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Abstract: The concentration of trace gases in the atmospheric environment is extremely low, but
it has a great impact on the living environment of organisms. Photoacoustic spectroscopy has
attracted extensive attention in the field of trace gas detection because of its high sensitivity, good
selectivity, and fast response. As the core of a photoacoustic detection setup, the photoacoustic cell
has a significant impact on detection performance. To improve detection sensitivity, a sphere-tube
coupled photoacoustic cell (STPAC) was developed, which was mainly composed of a diffuse-
reflective sphere and an acoustic resonance tube. Modulated light was reflected multiple times in
the sphere to increase optical path, and photoacoustic (PA) signals were further amplified by the
tube. Based on STPAC, a PA gas detection setup was built with a laser diode (LD) at 450 nm as the
light source. The experimental results showed that the minimum detection limit (noise equivalent
concentration, NEC) of NO2 was ~0.7 parts per billion (ppb). Compared with the T-type PA cell
(TPAC) in which the modulated light passed through the sphere, the signal-to-noise ratio of STPAC
was increased by an order of magnitude at the same concentration of the NO2 sample.

Keywords: photoacoustic spectroscopy; photoacoustic cell; long optical path; acoustic resonance;
resonance mode; finite element simulation

1. Introduction

Nitrogen dioxide (NO2) is a trace gas toxic to living beings, which is mainly discharged
into the atmosphere by combustion and other processes [1,2]. The average concentration
of NO2 in the atmosphere is usually 5–30 ppb, but the concentration is several orders of
magnitude higher near the NO2 release source [3]. Due to the influence of sunlight, NO2
decomposes into NO and oxygen free radicals, resulting in an increase of O3 in the air [4].
NO2 has a strong absorption line in the visible region, and absorption intensity is the
largest in the blue-violet range [5,6]. However, when the wavelength is lower than 415 nm,
NO2 undergoes photolysis [7,8]. With the development of laser diode (LD) manufacturing
technology, a low-cost blue LD with a central wavelength of 450 nm has become a suitable
light source for the detection of NO2 by absorption spectroscopy.

As an indirect absorption spectroscopy technology, photoacoustic spectroscopy (PAS)
has the advantages of high sensitivity, good selectivity, fast response, and enclosure in
a compact module [9–13]. It is widely used in power detection, medical diagnosis, industrial
control, atmospheric monitoring, and combustion analysis [14–18]. In recent years, many
researchers have used photoacoustic technology to achieve the detection of NO2. Bernhardt
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introduced an LED-excited photoacoustic device for NO2 measurement. Out-of-phase
signals produced in two resonators achieved a larger signal and common mode noise
rejection, which made it possible to measure NO2 down to 60 ppb [6]. Zheng designed
a method to suppress the background noise caused by stray light of QEPAS NO2 sensor,
achieving ppb level detection of NO2 [19]. Yin developed a sub-ppb level photoacoustic
sensor by using a 3.5 W laser diode and a differential photoacoustic cell; the PA cell was
used to match the imperfect laser beam and reduce the external noise [20].

Detection sensitivity of PAS is affected by the cell constant of the PA cell, incident light
power, microphone sensitivity and other factors [21]. As the core unit of the PA detection
device, an effective design of the PA cell can improve the sensitivity [22]. PA cells are
divided into nonresonant and resonant types according to whether they can amplify the PA
signal [23,24]. At present, common resonant PA cells include Helmholtz, H-type, T-type,
and their variants [25–29]. Helmholtz PA cells have lower resonance frequency and weaker
ability to amplify the acoustic signal than H-type and T-type PA cells. Compared with
H-type PA cells (HPAC), the volume of T-type PA cells (TPAC) is reduced by nearly half at
the same resonance frequency. For the traditional TPAC, modulated light passes through
the absorption cell, and the optical path is only the length of the cell.

