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Abstract

Over the past decades, there have been tremendous efforts to understand the cross-talk between 

viruses and host metabolism. Several studies have elucidated the mechanisms through which viral 

infections manipulate metabolic pathways including glucose, fatty acid, protein, and nucleotide 

metabolism. These pathways are evolutionarily conserved across the tree of life and extremely 

important for the host’s nutrient utilization and energy production. In this review, we focus on 

host glucose, glutamine, and fatty acid metabolism and highlight the pathways manipulated by the 

different classes of viruses to increase their replication. We also explore a new system of viral 

hormones in which viruses mimic host hormones to manipulate the host endocrine system. We 

discuss viral insulin/IGF-1-like peptides and their potential effects on host metabolism. Together, 

these pathogenesis mechanisms targeting cellular signaling pathways create a multidimensional 

network of interactions between host and viral proteins. Defining and better understanding these 

mechanisms will help us to develop new therapeutic tools to prevent and treat viral infections.
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1. INTRODUCTION

Viruses are the most abundant and widespread biological entities in the world with an 

enormous variety of genetic material and the ability to infect different species (1). As 

a result of coevolution, viruses have developed various mechanisms to facilitate viral 

replication. One of these mechanisms is based on manipulating the host metabolism 

by disrupting critical metabolic pathways and targeting master regulator proteins of 

metabolism. Metabolic signaling pathways are the main decision-making processes that 

coordinate cell signaling; gene transcription and precise modulation of these pathways 
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are vital for organisms. Thus, viruses have evolved to target these pathways and alter 

metabolism. Over the past three decades, several groups have also explored and identified 

mechanisms exploited by viruses to increase macromolecules including glucose and fatty 

acid level in the cells for their replication (2–5). In this review, we explore the manipulation 

of metabolic pathways by different classes of viruses that can infect humans or other 

distinct animal species. We cover the studies that identified an exact mechanism of 

viral manipulation of metabolic signaling; however, we exclude the descriptive studies. 

Successful characterization of these modified signaling pathways has the potential to be the 

key to the treatment of several viral infections.

2. GLUCOSE METABOLISM

Glucose metabolism is a complex process through which cells convert glucose into energy 

and other metabolic intermediates (Figure 1). The first step of this process is glycolysis, 

an ancient, evolutionarily conserved, oxygen-independent process with two main functions, 

the generation of ATP and the generation of pyruvate, both of which are used in the later 

stages of cellular respiration (6). Following glycolysis, in the presence of oxygen, pyruvate 

is oxidized into acetyl-CoA and utilized in the tricarboxylic acid (TCA) cycle, also known 

as the Krebs cycle. The TCA cycle is a series of reactions used to release energy and 

produce redox cofactors from acetyl-CoA oxidation through a series of redox reactions. 

Redox cofactors then contribute to oxidative phosphorylation (OXPHOS), where electrons 

donated from NADH and FADH are shunted through the electron transport chain (ETC), 

causing the production of a gradient of H+ molecules that allows for the generation of ATP, 

making OXPHOS a significant source of ATP in aerobic organisms (7).

An integrated metabolic signaling network plays a significant role in the regulation of 

glucose homeostasis by a feedback loop at the level of phosphofructokinase (PFK), the 

rate-limiting enzyme of glycolysis. In a state of low ATP/AMP, the energy-sensing enzyme 

AMP-activated protein kinase (AMPK) suppresses energy-consuming pathways. It thus 

augments glucose uptake to maintain homeostasis and decreases bioenergetics stress (8). 

Growth factors such as platelet-derived growth factor, erythropoietin, epidermal growth 

factor (EGF), transforming growth factor, and cytokines stimulate glucose uptake and 

cell proliferation via activation of the phosphoinositide 3-kinase (PI3K)/protein kinase B 

[PI3K/PKB(AKT)] pathway. This promotes cell cycle progression and protein translation by 

activating the mechanistic target of rapamycin (mTOR) protein (9).

Viruses manipulate glucose metabolism to increase available energy and promote their 

own reproduction by modulating the aforementioned signaling pathways. Most viruses 

accomplish this by inducing aerobic glycolysis, also known as the Warburg effect (2). The 

Warburg effect is the fermentation of pyruvate at the end of glycolysis into lactate using 

lactate dehydrogenase (LDH), even when oxygen is present. Thus, it modulates the key 

regulatory enzymes of aerobic glycolysis, glucose transporters (GLUTs), hexokinase (HK), 

PFK, pyruvate kinase, and LDH. The result of aerobic glycolysis is buildup of more lactic 

acid, fewer glycolytic intermediates contributing to the TCA cycle, and high consumption of 

glucose (10).

Girdhar et al. Page 2

Annu Rev Virol. Author manuscript; available in PMC 2022 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Based on the genome structure [single-stranded or double-stranded (ds) DNA or RNA] and 

the mode of replication, viruses are categorized into seven classes (I–VII). Different classes 

of viruses such as Class I white spot syndrome virus (WSSV) (11), human papillomavirus 

16 (12), human cytomegalovirus (HCMV) (13), and Kaposi’s sarcoma herpesvirus (KSHV) 

(14) and Class IV hepatitis C virus (HCV) (15) use various mechanisms to induce 

this metabolic shift, which is often essential for viral replication (Supplemental Table 

1). For example, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Class 

IV) infection in humans causes an energy deficit by disrupting mitochondrial function 

that is then compensated for by increased glycolysis (16). Infectious spleen and kidney 

necrosis virus (ISKNV) (Class I) that infects fish induces higher expression of glycolytic 

enzymes HK1, LDH, and glucose-6-phosphate dehydrogenase to provoke its replication in 

Chinese perch brain cells. Subsequent inhibition of pyruvate dehydrogenase kinase, and thus 

disruption of aerobic glycolysis, was shown to inhibit ISKNV replication (17).

2.1. Signaling Pathways Manipulated by Viruses to Induce Glucose Metabolism

AMPK is a sensor of cellular energy conserved in all eukaryotic cells, making it an 

important target for several viruses. AMPK signaling inhibits the mTOR responsible for cell 

growth and proliferation (18). Furthermore, AMPK signaling activates hypoxia-inducible 

factor-1 (HIF-1), which upregulates glucose uptake and glycolytic enzymes (19). In normal 

cells, increased AMPK signaling promotes glycolysis and ATP formation. Paradoxically, 

increased AMPK signaling under cell stress conditions (such as in cancer or viral infection) 

decreases glycolysis (20). EBV-miR-Bart1-5P, one of the 44 mature microRNAs encoded 

by Epstein-Barr virus (EBV) (Class I) that infect humans, was shown to promote aerobic 

glycolysis and induce angiogenesis in nasopharyngeal carcinoma (NPC) cells by directly 

downregulating the expression of the alpha-1 subunit of AMPK. The inhibition of AMPK 

signaling in NPC cells infected with EBV was observed to increase mTOR activation and 

therefore increase phosphorylation of S6 kinase (S6K1) beta-1, which induces HIF-1α 
translocation into the nucleus. Thus, HIF-1α translocation increases aerobic glycolysis by 

upregulating the expression of the important glycolytic enzymes GLUT1, HK2, and LDH 

(21) (Figure 1).

