ochroleucum, Thlaspi goesingese accumulates zinc, lead and nickel, respectively [156]. There
is a freely available global database containing information about hyperaccumulators
(www.hyperaccumulators.org, accessed on 20 July 2021) [152].

These types of plants are favorable in phytoremediation studies especially in sites
contaminated with heavy metals. In addition to heavy metals, most hyperaccumulators
are also able to tolerate pollutants such as petroleum-based contaminants, explosives, or
pesticides that contain a variety of heavy metals and nanoparticles [157]. Among different
types of plants used in phytoremediation techniques, hyperaccumulators are best used
in phytoextraction projects. AgNPs are metal based nanoparticles that can be extracted
from the environment and be taken up by hyperaccumulators. To successfully implant a
phytoremediation project, understanding the mechanism of uptake and translocation of
contaminants, in this case metal-based nanomaterials, is required. Many studies by differ-
ent groups have tried to understand the mechanism of uptake and translocation of metal
NPs in plants [4,158], where the authors have indicated the size and chemical properties
including zeta potential to be an important factor for initial penetration of NPs to the plant.
Once the NPs enter the plants they may move through endocytosis or through symplastic
transport to different plant tissues [158]. Understanding the molecular mechanism of
hyperaccumulators enables scientists to use genetic engineering approaches to strengthen
the remediation of environmental pollutants [159] including metal-based nanoparticles.
Biotechnology is used to manipulate the expression of genes to improve hyperaccumulators
potential to remove contaminants from the environment. In addition to hyperaccumulators,
some plants that do not usually have the potential to remove contaminants can alter their
physiology and biochemistry to release metabolites and hormones into their environment to
sequester nanomaterials and reduce their reactivity in the environment [160]. This method
is known as phytosequestration. To apply phytotechnology approaches in removing or
sequestering NPs from the environment, several factors such as the phytotoxicity effects of
NPs, plant species, weathering, soil structure and organic matter, soil microorganisms, and
interaction with other chemicals should be considered [161]. The interaction of engineered
NPs with soil organic matter can result in a more stable form of NPs and subsequently
result in the release of the ionic form of NPs that are more interactive than the particulate
form and have a higher chance to enter living organisms [161]. In addition, the hydropho-
bic properties of engineered NPs affect their interaction with organic matter and living
organisms facilitating their uptake by plants [162]. In addition to above-mentioned factors,
the chemical properties of NPs, their concentration, the ratio between the ionic and the
particulate form of metal-based nanomaterials impact the phytotoxicity effects of engi-
neered NPs and plants, potentially removing them from the environment. The study on the
potential of salt marsh plant, Phragmites australis, in removing AgNPs and Ag+ showed that
both AgNPs and Ag+ were accumulated in plant roots [49]. They emphasized that AgNPs
interaction with the soil microbial community can interfere with the phytoremediation of
Ag in either particulate or ionic form. Yang, et al. [163] also reported the accumulation
of Ag in roots of rice exposed to up to 20 mg L−1 AgNPs and AgNO3 for five days. This
study showed that uptake of AgNPs was more efficient than Ag+. They suggested that
the high reactivity of Ag+ in the growth environment and generation of AgCl resulted
in its lower uptake rate compared with the particulate form of Ag. The researcher has

www.hyperaccumulators.org
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also found the accumulation of AgNPs in Lemna gibba after its exposure to AgNPs at a
concentration of 0.01 to 10 mg L−1 for 7 days [164]. The authors have observed an accumu-
lation from 7.7 to 17.5 µg/mg of AgNPs/plant dry mass. Considering the characteristics
of engineered nanoparticles, it is suggested that phytoextraction and phytosequestration
methods are promising approaches of phytoremediation in removing AgNPs from the
environment [51,165]. The toxicity of AgNPs to plants and associated microorganisms is an
important factor which is needed to be considered while the selection of plants for phytore-
mediation purposes. Along with the phytotoxicity effects of AgNPs and plant’s potential to
remove them from the environment, various environmental and biological factors should
be also considered in selecting phytotechnology as an environmentally friendly method to
remove these metal-based NPs from the environment. Due to the colloidal and dynamic
properties of AgNPs, rhizosphere biodegradation can prove to be an important method
where the plants release certain compounds which can lead to an enhancement in microbial
activity resulting in the degradation of NPs. For example, Bacillus subtilis can colonize the
rhizosphere and get nutrition from plants. In return, it provides several benefits to plants
discussed in Hashem et al. [166]. It has been reported that during wastewater treatment,
the AgNPs can be partially or fully sulfidized which results in much less toxic compounds
than AgNPs in its original form [167]. The authors achieved a full sulfidization with the
application of B. subtilis indicating an important role of B. subtilis in the processing of
AgNPs to its less toxic form. Still, the AgNPs contamination has not been identified as an
immediate threat to agriculture and only a few studies have been performed which are
discussed above. But the increasing use of AgNPs in day-to-day life is making it a potential
threat in the near future. Thus, more investigation is needed to better use the plants as a
tool to extract/destroy the AgNPs from the agricultural field.

5. Conclusions

This review provides invaluable information about the consequences of the release of
nanomaterials in the environment. Nanomaterials, especially AgNPs affect soil properties,
microorganisms, and plants and can therefore cause toxicity for living organisms including
humans. Although phytoextraction is suggested as a promising approach in removing
metal-based nanomaterials, several factors such as the size, concentration, and type of
AgNPs as well as soil structure, soil microbial community, and plant species should be
considered to select the appropriate method of phytoremediation. In addition, molecular
and physiological analysis that improves understanding about the involved transporters
and metabolites in removing AgNPs from the environment will help scientists to improve
the success of phytoremediation of these materials by altering the expression of related
genes using plant biotechnology methods.

Despite the growth in biotechnology, phytotechnology, and nanotechnology, there is
still very scarce information regarding sustainable removal of toxic nanoparticles from the
environment. Further research is recommended to better understand the mechanism of
AgNPs uptake by plants. The scientists must evaluate a small modeling kind of approach to
see the effects on ecosystem and also ‘lab to land’ approach where there will be evaluation
of small-scale toxicological data and its removal must be correlated at field level. Another
area must be related to seeing the molecular changes upon nanoparticle exposure. Few of
these efforts will be helpful in impact assessment of nanoparticles on biological organisms.
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