It is known that the intensity of PA signal is affected by incident light power. With
the improvement of light power, the PA signal also increases, but high-power light sources
usually have high cost and large volumes. Some researchers have used devices in which
light beams are reflected multiple times to achieve the equivalent effects [30–34]. Lassen
reported a photoacoustic sensor based on an integrating sphere. The light beams were
reflected multiple times in the sphere, and a fixed length tube was used to amplify the PA
signal. The detection of NO2 was realized by using a blue LED with a central wavelength of
415 nm, and the minimum detectable concentration was 1.9 ppm [35]. Chen proposed a PA
sensor which worked in a nonresonant state, and light beams were reflected multiple times
on the inner wall of the PAC. When average time was 400 s, the limit of detection of C2H2
was ~31 parts per billion (ppb) [36]. Yang developed an enhanced fiber PA sensor. For
improving the PA signal, an incident laser was reflected on the inner surface of a ring, and
the minimum detection limit of C2H2 was ~23.6 ppb [37]. Jin introduced a PA sensor based
on a mirror with high reflectance. Compared with a traditional PA system, the response
capacity of NO2 was increased from 0.016 µV/ppb to 0.2562 µV/ppb [38]. Qiao developed
a multi-pass quartz-enhanced PA sensor. The light beams passed through prong spacing of
the quartz six times, which improved the PA signal ~3.2 times [39]. According to the above
research, improving the number of light beam reflections can increase the optical path
and effectively amplify the PA signal. The combination of multiple reflection and acoustic
resonance proposed by Lassen [35] was an effective way to improve the photoacoustic
signal. However, the effects of different tube lengths and resonance modes on photoacoustic
signals were not analyzed. In fact, tube length affects the resonance frequency and the
ability of amplifying the PA signal. Therefore, the optimization of tube length is of great
significance to improve the signal-to-noise ratio (SNR).

Based on the above analysis, a sphere-tube coupled photoacoustic cell (STPAC) was
designed. Instead of the cylindrical absorption cell for STPAC, a spherical absorption
cell was employed made of high reflectance polytetrafluoroethylene (PTFE). Modulated
light was reflected multiple times on the inner wall of the sphere, which was similar to
an integrating sphere. The sphere was wrapped in two aluminum hemispheres to improve
heat dissipation capacity and reduce the negative impact of the solid-state photoacoustic
effect caused by absorbing light energy. To amplify the PA signals, an acoustic resonance
tube was connected to the sphere, and the inner wall of the tube was blackened to reduce
the influence of stray light. Sound pressure of acoustic resonance tubes with different
lengths and resonance modes were simulated by finite element analysis. According to the
simulation results, three special lengths of acoustic resonance tubes were processed, and
the optimal tube length was obtained by experiments. To prevent the photolysis of NO2,
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a 450 nm LD was used as the excitation light source. The experimental results showed that
the minimum detection limit of NO2 reached the sub-ppb level.

2. Theory and Simulation
2.1. Theory of Photoacoustic

PAS gas detection is an indirect absorption spectroscopy technology that calculates gas
concentration by detecting the acoustic signal generated by the gas absorbing light energy.
When gas molecules absorb periodically modulated light, energy level transitions occur
resulting in gas molecules changing from the ground state to the excited state. Excited
molecules release heat energy by collision, which causes a periodic change of pressure in
the closed PA cell. The pressure produces sound waves with the same frequency as the
modulated light, which are called PA signals [40].

If the intensity of the modulated light is I(r, t) and the absorption coefficient of the
gas to be measured is αp, the heat density source H(r, t) formed after the gas molecules
absorbing the light energy can be expressed as Equation (1) [41]:

H(r, t) = αp I(r, t). (1)

The heat density source vibrates the gas in the PA cell and excites an acoustic signal. It
is assumed that the inner surface of the PA cell is rigid and there is no velocity component
perpendicular to the wall. When ignoring the loss of gas molecules, the nonuniform wave
equation of sound pressure in the cylindrical PA cell is [41–43]:

∂2 p(r, t)
∂t2 − c2∇2 p(r, t) = (γ− 1)

∂H(r, t)
∂t

(2)

In Equation (2), p represents the sound pressure, c is the sound velocity of the gas in
the PA cell, γ is the adiabatic coefficient of the gas. Equation (3) [44,45] can be obtained by
Fourier transform of Equation (2):(

∇2 +
ω2

c2

)
p(r, ω) =

γ− 1
c2 iωH(r, ω) (3)

where ω is the modulated angular frequency. The expression of p(r, ω) is [46]:

p(r, ω) = ∑ Aj(ω)pj(r), (4)

where pj(r) is the solution of the normal mode; Aj(ω) is the mode amplitude. For the PA
cell with a regular shape, such as a cylindrical type, the mode amplitude expression is [47]:

Aj(ω) = − iω
ω2

j

α(γ− 1)
∫

p∗j IdV

Vc

[
1− ω2

ω2
j
− i
(

ω
ωjQj

)] (5)

where ωj is the resonant angular frequency in the normal mode; Qj is the quality factor
and Vc is the volume of the PA cell. A special case is considered. If the modulated light
I does not change with spatial location r (I(r, ω) = I(ω)), when j 6= 0,

∫
p∗j IdV = 0. The

only nonzero mode is p0, and the resonant angular frequency ω0 is 0. Therefore, the sound
pressure in the PA cell is independent of r. The mode amplitude can be expressed as [24]:

A0(ω) =
iα(γ− 1)I

ω
(

1− i
ωτ0

) (6)

where τ0 is the damping time of p0. It can be seen from Equation (6) that with an increase
of modulated angular frequency ω, the mode amplitude decreases, and the PA cell works
in the nonresonant state.

According to Equation (5), the mode amplitude Aj(ω) reaches a maximum when
the modulated angular frequency ω is equal to the resonant angular frequency ωj, and
the PA cell works in resonant state. If the wavelength of the sound wave is greater than
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the cross-section size of the resonator, such as in a slender tube, only a one-dimensional
longitudinal sound field along the length direction is generated. When both ends of the
tube are open, such as in the HPAC, the equation of the first-order longitudinal resonance
frequency can be expressed by Equation (7). When one end of the tube is closed and the
other end is open, such as in the TPAC, Equation (8) applies [48,49]:

fH =
c

2
(

L + 16
3π R

) (7)

fT =
c

4
(

L + 8
3π R

) (8)

where L and R represent the length and radius of the tube, respectively. The relevant
characteristics of the PA cell, such as structure, material, and size, are regarded as constant
Ccell. When the optical power of the incident light is P0; the microphone sensitivity is Ms
and the gas concentration is Cg. The PA signal can be expressed as [50]:

SPA = αpP0CcellMsCg (9)

when the PA cell works in the resonant mode, Equation (9) can be rewritten as [25]:

SPA =
(γ− 1)LQ

Vcω
MsP0αp (10)

where L is the gas absorption path. According to the principle of absorption spectroscopy,
when the incident light power P0 is constant, the PA signal is directly proportional to the gas
absorption path. The gas absorption path (equivalent to the optical path) can be increased
by using the integrating sphere as the absorption cell. The equation of the equivalent
optical path in the sphere is [32]:

Leq =
2D

3(1− ρ)
(11)

where ρ is the average reflectance and D is the diameter of the sphere.

2.2. Simulation and Design

Due to the characteristics of the integrating sphere, the light field in the sphere was
uniform. The uniform light field produced homogeneous heat in the device. The sound
pressure at any point on the inner surface of the sphere was simulated. A sphere with
a diameter of 5.08 cm was set as a uniform heat source with a value of 1 W/m3. As shown
in Figure 1, the sound pressure was inversely proportional to the modulated frequency,
which is consistent with Equation (6). Therefore, there was no resonance in the sphere.
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For the sake of combining long optical path and acoustic resonance, a tube was
connected to the integrating sphere. As an example, the length and diameter of the tube
were 5 cm and 4 mm, respectively. To reduce the noise caused by the reflection of light
beams in the tube, the inner wall of the tube was blackened. The light field distribution was
also simulated. A collimated light beam was reflected multiple times in STPAC, as shown
in Figure 2a. When the light beam passed through the sphere, it was similar to TPAC, as
shown in Figure 2b. In fact, the light inlet, light outlet, air inlet, and outlet could not reflect
the light beam. However, when the opening of the sphere was less than 5% of the inner
surface area of the integrating sphere, the influence of the diffuse reflection effect could be
ignored [51], and was not considered in the simulation. Only the light beam in which the
laser energy is greater than 90% of the initial energy is shown in Figure 2a.
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The diffuse reflectance curve of PTFE (National Institute of Metrology, CHINA. Cer-
tificate No. GXcl2021-00129) is shown in Figure 3; the corresponding value at 450 nm was
98.9%. The equivalent optical path of STPAC calculated by Equation (11) was ~308 cm,
which was 60 times that of TPAC (~5.08 cm).
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Figure 3. Diffuse reflectance curve of PTFE.

The 3-D model of STPAC is shown in Figure 4, and is mainly composed of light inlet,
light outlet (optional), gas inlet, gas outlet, acoustic resonance tube and integrating sphere.
The light outlet could be configured into ‘open’ or ‘closed’ modes, so that the PA cell could
be flexibly converted between STPAC and TPAC. Due to the threaded structure of the joint,
the PAC was conveniently coupled with different length tubes.
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Figure 4. 3-D model of STPAC.