Zika virus (ZIKV) (Class IV) also demonstrates a similar metabolic reprogramming by 

inhibiting AMPK signaling, increasing glucose uptake and glycolytic rates in human 

endothelial and mouse embryonic fibroblasts cells. Decreased AMPK signaling during 

infection increased the expression of glycolytic enzymes HK2, triosephosphate isomerase 

(TPI), monocarboxylate transporter 4, and GLUT1. Notably, activation of AMPK signaling 

using AMPKα activator GSK621 inhibited ZIKV replication in these cells (22).

Adenovirus-encoded protein E4 open reading frame 1 (E4ORF1) localizes in the nucleus 

to bind and activate Myc (proto-oncogene, basic helix-loop-helix transcription factor), an 

important transcription factor. This was shown to consequently upregulate the transcriptional 

expression of glycolytic enzymes HK2 and PFK1 in nontumorigenic breast cells and in 

turn elevate glucose consumption and lactate production rates while reducing oxygen 

consumption (showing less dependence on OXPHOS and a switch to aerobic glycolysis, 

i.e., the Warburg effect). The impact of this Myc translocation was found to be independent 
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of PI3K/AKT signaling (23). Likewise, murine norovirus (MNV) (Class IV) infection was 

shown to increase central carbon flux (glycolysis, the pentose phosphate pathway, and the 

TCA cycle) in murine macrophages (RAW cells) as a result of increased AKT signaling. 

Inhibition of AKT phosphorylation with MK2206 reduces MNV-1 infection in RAW cells. 

However, no difference in phosphorylation of AMPK was found in MNV-infected RAW 

cells, showing an AKT-dependent mechanism (24).

However, viruses such as avian reovirus (ARV) (Class VI) facilitate replication by 

upregulating the mammalian target of rapamycin complex 1 (mTORC1)/eukaryotic 

translation initiation factor 4E (eIF4E)/HIF-1α pathway. The ARV-produced protein σA was 

found to upregulate HIF-1α partially through mTORC1 and eIF4E in a dehydrogenase-3 

subunit beta (IDH3B) and vacuolar-type H+-ATPase (vATPase)-dependent manner. ARV σA 

protein partially activates IDH3B, which is found to phosphorylate p70S6K, downstream 

to mTOR. Upon activation, mTORC1 phosphorylates 4E-binding protein 1 (4E-BP1), 

which releases protein elF4E to facilitate translation of HIF-1α. HIF-1α further increases 

glycolysis by increasing the transcription of glycolytic enzymes such as HK2, PFK1, TPI, 

and PK. Moreover, vATPase increases the dissociation of 4E-BP1 and elF4E to increase 

the flux of glycolysis and the TCA cycle in its viral replication cycle (25). Interestingly, 

the ARV p70 protein activates AKT signaling upstream to mTORC1; however, the effect of 

ARV σA protein on AKT signaling still needs to be evaluated (26).

2.2. Glucose Transporters

Glucose is a nonpolar molecule unable to enter a cell via diffusion and thus requires GLUTs 

to enter a cell. GLUTs are classified by affinity, structure, and functions into different 

classes such as GLUT1, GLUT2, GLUT3, GLUT4, and sodium/glucose cotransporter 1 

(SGLUT1). GLUT1 is expressed in all cells but is present at high levels in endothelial cells 

of barrier tissues such as the blood-brain barrier and human erythrocytes (27). Increased 

GLUT expression is often seen in viral infections. Human immunodeficiency virus (HIV) 

infection increases glucose transport by 300% by activating PI3K/AKT signaling, increasing 

GLUT1-mediated glucose uptake in T helper cells. Activation of PI3K/AKT signaling 

increases the phosphorylation of GLUT1 and thus its activity (28). In humans, HIV is 

also found to increase the expression of GLUT3 (commonly expressed in neurons of the 

central nervous system) in H9 lymphocytes (29). Like HIV, rhinovirus (RV) is found to 

mobilize extracellular glucose via PI3K signaling to increase GLUT1-mediated glucose 

uptake in vivo and in vitro. In glucose-deprived states, an increase in glycogenolysis 

was observed in RV-infected fibroblast cells to compensate for the glucose need (30). 

Likewise, E4ORF1 adenovirus protein enhances insulin-stimulated PI3K signaling, followed 

by GLUT4 translocation to the plasma membrane in adipocytes (31).

HCMV uses an early protein IE72 to replace commonly expressed GLUT1 transporters in 

infected human foreskin–derived fibroblast (HF) cells with more active GLUT4 transporters. 

IE72 modifies messenger RNA levels of the genes encoding GLUTs, downregulating 

GLUT1 expression and increasing GLUT4 expression. Levels of other high-affinity GLUTs 

also showed a modest change in expression (GLUT3, GLUT7, GLUT8, and GLUT10) and 

could possibly also play a role in the increase of glucose uptake. Interestingly, GLUT4 
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expression and translocation in HCMV-infected cells are independent of AKT signaling, 

unlike with HIV and RV (32).

Another example is the transmissible gastroenteritis virus (TGEV) (Class IV), a coronavirus 

that infects pigs and increases SGLUT1- and GLUT2-mediated glucose uptake in the 

epithelial cells. The glucose uptake in TGEV-infected cells is mediated via increased 

expression and phosphorylation of EGF receptor, which is upstream to PI3K/AKT signaling 

(33).