One end of the tube was coupled with the sphere and a microphone was installed
at the other end, corresponding to the state of ‘open’ and ‘closed,’ respectively. In most
cases, the first-order longitudinal resonance frequency could be approximately calculated
by Equation (8). However, to prevent the diaphragm at the end of the microphone from
being worn during installation, a cylindrical gap with a length of 2 mm and a diameter of
12.3 mm was reserved between the microphone and the end of the tube. Therefore, for the
STPAC developed in this paper, there would be an error between the resonance frequency
calculated by Equation (8) and the actual resonance frequency. With the development of the
numerical calculation, the resonance frequency of an irregular PA cell could be obtained by
finite element simulation.

For accelerating simulation speed and reducing computational complexity, the simula-
tion model of STPAC was simplified. The less influential parts were removed, including
gas inlet, gas outlet, light inlet, and light outlet, as shown in Figure 5.
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Figure 5. Finite element simulation model of STPAC.

The resonance frequency is the natural frequency of the photoacoustic cell, which
is independent of the excitation mode of the light beam. Therefore, a sphere of 5.08 cm
in diameter was set as a uniform heat source with a value of 1 W/m3. When the tube
length was 5 cm, the sound pressure distribution of STPAC in the first-order longitudinal
resonance mode was as shown in Figure 6. The resonance frequency was 1238 Hz, and the
maximum sound pressure was located at the end of the tube connected to the microphone.
At the same time, the sound pressure in the integrating sphere was close to zero.
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Figure 6. Simulated sound pressure distribution in the first-order longitudinal resonance mode
of STPAC.

With an increase of frequency, the second-order longitudinal resonance mode had
a resonance frequency of 3925 Hz in the tube, as shown in Figure 7. The variation curve
of sound pressure at the end of the tube with frequency is shown in Figure 8. When the
resonance order was raised, the sound pressure at the end of the tube decreased. Therefore,
the tubes described in this paper worked in the first-order longitudinal resonance mode to
produce maximum sound pressure.
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of STPAC.

To analyze the influence of different tube lengths on the photoacoustic signal, sound
pressure curves of STPAC with different tube lengths were simulated, as shown in Figure 9.
The sound pressure of the 9 cm tube was the largest. Sound pressures of 5 cm, 6 cm, 7 cm,
and 8 cm tubes were 0.0610 Pa, 0.0563 Pa, 0.0642 Pa and 0.0661 Pa, respectively. So, the
sound pressure of the 5 cm tube was 108, 95 and 92% of the other three tubes. However,
the resonance frequency was higher, and the volume was smaller. Meanwhile, 1.8 cm was
the shortest tube that could be installed in the photoacoustic cell. Therefore, 1.8 cm, 5 cm
and 9 cm acoustic resonance tubes were processed for subsequent experiments.
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left to right were 10 cm, 9 cm, 8 cm, 7 cm, 6 cm, 5 cm, 4 cm, 3 cm, 2 cm, and 1.8 cm, respectively.

3. Experiments and Results

A PA gas detection setup was built to verify the performance of STPAC. To avoid
photolysis of NO2, a laser diode (JLM45160ZMW, Dongguan Blueuniverse Laser, Dongguan,
China) with a central wavelength of 450 nm, line width of 4 nm and a light intensity of
500 mW was selected as the excitation light source. Since the average transmittance at
450 nm was ~93.5%, the average incident light power was ~468 mW. The emission spectrum
of LD was measured by a spectrometer, as shown in Figure 10.

The laser entered STPAC through the optical window. The NO2 samples were com-
mercial standard gases composed of different concentrations of NO2 and N2. To replace
the gas in the STPAC, a flow rate of 1 L/min was employed. After the gas replacement was
complete, the gas inlet valve and gas outlet valve were closed. To reduce the noise caused
by gas movement, the PA experiments were carried out after 10 s. A signal generator was
used to provide a signal for intensity modulation of LD. To detect PA signals, a microphone
(MPA201, BSWA) with a sensitivity of 50 mV/Pa was installed at the end of the tube. The
PA signals were demodulated by a lock-in amplifier, and the integration time was set to
1 s. The demodulated signals were collected by the data acquisition card and uploaded to
a computer for analysis. The schematic diagrams of the setup are shown in Figure 11.
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Figure 11. Schematic diagram of PA gas detection setup; (a) STPAC, (b) TPAC.

Due to the difference between the simulation and the actual situation, it was necessary
to calibrate the actual first-order longitudinal resonance frequency of STPAC through
experiments. The gas to be measured was commercial standard 10 parts per million
(ppm) NO2/N2. Sound pressure (PA signals) data of the tubes with different lengths were
recorded, and the data were fitted using the Lorentz equation. The results are shown
in Table 1 and Figure 12. Compared with Figure 9, the simulated sound pressure and
measured PA signals had similar trends. The inner wall of the tube was not precisely
polished, the thermal viscosity loss and boundary loss were relatively large, so the Q values
were slightly low.

Table 1. Frequency calibration data of tubes with different lengths of STPAC.

Tube Length (cm) Center
Frequency (Hz)

Full Width at Half
Maximum (Hz) R2 (%) Q

1.8 2242 156 (2164–2320) 0.975 14

5 1199 93 (1152–1245) 0.971 13

9 741 79 (702–781) 0.980 9
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For comparing the PA signals in the first-order and high-order longitudinal resonance
modes, a 5 cm tube was taken as an example. The resonance frequency in the high-order
was 3560 Hz, and the PA signal was 0.223 mV. The PA signal in the first-order was 5.345 mV,
which was ~24 times higher than the second-order PA signal. The simulation results show
that the simulated sound pressure of the first-order and second-order were 0.061 Pa and
0.0027 Pa; the former was ~22.4 times higher than the latter. The simulated and measured
results were approximately consistent, as shown in Table 2. Because of the higher sound
pressure, the first-order longitudinal resonance mode was used in this paper.
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Table 2. Comparison between simulations and measurements of longitudinal resonance modes with
first-order and second-order.

First-Order
Longitudinal Resonance

Mode (Abbr. FO)

Second-Order
Longitudinal Resonance

Mode (Abbr. HO)
FO/HO

Simulated sound
pressure (Pa) 0.061 0.0027 22.6

Measured PA
signal (mV) 5.345 0.223 24.0

Noise distribution of STPAC with different length tubes in the first-order longitudinal
resonance mode was analyzed with the pure N2 background. The LD was turned on, and
the resonance frequency corresponding to different tube lengths was used to modulate the
LD. Experimental results are shown in Figure 13.

To analyze the detection performance of tubes with different lengths, the signal-to-
noise ratio (SNR) was used as the evaluation standard, and its calculation formula was [20]:

SNR =
Signal − µ(B)

σ
, (12)

where Signal is the measured PA signal, σ is the noise deviation, and µ(B) is the average
value of noise. The calculation equation of σ is:

σ =

√
1
n

n

∑
k=1

(Bk − µ(B))2, (13)

where Bk is measured value of noise, and n is the total number of noise samples.
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The SNR of different length tubes is shown in Table 3. The PA signal generated by
the 9 cm tube was the largest, but the resonance frequency was relatively low. Because of
the influence of 1/ f noise, electronic noise, and ambient noise, the total noise value would
increase if frequency was reduced [22,23]. Since the inner walls of the three tubes were
blackened, stray light was absorbed by the inner wall of the tubes and was not reflected
again. Therefore, the solid-state photoacoustic effects produced by the tubes were almost
equal theoretically. However, the length of the 1.8 cm tube was too short, and some stray
light might not be absorbed by the inner wall of the tube but could directly irradiate the
diaphragm of the microphone, resulting in thermal noise and large noise fluctuation. Due
to the moderate length and high resonance frequency, the SNR of the 5 cm tube was the
highest, and was ~2.7 times of 9 cm tube; so this was used in subsequent experiments.

Table 3. Performance parameters of STPAC with different tube lengths.

Tube Length (cm) PA Signal (mV) Noise Average (mV) σ (µV) SNR

1.8 1.726 0.8259 2.0 450

5 5.345 0.0563 0.36 14,691

9 9.352 1.5857 1.4 5547

STPAC was compared with TPAC to verify the ability of amplifying PA signals. The
noise distribution is shown in Figure 14. The average noise value and standard deviation of
STPAC were both lower than TPAC, and the performance parameters are shown in Table 4.
The SNR of STPAC was ~16 times that of TPAC.

Table 4. Performance parameters of STPAC and TPAC.