3. GLUTAMINOLYSIS

Glutaminolysis is the process of utilization of glutamine to generate TCA cycle 

intermediates in the absence of pyruvate. Glutamine is converted into glutamate by 

glutaminase (GLS) and then converted to α-ketoglutarate by glutamate dehydrogenase 

(GDH), which restores the TCA cycle, allowing for the production of other intermediates 

such as citrate that contribute to fatty acid synthesis. Glutamine can also act as an alternative 

energy source, as the TCA cycle produces NADPH, which donates electrons to the ETC 

(Figure 2). Due to the disconnection between glycolysis and the TCA cycle seen in 

viral life cycles that induce aerobic glycolysis, there is a dependence on glutamine. For 

example, adenovirus E4ORF1 induces glutaminolysis by increasing GLS activity via Myc in 

infected A549 human lung carcinoma cells. Cells grown in a glutamine-free environment 

showed significantly decreased viral replication, indicating the need for glutamine for 

optimal viral survival. Adenovirus E4ORF1 was also found to activate Myc in primary 

human bronchial epithelial cells and to upregulate the expression of glutamine transporters 

SLC7A5/ASCT2 and SLC1A5/LAT1 (34). Moreover, HSV-1 (Class I) and influenza A 

(Class V) infection also induced mitochondrial GLS-1 activity for their optimal replication 

(35). The same phenomenon was seen in KSHV-infected cells, where a glutamine-free 

environment decreased viral replication by 75% (36). Mechanistically, KSHV was found 

to induce the expression of nutrient-sensing transcription factors cMyc, Max, and MondoA 

and its heterodimerization partner Max-like-protein X, a cellular metabolism modulator in 

endothelial cells. Increased expression of these transcription factors further increases the 

expression of glutamine transporter protein SLC1A5 and thereby increases glutaminolysis 

for viral survival (37).

Viral mechanisms for inducing glutaminolysis also include upregulation of the enzyme 

GDH, which ultimately regulates anaplerosis, converting glutamate to α-ketoglutarate. 

Studies with HIV subjects found they had a late immune recovery that was caused 

by proinflammatory molecules and glutaminolysis. Increase in L-glutamate concentration 

in HIV infection can be associated with microbial translocation and damage of the 

gastrointestinal tract (38). Glutaminolysis also affects cell replication through activation of 

mTORC1 (39).

In another study, shrimp infected with WSSV have revealed that the virus upregulates the 

expression of GDH and aspartate aminotransferase (ASAT). ASAT is another enzyme-like 

GDH involved in the conversion of glutamate to α-ketoglutarate. Notably, WSSV infection 

induces the Warburg effect in infected shrimp cells, and thus following the previous 
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discussion, anaplerosis through glutamine is needed for viral replication. This increase in 

the WSSV-infected cells is regulated by Ras signaling, not by PI3K/AKT/mTOR signaling 

(11). Therefore, it may be helpful to target glutaminolysis as a potential therapeutic strategy 

in virus-infected cells.

4. LIPID METABOLISM

Lipid metabolism involves pathways related to either storage or breakdown of lipids, 

including fatty acids. Fatty acid synthesis usually occurs in the liver and adipose tissues. 

The critical step of fatty acid synthesis starts with acetyl-CoA being converted to malonyl-

CoA by carboxylation with the help of acetyl-CoA carboxylase (ACC), the most regulated 

enzyme in this process (40) (Figure 3). However, fatty acid oxidation is the process of fatty 

acid breaking down into acetyl-CoA to produce ATP. It begins with the fatty acids being 

transferred from the cytoplasm (where fatty acid synthesis occurs) to the mitochondria. 

The essential step, known as beta-oxidation, occurs in mainly four stages: oxidation, 

hydration, oxidation again, and thiolase activity, which are correspondingly activated by 

acyl-CoA dehydrogenase, enoyl-CoA hydratase, hydroxyacyl-CoA dehydrogenase (HADH), 

and ketoacyl-CoA thiolase (41). Fatty acid metabolism has been found to be associated with 

glycolysis in many ways. Pyruvate, a product of glycolysis, is also an essential component of 

fatty acid synthesis. Furthermore, the rate of fatty acid oxidation relies on the availability of 

glucose stores (42).

There are several vital factors regulating fatty acid metabolism. One of the proteins, mTOR, 

controls fatty acid synthesis, adipogenesis, esterification, and hydrolysis of triacylglycerols 

(TAGs)/lipolysis. Other vital factors that partake in fatty acid metabolism are sterol 

regulatory element-binding proteins (SREBPs). SREBPs are a class of transcription factors 

that bind sterol regulatory elements (SREs) in DNA. The SREs are present at the promoters 

of genes involved in lipid synthesis, such as ACC1, fatty acid synthase (FASN), sterol CoA 

desaturase-1, and lipoprotein lipase (43). SREBP-1, which can be spliced into SREBP-1a 

and SREBP-1c upon activation, is involved with lipids. SREBP-1a is engaged in global 

lipid synthesis and growth, and SREBP-1c is involved in fatty acid synthesis and energy 

storage (44). SREBP-2 is mainly involved in cholesterol regulation but has indirect abilities 

to upregulate lipid biosynthesis (45).

SREBP cleavage-activating protein (SCAP) forms a complex with SREBP on endoplasmic 

reticulum (ER) membrane and helps transport of SREBP from the site of synthesis (ER) 

into the site of its cleavage (Golgi). SCAP has a sterol binding domain that regulates 

the synthesis and lipid uptake within cells (46). In surplus of sterols, insig-1/2 binds the 

SCAP complex on the ER membrane that, when bound, blocks coat protein complex II 

(COPII)-mediated movement of the SREBP-SCAP complex to the Golgi membrane (47). 

In this process, an ER membrane–bound, GTP binding protein, Sar-1, attracts the cytosolic 

protein Sec23/24, which enhances binding of coat proteins to the budding vesicle. These 

COPII vesicles lead to the movement of the SREBP-SCAP complex to the targeting motif 

on the Golgi protein. At the Golgi, two membrane-bound proteases (S1P and S2P) recognize 

SREBP and cleave it, freeing it from the membrane and translocating it to the nucleus, 

thus increasing the transcription of lipogenic genes (ACC and FASN) (48, 49). Another 
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critical pathway that leads to the activation of SREBPs is activation of AKT and mTORC. 

Activation of mTORC phosphorylates S6K1 and increases SREBP-1c translocation to the 

nucleus by dissociating the SCAP-SREBP complex (50). AKT inhibits a protein called 

lipin, which sequesters SREBP in the nucleus. Here, mTORC plays a major role by hyper-

phosphorylation of lipin, which prevents it from going into the nucleus and hence increasing 

SREBP translocation (51).