PAC PA Signal (mV) Noise Average (mV) σ (µV) SNR

STPAC 5.345 0.0563 0.36 14,691

TPAC 0.528 0.0990 0.47 913
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Because the modulated light passed through two optical windows of TPAC (trans-
mittance of calcium fluoride window at 450 nm was ~93.5%), ~12.6% of the light energy
was absorbed to produce noise with the same frequency as the PA signals. At this time,
if other noises were ignored, the main noise came from the heat energy absorbed by the
two windows. From Table 4, if the noise caused by the first window was X, the equation
X + 0.935 X = 0.099 was obtained and X = 0.0512 could be calculated, and was close to
the noise of STPAC (0.0563 mV). Therefore, the noise absorbed by PTFE material was
0.0563–0.0512 = 0.0051 mV, which was only 10% of the window noise. Although the light
energy of STPAC was all absorbed inside the integrating sphere, which was wrapped by
two aluminum hemispheres of high heat dissipation, the absorbed light energy quickly
diverged to the outside in the form of heat. So, the noise of STPAC was much lower. At the
same time, the microphone was located at the end of the 5 cm tube away from the spherical
absorption cell, so that the noise caused by stray light was at a low level. It was expected
that the noise of STPAC could be reduced to a lower level after optimizing the thickness of
the hemispherical shells, selecting materials with the higher heat transfer coefficient, and
replacing a window with a higher transmittance.

A series of commercial standard NO2/N2 samples with concentrations of 0.15, 0.5,
1, 5 and 10 ppm were used to calibrate the PA gas detection setup based on STPAC. The
fitted concentration-signal curve was y = 0.52546x + 0.06621, and R2 was ~0.9998. The
accuracy of the setup was verified by using 0.25 ppm and 2 ppm commercial standard
NO2/N2 samples. The related errors between the retrieved concentrations (0.26 ppm and
0.91 ppm) by setup and the actual concentrations (0.25 ppm and 2 ppm) were 4% and−4.5%
respectively, as shown in Table 5 and Figure 15. The experimental results showed that the
response capacity of the setup was 0.52546 mV/ppm for 0–10 ppm NO2. The minimum
detection limit (noise equivalent concentration, NEC) of NO2 was ~0.7 ppb calculated by
using 1 time σ.

Table 5. Calibration parameters of STPAC.

Calibration
Concentration (ppm)

PA Signal
(mV)

Actual
Concentration

(ppm)

Retrieved
Concentration

(ppm)

Related
Error (%)

0.15 0.166 0.25 0.26 +4

0.5 0.332 2 1.91 −4.5

1 0.593

5 2.644

10 5.345
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Figure 15. NO2 concentration calibration curve of STPAC.

According to the Allan variance study, when the average time was long enough, high
sensitivity could be achieved by the setup. To analyze the minimum detection sensitivity
of the setup, pure N2 was flushed into the STPAC for long-time detection, and the Allan
variance of noise equivalent concentration was used to evaluate stability, as shown in
Figure 16. When the average time was 645 s, the minimum detection sensitivity was
~0.27 ppb.
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4. Discussion

In this paper, a commercial diffuse sphere with a diameter of standard size 5.08 cm
(2 in) and an acoustic resonance tube of 5 cm were used, which preliminarily verified the
feasibility of STPAC to increase the sensitivity of photoacoustic detection. We focused
on the influence of tube length and resonance mode on photoacoustic detection ability.
However, the size of the sphere also affects the optical path and sound pressure. The
diameters of 3 cm, 5.04 cm and 7 cm spheres, and a 5 cm tube were taken as examples.
The volume, resonance frequency, sound pressure and equivalent optical path (at 450 nm)
of the three spheres were analyzed, as shown in Table 6 and Figure 17. Compared with
a 7 cm sphere, the 5.08 cm sphere had a 28% reduction in optical path but a 7% increase in
sound pressure and a 62% reduction in volume. Therefore, considering the optical path
and sound pressure, STPAC could obtain a longer optical path and higher sensitivity by
carefully selecting the size of the sphere.
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Table 6. Simulated performance parameters of different sphere sizes.