4.1. Viral Manipulation of Fatty Acid Synthesis

HCMV-infected HF cells show a substantial increase in ACC1, ATP-citrate lyase, and 

FASN, all rate-limiting enzymes for lipid biosynthesis. In HF cells, after 24 h of HCMV 

infection, mature SREBP-1 was detected in the cell’s nucleus, resulting in fatty acid 

synthesis and the accumulation of lipid droplets (LDs) in the cytoplasm, which assist in the 

replication and production of the lipid bilayer required by the dsDNA HCMV (52). Another 

study showed that in HCMV-infected MRC-5 fibroblasts, there was the potential presence of 

SREBP-2 in the nucleus. The mechanism of proteolytic activation of SREBP-2 leads to an 

increase in ACC1, a key driver for lipid synthesis (53). Middle East respiratory syndrome 

coronavirus (Class IV) also increases lipogenesis by utilizing the SREBP-1 pathway to 

increase its replication. Inhibition of the SREBP-1 pathway with betulin acts as an antiviral 

intervention (54).

Latent membrane protein-1 is the major transforming protein of EBV that induces FASN 

gene expression and increases LD formation in B cells. However, the increase in the 

expression of FASN is not through SREBPs, and there is actually an increase of ubiquitin-

specific peptidase 2a, a ubiquitin-specific protease that prevents degradation of FASN by 

proteasomes and hence stabilizes FASN to increase lipogenesis (55).

Coxsackievirus B3 (CVB3) (Class IV) infection also induces the expression of FASN in 

human lymphoblast cells (Raji cells) by p38 mitogen-activated protein kinase (MAPK). 

Inhibitors of MAPK and FASN are shown to reduce CVB3 replication in these cells as 

well (56). Respiratory syncytial virus (RSV) (Class V)-infected human lung epithelial cells 

(A549) were also found to induce FASN. TVB-3166, an FASN inhibitor, reduces the viral 

replication of RSV-A and RSV-B and lowers their infectivity in A549 cells as well as in 

RSV-A-infected mice. The cellular signaling leading to FASN induction in RSV infection is 

still not explicit (57).

HCV utilizes saturated and monounsaturated fatty acids for their replication. Inhibition of 

fatty acid synthesis by inhibiting ACC and FASN results in a decrease in HCV replication 

in Huh-7 cells. However, LXR-SREBP-1 signaling was not found to play any role in the 

replication of HCV. Geranylgeranylation, a universal lipid post-translational modification, is 

also involved in this interaction because its inhibition also suppresses viral replication (58).

As an exception, porcine reproductive and respiratory syndrome virus (PRRSV) (Class IV) 

increases AMPK phosphorylation, and that increases the phosphorylation of ACC1, making 

it inactive in PRRSV receptor CD163 stably expressed kidney cell lines. However, inhibition 

of FASN inhibits PRRSV replication, which indicates that PRRSV uses fatty acids for its 
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replication, but the cellular signaling pathway to increase fatty acid synthesis is different 

from the AMPK-ACC pathway (59).

4.2. Viruses Alter Lipid Droplet Formation

LDs are ubiquitous organelles that contain neutral lipids within their core and are 

surrounded by a phospholipid monolayer (60). They can release TAGs through lipolysis 

upon activation, typically during cell growth or nutrient depreciation (61). Critical regulators 

of LD formation include diacylglycerol O-acyltransferase 1 and 2 (DGAT1 and DGAT2). 

These enzymes bind to the ER membrane and regulate TAG synthesis and packaging within 

the phospholipid bilayer to form LD budding, which is then released into the cytoplasm 

(62). LDs can be formed through the activation of SREBPs. In particular, SREBP-1 

activation leads to the production of lipogenic enzymes and produces perilipin (PLIN), an 

LD membrane surface protein associated with the production of LDs (63) (Figure 3).

Viruses alter LD formation by taking advantage of the LD components including 

triglycerides, cholesterol esters, and the highly dynamic membrane trafficking system in 

order to enhance their replication cycle (64). For example, in SARS-CoV-2-infected primary 

human monocytes, human lung epithelial cell lines (A549), and human lung microvascular 

endothelial cell lines, there is an increase of LDs in the cytoplasm due to upregulation of 

SREBP-1 and peroxisome proliferator-activated receptor-γ. These two transcription factors 

play a critical role in upregulating lipogenic enzymes and fatty acid transporters (CD36), 

respectively. SARS-CoV-2 also modulates DGAT-1, a key regulator in TAG synthesis and 

LD formation to increase the protein trafficking to LDs that increase lipid biogenesis. 

Inhibition of DGAT-1 by A922500 reduces the SARS-COV-2-induced cell death and 

inflammation in primary monocytes (65).

HCV replicates and produces structural and nonstructural (NS) proteins. In HCV-infected 

human liver cancer–derived Huh7 cells, a portion of NS5A, a key regulator of the HCV 

life cycle (66), localizes to LDs. NS5A carries newly synthesized viral RNA to LDs for 

virion assembly through protein-protein interactions with tail-interacting protein-47 (TIP47). 

TIP47 binds to the LD surface and is critical for LD regulation. TIP47 interacts with 

NS5A on LDs and NS5A-containing replication complexes at the ER membrane, thus 

increasing HCV RNA replication by making LD accessible for either the creation of the 

viral membrane or integration of LDs into the membrane (67). Another virus utilizing 

host machinery and LDs for viral replication is ZIKV, which interrupts cell signaling 

networks by expressing different structural and NS viral proteins, which exhibit distinctive 

subcellular distribution in host cells. The structural protein capsid was found to localize in 

nucleoli, Golgi apparatus, and LD of host cells, and NS4B has been known to alter the 

lipid composition of infected cells in humans, mainly through sphingolipids; however, the 

function associated with the interaction of different organelles still needs to be determined 

(68). Dengue virus (DENV) also takes advantage of LDs during viral assembly. In DENV-

infected baby hamster kidney (BHK) cells, the hydrophobic a2 helix of the viral capsid 

protein attaches to the phospholipid monolayer of LD, which is critical for virus replication 

(69). Utilizing a similar approach as HCV, West Nile virus (WNV) capsid proteins interact 

with LDs as seen in BHK-21 cells. The most probable mechanism for this connection is 
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the association of WNV capsid protein binding with PLIN3, a protein essential for the 

mobilization of fat that is essential for WNV replication (70). Rotaviruses also utilize 

LDs through their NS proteins NSP2 and NSP5 and their structural proteins VP1, VP2, 

VP6, and perilipin membrane surface proteins. In rotavirus-infected embryonic Rhesus 

monkey kidney tissue cells (MA-104), NSP5 localizes around LDs. Rotaviruses interact 

with PLIN1 and PLIN2 to recruit LD components to the viral site of replication and the 

viroplasms (71). Influenza viruses utilize LDs through ER stress and autophagy. Cells with 

ER stress accumulate lipids, and influenza virus utilizes this to generate viral replication 

through the host machinery. Influenza virus downregulates lipid-associated and -modulating 

proteins ω−3 poly-unsaturated fatty acid-derived lipid mediator protectin D1 and interferon 

γ inducible (viperin) to established infection. Increases in LDs induced ER stress and 

reactive oxygen species (ROS) in host cells. Inhibition of LD formation using atorvastatin 

in Madin-Darby canine kidney cells reduces influenza virus replication by 90% to 95% as 

compared to ER stress, autophagy, and ROS inhibitors. This indicates that targeting the LD 

machinery can be useful in generation of potential therapeutics for viral infection (72).

4.3. Viral Manipulation of Beta-Oxidation

Fatty acid oxidation is the process of breaking down fatty acids into acetyl-CoA and 

eventually into ATP (Figure 3). Long-chain fatty acids must be taken to the mitochondria 

or into peroxisomes to be oxidized. The critical enzyme on the outer mitochondrial 

membrane responsible for transporting fatty acids into the mitochondria is carnitine 

palmitoyltransferase I (CPT I). ATP is generated using fatty acids by the process of beta-

oxidation, which happens within mitochondria and peroxisomes (41).

Because beta-oxidation is a significant energy source for various systems in times of high 

demand, viruses have developed methods to override critical cell signaling pathways to 

upregulate/downregulate beta-oxidation. Viruses downregulate beta-oxidation, leading to a 

surplus of free fatty acids in the cytoplasm for viral replication (73). However, viruses 

may upregulate beta-oxidation to increase ATP production for efficient viral replication. 

Influenza virus-infected human patient fibroblasts display a significant increase in heat 

stress, which leads to the downregulation of CPT II, the inner mitochondrial transferase 

responsible for bringing free fatty acids into the mitochondria (74). SARS-CoV-2 has been 

shown to impair fatty acid oxidation in alveolar epithelial cells isolated from mouse models 

of acute pulmonary endotoxemia–induced damage. In these infected cells, there is a decrease 

in the expression of PPARG1c and CPT1a, which regulate mitochondrial function and CPT 

formation, respectively (75). HCV NS5A in Huh7 cells interacts with the mitochondrial 

trifunctional protein (MTP). MTP is involved in hydration, oxidation, and thiolysis, the 

final three steps of beta-oxidation. NS5A is hypothesized to interact with MTP through 

protein-protein interactions, leading to the stability of MTP and downregulation of beta-

oxidation (76). HCMV also blocks the function of the MTP through HCMV-produced viral 

mitochondria-localized inhibitor of apoptosis (vMIA) protein, which binds to viperin. vMIA 

translocates viperin to the mitochondria, where it interacts with MTP and downregulates 

beta-oxidation in HCMV-infected human fibroblasts (77). One of the NS proteins of 

the Japanese encephalitis virus (JEV), NS5, also interacts with the HADH trifunctional 

multienzyme complex subunit alpha and subunit beta, two MTP proteins, to block beta-
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oxidation in JEV-infected human alveolar basal epithelial cells (A549). NS5-M19A mutation 

was not able to block beta-oxidation and reduce inflammation in host cells (78).

However, DENV upregulates beta-oxidation. Inhibition of beta-oxidation using Etomoxir 

(CPT1 inhibitor) decreases viral production, indicating the importance of beta-oxidation in 

viral replication. However, the mechanism of DENV-induced beta-oxidation remains unclear 

(79). Vaccinia virus was also shown to upregulate beta-oxidation in green monkey BSC40 

cells to manipulate cells to produce more ATP for viral replication and protein synthesis 

(80).

5. A NOVEL MECHANISM TO MANIPULATE HOST METABOLISM: 

DISCOVERY OF VIRAL INSULIN AND INSULIN-LIKE GROWTH FACTOR-

LIKE PEPTIDES

In the previous sections, we reviewed the mechanisms in which viruses affect host 

metabolism for their benefits. However, we recently discovered a totally novel mechanism 

in which viruses directly mimic host hormones to alter metabolic pathways. One of these 

strategies is based on viral mimicry, in which viruses produce peptides similar to host factors 

that have crucial roles in regulating the immune response or cellular growth (81–83). As 

we recently reviewed (84), viral mimicry can occur by divergent or convergent evolution. 

In divergent evolution, a gene is transferred from a host genome to a viral genome (85), 

and the viral mimic has significant similarity to the host protein. However, in convergent 

evolution, random genetic mutations of viral sequences create factors that mimic a host 

protein’s function (86, 87). These viral mimics have limited sequence similarity with the 

host proteins; however, they have functional similarities.

Peptide hormones play a central role in regulating metabolism, growth, and development. 

In our first study, we hypothesized that viruses mimic mammalian peptide hormones to 

regulate host functions. To test this, we performed a comprehensive bioinformatics search 

in all available viral genomes. Using a local BlastP library, we searched for the presence 

of peptide sequences with high sequence similarity to 62 human peptide hormones and 

regulatory proteins (88). We identified viral sequences that showed significant similarity 

with 16 different human peptide hormones, including insulin, insulin-like growth factors 1 

and 2 (IGF-1 and IGF-2), tumor necrosis factor, endothelin-1 and −2, interleukin 6, and 

adiponectin (88, 89). Until we discovered viral hormones, viral mimicry examples were 

limited to immunomodulatory proteins and growth factors (90–95). The discovery of viral 

hormones opened a new avenue in understanding host-pathogen interactions and indicated a 

new mechanism of viral pathogenesis.

Because of the significant sequence similarity, we focused on the characterization of viral 

insulin/IGF-like peptides (VILPs). VILPs were identified in four viruses that belong to the 

Iridoviridae family. These viruses were initially isolated from fish (92, 96–98). However, 

we and others identified the sequences of these viruses in human enteric virome and 

plasma samples (87, 99–103). Amino acid sequences of VILPs are 30–50% identical to 

human insulin/IGF-1. Notably, all six critical cysteine residues that form intrachain and 
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interchain disulfide bonds in the insulin/IGF tertiary structures were conserved among the 

four VILPs. Insulin is a double-chain (dc) peptide (consisting of an A-chain and B-chain that 

are linked together by disulfide bonds), and IGFs are single-chain (sc) peptides (containing 

an additional C domain that connects the A- and B-chains). Thus, we chemically synthesized 

the VILPs in both their insulin-like (i.e., dc) and IGF-like (i.e., sc) forms. In our first study 

(88), we characterized sc forms of grouper iridovirus (GIV), Singapore grouper iridovirus 

(SGIV), and lymphocystis disease virus-1 (LCDV-1) VILPs. We showed that scVILPs 

are weak ligands of human insulin receptor (IR) but potent ligands of IGF-1 receptor 

(IGF1R) in vitro. VILPs can bind to human insulin and IGF1Rs and stimulate downstream 

insulin/IGF signaling, both PI3K/AKT and Ras/MAPK pathways. Furthermore, scVILPs 

can also increase glucose uptake in adipocytes and stimulate the proliferation of fibroblasts. 