Sphere
Diameter (cm)

Sphere
Volume (mL)

Resonance
Frequency (Hz)

Simulated Sound
Pressure (Pa)

Optical Path
(cm)

3 14.1 1261 0.0504 182

5.08 68.6 1238 0.0610 308

7 179.5 1234 0.0570 424
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To verify the improvement of the detection performance of STPAC for other gases,
CO2 was taken as an example, and the wavelength was chosen as 2004 nm. The excitation
light source was a 3 mW distributed feedback laser with intensity modulation, and the
gas to be measured was commercial standard 1000 ppm CO2/N2. Figure 3 shows that the
reflectance of PTFE near 2000 nm was ~96.8%, and the equivalent optical path was ~106 cm
according to Equation (11). Compared with TPAC (5.04 cm), the optical path of STPAC was
increased by ~20 times. The experimental results are shown in Table 7. Compared with
TPAC, the signal-to-noise ratio of STPAC for CO2 gas samples was increased by ~5 times
(the minimum detection limit was reduced by ~5 times). Therefore, in the high reflectance
band of PTFE (250–2500 nm, reflectance > 94.2%), the detection ability of STPAC for other
gas samples could be also improved.

Table 7. Performance parameters of STPAC and TPAC for CO2.

PAC PA Signal (µV) Noise Average (µV) σ (µV) SNR

STPAC 2.362 0.242 0.045 47

TPAC 0.766 0.249 0.051 10

Due to the good selectivity of photoacoustic technology, STPAC could also be used
for the detection of mixed gas. First, from the point of view of the light source, mutual
interference between mixed gases could be avoided if an appropriate excitation spectral line
was selected [53]. A CH4 and CO2 mixture was taken as an example, and the absorption
lines of 2000 ppm CH4 and 2000 ppm CO2 near 1653 nm and 2004 nm were simulated
through HITRAN database, as shown in Figure 18. At 1653 nm (CH4 absorption peak) and
2004 nm (CO2 absorption peak), CH4 and CO2 did not interfere. Second, detection of the
mixed gas could be realized by using frequency division multiplexing [54] or time division
multiplexing technology [55]. Therefore, as a long optical path photoacoustic absorption
cell, STPAC would be suitable for the detection of mixed gas.
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5. Conclusions

In this study, a STPAC for PA gas detection was developed. An integrating sphere was
used as the absorption cell, and the modulated light reflected multiple times to increase
the optical path. Compared with the TPAC, in which modulated light passed through the
absorption cell, the optical path was increased by ~60 times. Because the light field in the
integrating sphere was uniform and did not produce resonance, an acoustic resonance tube
was coupled with the sphere to produce a specific resonance mode. The sound pressure of
different lengths of tubes in first-order longitudinal resonance mode was simulated, and
three special tube lengths were processed. According to the simulation and experimental
results, although the 9 cm tube produced the largest signal, its resonance frequency was
low and the noise was relatively large, so the SNR was not optimal. The length of the 5 cm
tube was moderate, and the higher resonance frequency suppressed the noise, so the SNR
was the highest, and ~2.7 times that of 9 cm tube.

The performance of the PA gas detection setup based on STPAC was analyzed by
using NO2 gas samples. A low-cost LD with wavelength of 450 nm was selected as the
excitation light source, the PA signal was excited by intensity modulation, and the signal
was collected by a microphone located at the end of the tube away from the spherical
absorption cell. In the range of 0–10 ppm, the PA signals had a fine linear relationship with
NO2 concentrations, R2 was ~0.9998, and the response capacity was 0.52546 mV/ppm. The
relative errors between the retrieved concentrations and the actual concentrations were
within ±5%. Because of the two aluminum hemispherical shells with high heat transfer,
the light energy absorbed by the integrating sphere was converted into heat energy and
quickly diverged to achieve a low level of noise. At the same time, the blackened inner
wall of the tube reduced the noise caused by stray light. When SNR was 1, the minimum
detection limit (NEC) of the setup was calculated to be ~0.7 ppb, which was an order of
magnitude lower than TPAC. At the same time, the PA signal intensity of STPAC was also
an order of magnitude higher than that of TPAC. Allan variance was used to evaluate the
stability of the setup with long-time measurement. When the average time was 645 s, the
minimum detection sensitivity reached ~0.27 ppb.

In conclusion, compared with the traditional TPAC, STPAC combined long optical
path and acoustic resonance without adding additional volume to achieve a lower detection
limit and increased the SNR by ~16 times. It was expected that STPAC would be able to
detect various trace gases with absorption peaks in the high reflectance band (250–2500 nm)
of the diffuse reflective material PTFE. Because the photoacoustic signal was affected by the
volume of the photoacoustic cell, the size of the absorption cell will be further optimized in
future work to achieve higher sensitivity detection with a smaller volume PA cell.
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