An insulin tolerance test demonstrated that LCDV-1 scVILP could significantly lower the 

blood glucose of mice in high concentrations. These results taken together demonstrated that 

VILPs are active members of the insulin superfamily.

In our recent study, we focused on the characterization of chemically synthesized dc 

versions of GIV, SGIV, and LCDV-1 VILPs (104). We showed that GIV and SGIV dcVILPs 

bind and stimulate both human IR and IGF-1R in vitro and in vivo. To better understand in 

vivo characteristics of the VILPs, we designed an in vivo infusion experiment. We showed 

that GIV dcVILP stimulated significantly higher (approximately two fold) glucose uptake in 

white adipose tissue (WAT) compared to insulin. However, no differences were observed in 

the other insulin-sensitive tissues (skeletal muscle, brown adipose tissue, and heart) (104). 

This effect in WAT was associated with higher AKT phosphorylation and GLUT4 gene 

expression upon GIV dcVILP stimulation compared to insulin. This result suggests that GIV 

dcVILP has some characteristics that specifically target WAT.

In addition to these agonistic effects, we observed a unique feature of LCDV-1 scVILP. 

We showed that LCDV-1 scVILP has antagonistic properties on IGF-1R (105), as the 

activation of the IGF-1R by IGF-1 is strongly repressed by LCDV-1 scVILP. This effect 

is IGF-1R specific and does not affect IR. Functionally, we showed that LCDV-1 scVILP 

inhibits IGF-1-stimulated migration of cervical cancer cells. These results taken together 

demonstrated that VILPs are new members of the insulin superfamily with some unique 

characteristics that are potentially advantageous for the viral infection or replication cycle. 

Characterization of VILPs as novel ligands of insulin and IGF1Rs has already improved 

our knowledge of insulin/IGF-1 action; however, their role in host-pathogen interactions 

is not known. The only report of VILP activity in host-pathogen interactions is the 

overexpression of SGIV VILP in grouper cells (106). The researchers showed that SGIV 

VILP overexpression promoted grouper embryonic cells’ growth by stimulating G1/S phase 

transition. It was also proven that SGIV VILP facilitated SGIV replication in grouper cells.

We anticipate that VILP-carrying viruses target insulin/IGF-1 signaling to manipulate the 

glucose metabolism and cell cycle upon infection to promote their replication (Figure 4). 

Furthermore, insulin and IGF-1 are mitogenic (107, 108) and antiapoptotic factors (109, 

110), potentially helping the virus replicate easily while protecting the cell to initiate 

apoptosis. We still do not know whether mammalian and human cells are susceptible 

(permit entry of the virus) and permissive (support reproduction of the virus) for VILP-
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carrying viruses. Although members of the Iridoviridae family are known to infect a diverse 

array of cold-blooded vertebrate hosts, there are few studies examining their potential to 

infect mammalian cells. GIV and SGIV belong to the Ranavirus genus of the Iridoviridae 
family, and some related ranaviruses can enter mammalian cells (111–115). For example, 

invertebrate iridescent virus 6 was shown to infect murine fibroblast cells and stimulate an 

antiviral innate immune response through the RIG-I-like receptor pathway in mammalian 

cells (113). In addition, frog virus 3 (FV3), another ranavirus like GIV and SGIV, was 

able to express some early genes in Chinese hamster ovary cells and triggered cell death 

(115). Moreover, FV3 infects rat Kupffer cells, and FV3 viral particles were also observed 

in phagocytic vacuoles and endocytic compartments (111). Ranavirus researchers suggest 

that macrophages are the integral targets for ranavirus infections (111–114), indicating a 

universal underlying mechanism governing the ranavirus entry to cells from evolutionarily 

distant organisms (112). If VILP-carrying viruses can infect human cells, they might 

be linked to human diseases, including type 1 diabetes based on molecular mimicry 

mechanism, type 2 diabetes based on insulin signaling impairment, and cancer with VILP’s 

mitogenic effects (84).

It is important to note that our knowledge of VILP-carrying viruses is quite limited. There 

are only 10,462 viral genomes available on the NCBI databases (NIH, as of February 10, 

2021), while a minimum of 320,000 mammalian viruses are predicted to exist, and most 

of them are waiting for discovery (116). We identified four VILP-carrying viruses in the 

available viral genomes and expect to make future discovery of tens of other viral species 

that carry VILPs.

6. CONCLUSION AND FUTURE DIRECTIONS

Viral regulation of host metabolism is an essential component of viral replication and 

survival. Because the number of completed studies is quite limited in this field, it is not 

possible to make a concrete statement whether some specific classes of viruses are targeting 

specific pathways. As explained in detail, the viruses target various signaling pathways 

including P13K/AMPK/mTOR signaling to manipulate glucose metabolism independent of 

viral classes and their hosts. Viruses also activate transcription factors such as Myc, SREBP, 

and HIF-1α to induce its replication and survival in host cells. Inhibition of these signaling 

pathways and several metabolic enzymes was shown to decrease viral replication in vitro 

or in vivo. Furthermore, the discovery and characterization of VILPs open a new avenue 

in host-pathogen interactions in which viruses have the ability to mimic the hormones that 

directly regulate host metabolism. A better understanding of viral mechanisms targeting host 

metabolism will help us to better understand viral pathogenesis and has the potential to 

open a new avenue in designing novel antiviral therapies. Our knowledge of these signaling 

pathways altered by viruses and their effects on the host is still very limited and needs to be 

explored further.
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Refer to Web version on PubMed Central for supplementary material.

Girdhar et al. Page 12

Annu Rev Virol. Author manuscript; available in PMC 2022 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



LITERATURE CITED

1. Pan D, Nolan J, Williams KH, Robbins MJ, Weber KA. 2017. Abundance and distribution of 
microbial cells and viruses in an alluvial aquifer. Front. Microbiol. 8:1199 [PubMed: 28744257] 

2. Sanchez EL, Lagunoff M. 2015. Viral activation of cellular metabolism. Virology 479–480:609–18

3. Mayer KA, Stockl J, Zlabinger GJ, Gualdoni GA. 2019. Hijacking the supplies: metabolism as a 
novel facet of virus-host interaction. Front. Immunol. 10:1533 [PubMed: 31333664] 

4. Thaker SK, Ch’ng J, Christofk HR. 2019. Viral hijacking of cellular metabolism. BMC Biol. 17:59 
[PubMed: 31319842] 

5. Ketter E, Randall G. 2019. Virus impact on lipids and membranes. Annu. Rev. Virol. 6:319–40 
[PubMed: 31567065] 

6. Fothergill-Gilmore LA, Michels PA. 1993. Evolution of glycolysis. Prog. Biophys. Mol. Biol. 
59:105–235 [PubMed: 8426905] 

7. Fernie AR, Carrari F, Sweetlove LJ. 2004. Respiratory metabolism: glycolysis, the TCA cycle and 
mitochondrial electron transport. Curr. Opin. Plant Biol. 7:254–61 [PubMed: 15134745] 

8. Lin SC, Hardie DG. 2018. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 
27:299–313 [PubMed: 29153408] 

9. Hung YP, Teragawa C, Kosaisawe N, Gillies TE, Pargett M, et al. 2017. Akt regulation of glycolysis 
mediates bioenergetic stability in epithelial cells. eLife 6:e27293 [PubMed: 29239720] 

10. Liberti MV, Locasale JW. 2016. The Warburg effect: How does it benefit cancer cells? Trends 
Biochem. Sci. 41:211–18 [PubMed: 26778478] 

11. He ST, Lee DY, Tung CY, Li CY, Wang HC. 2019. Glutamine metabolism in both the oxidative 
and reductive directions is triggered in shrimp immune cells (hemocytes) at the WSSV genome 
replication stage to benefit virus replication. Front. Immunol. 10:2102 [PubMed: 31555294] 

12. Zwerschke W, Mazurek S, Massimi P, Banks L, Eigenbrodt E, Jansen-Durr P. 1999. Modulation 
of type M2 pyruvate kinase activity by the human papillomavirus type 16 E7 oncoprotein. PNAS 
96:1291–96 [PubMed: 9990017] 

13. Munger J, Bajad SU, Coller HA, Shenk T, Rabinowitz JD. 2006. Dynamics of the cellular 
metabolome during human cytomegalovirus infection. PLOS Pathog. 2:e132 [PubMed: 17173481] 

14. Delgado T, Carroll PA, Punjabi AS, Margineantu D, Hockenbery DM, Lagunoff M. 2010. 
Induction of the Warburg effect by Kaposi’s sarcoma herpesvirus is required for the maintenance 
of latently infected endothelial cells. PNAS 107:10696–701 [PubMed: 20498071] 

15. Diamond DL, Syder AJ, Jacobs JM, Sorensen CM, Walters KA, et al. 2010. Temporal proteome 
and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular 
metabolism and bioenergetics. PLOS Pathog. 6:e1000719 [PubMed: 20062526] 

16. Ajaz S, McPhail MJ, Singh KK, Mujib S, Trovato FM, et al. 2021. Mitochondrial metabolic 
manipulation by SARS-CoV-2 in peripheral blood mononuclear cells of patients with COVID-19. 
Am. J. Physiol. Cell Physiol. 320:C57–65 [PubMed: 33151090] 

17. Guo X, Wu S, Li N, Lin Q, Liu L, et al. 2019. Accelerated metabolite levels of aerobic glycolysis 
and the pentose phosphate pathway are required for efficient replication of infectious spleen and 
kidney necrosis virus in Chinese perch brain cells. Biomolecules 9:440

18. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, et al. 2008. AMPK 
phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30:214–26 [PubMed: 
18439900] 

19. Yuan HX, Xiong Y, Guan KL. 2013. Nutrient sensing, metabolism, and cell growth control. Mol. 
Cell 49:379–87 [PubMed: 23395268] 

20. Jiang S, Wang Y, Luo L, Shi F, Zou J, et al. 2019. AMP-activated protein kinase regulates cancer 
cell growth and metabolism via nuclear and mitochondria events. J. Cell. Mol. Med. 23:3951–61 
[PubMed: 30993829] 

21. Lyu X, Wang J, Guo X, Wu G, Jiao Y, et al. 2018. EBV-miR-BART1–5P activates AMPK/
mTOR/HIF1 pathway via a PTEN independent manner to promote glycolysis and angiogenesis in 
nasopharyngeal carcinoma. PLOS Pathog. 14:e1007484 [PubMed: 30557400] 

Girdhar et al. Page 13

Annu Rev Virol. Author manuscript; available in PMC 2022 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



22. Singh S, Singh PK, Suhail H, Arumugaswami V, Pellett PE, et al. 2020. AMP-activated protein 
kinase restricts Zika virus replication in endothelial cells by potentiating innate antiviral responses 
and inhibiting glycolysis. J. Immunol. 204:1810–24 [PubMed: 32086387] 

23. Thai M, Graham NA, Braas D, Nehil M, Komisopoulou E, et al. 2014. Adenovirus E4ORF1-
induced MYC activation promotes host cell anabolic glucose metabolism and virus replication. 
Cell Metab. 19:694–701 [PubMed: 24703700] 

24. Passalacqua KD, Lu J, Goodfellow I, Kolawole AO, Arche JR, et al. 2019. Glycolysis is an 
intrinsic factor for optimal replication of a norovirus. mBio 10(2):e02175–18 [PubMed: 30862747] 

25. Chi PI, Huang WR, Chiu HC, Li JY, Nielsen BL, Liu HJ. 2018. Avian reovirus σA-modulated 
suppression of lactate dehydrogenase and upregulation of glutaminolysis and the mTOC1/eIF4E/
HIF-1α pathway to enhance glycolysis and the TCA cycle for virus replication. Cell. Microbiol. 
20:e12946 [PubMed: 30156372] 

26. Chi PI, Huang WR, Lai IH, Cheng CY, Liu HJ. 2013. The p17 nonstructural protein of avian 
reovirus triggers autophagy enhancing virus replication via activation of phosphatase and tensin 
deleted on chromosome 10 (PTEN) and AMP-activated protein kinase (AMPK), as well as 
dsRNA-dependent protein kinase (PKR)/eIF2α signaling pathways. J. Biol. Chem. 288:3571–84 
[PubMed: 23233667] 

27. Navale AM, Paranjape AN. 2016. Glucose transporters: physiological and pathological roles. 
Biophys. Rev. 8:5–9

28. Loisel-Meyer S, Swainson L, Craveiro M, Oburoglu L, Mongellaz C, et al. 2012. Glut1-mediated 
glucose transport regulates HIV infection. PNAS 109:2549–54 [PubMed: 22308487] 

29. Sorbara LR, Maldarelli F, Chamoun G, Schilling B, Chokekijcahi S, et al. 1996. Human 
immunodeficiency virus type 1 infection of H9 cells induces increased glucose transporter 
expression. J. Virol. 70:7275–79 [PubMed: 8794382] 

30. Gualdoni GA, Mayer KA, Kapsch AM, Kreuzberg K, Puck A, et al. 2018. Rhinovirus induces an 
anabolic reprogramming in host cell metabolism essential for viral replication. PNAS 115:E7158–
65 [PubMed: 29987044] 

31. Chaudhary N, Gonzalez E, Chang SH, Geng F, Rafii S, et al. 2016. Adenovirus protein E4-
ORF1 activation of PI3 kinase reveals differential regulation of downstream effector pathways in 
adipocytes. Cell Rep. 17:3305–18 [PubMed: 28009298] 

32. Heinz DW, Baase WA, Matthews BW. 1992. Folding and function of a T4 lysozyme containing 
10 consecutive alanines illustrate the redundancy of information in an amino acid sequence. PNAS 
89:3751–55 [PubMed: 1570293] 

33. Dai L, Hu WW, Xia L, Xia M, Yang Q. 2016. Transmissible gastroenteritis virus infection 
enhances SGLT1 and GLUT2 expression to increase glucose uptake. PLOS ONE 11:e0165585 
[PubMed: 27851758] 

34. Dyer A, Schoeps B, Frost S, Jakeman P, Scott EM, et al. 2019. Antagonism of glycolysis and 
reductive carboxylation of glutamine potentiates activity of oncolytic adenoviruses in cancer cells. 
Cancer Res. 79:331–45 [PubMed: 30487139] 

35. Thai M, Thaker SK, Feng J, Du Y, Hu H, et al. 2015. MYC-induced reprogramming of glutamine 
catabolism supports optimal virus replication. Nat. Commun. 6:8873 [PubMed: 26561297] 

36. Sanchez EL, Pulliam TH, Dimaio TA, Thalhofer AB, Delgado T, Lagun off M. 2017. Glycolysis, 
glutaminolysis, and fatty acid synthesis are required for distinct stages of Kaposi’s sarcoma-
associated herpesvirus lytic replication. J. Virol. 91(10):e02237–16 [PubMed: 28275189] 

37. Sanchez EL, Carroll PA, Thalhofer AB, Lagunoff M. 2015. Latent KSHV infected endothelial 
cells are glutamine addicted and require glutaminolysis for survival. PLOS Pathog. 11:e1005052 
[PubMed: 26197457] 

38. Rosado-Sanchez I, Rodriguez-Gallego E, Peraire J, Vilades C, Herrero P, et al. 2019. 
Glutaminolysis and lipoproteins are key factors in late immune recovery in successfully treated 
HIV-infected patients. Clin. Sci. (Lond.) 133:997–1010 [PubMed: 30952809] 

39. Ye X, Zhou Q, Matsumoto Y, Moriyama M, Kageyama S, et al. 2016. Inhibition of glutaminolysis 
inhibits cell growth via down-regulating mTORC1 signaling in lung squamous cell carcinoma. 
Anticancer Res. 36:6021–29 [PubMed: 27793929] 

Girdhar et al. Page 14

Annu Rev Virol. Author manuscript; available in PMC 2022 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



40. Wakil SJ, Abu-Elheiga LA. 2009. Fatty acid metabolism: target for metabolic syndrome. J. Lipid 
Res. 50(Suppl.):S138–43 [PubMed: 19047759] 

41. Hiltunen JK, Qin Y. 2000. β-Oxidation—strategies for the metabolism of a wide variety of 
acyl-CoA esters. Biochim. Biophys. Acta 1484:117–28 [PubMed: 10760462] 

42. Wolfe RR. 1998. Metabolic interactions between glucose and fatty acids in humans. Am. J. Clin. 
Nutr. 67:519S–26S [PubMed: 9497163] 

43. Lee G, Zheng Y, Cho S, Jang C, England C, et al. 2017. Post-transcriptional regulation of de novo 
lipogenesis by mTORC1-S6K1-SRPK2 signaling. Cell 171:1545–58.e18 [PubMed: 29153836] 

44. Shimano H, Sato R. 2017. SREBP-regulated lipid metabolism: convergent physiology—divergent 
pathophysiology. Nat. Rev. Endocrinol. 13:710–30 [PubMed: 28849786] 

45. Madison BB. 2016. Srebp2: a master regulator of sterol and fatty acid synthesis. J. Lipid Res. 
57:333–35 [PubMed: 26798145] 

46. Sakai J, Nohturfft A, Goldstein JL, Brown MS. 1998. Cleavage of sterol regulatory element-
binding proteins (SREBPs) at site-1 requires interaction with SREBP cleavage-activating protein: 
evidence from in vivo competition studies. J. Biol. Chem. 273:5785–93 [PubMed: 9488713] 

47. Ye J, DeBose-Boyd RA. 2011. Regulation of cholesterol and fatty acid synthesis. Cold Spring 
Harb. Perspect. Biol. 3:a004754 [PubMed: 21504873] 

48. Chen G, Zhang X. 2010. New insights into S2P signaling cascades: regulation, variation, and 
conservation. Protein Sci. 19:2015–30 [PubMed: 20836086] 

49. Goldstein JL, DeBose-Boyd RA, Brown MS. 2006. Protein sensors for membrane sterols. Cell 
124(1):35–46 [PubMed: 16413480] 

50. Li S, Ogawa W, Emi A, Hayashi K, Senga Y, et al. 2011. Role of S6K1 in regulation of SREBP1c 
expression in the liver. Biochem. Biophys. Res. Commun. 412:197–202 [PubMed: 21806970] 

51. Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, et al. 2011. mTOR complex 
1 regulates lipin 1 localization to control the SREBP pathway. Cell 146:408–20 [PubMed: 
21816276] 

52. Yu Y, Maguire TG, Alwine JC. 2012. Human cytomegalovirus infection induces adipocyte-like 
lipogenesis through activation of sterol regulatory element binding protein 1. J. Virol. 86:2942–49 
[PubMed: 22258239] 

53. Spencer CM, Schafer XL, Moorman NJ, Munger J. 2011. Human cytomegalovirus induces the 
activity and expression of acetyl-coenzyme A carboxylase, a fatty acid biosynthetic enzyme whose 
inhibition attenuates viral replication. J. Virol. 85:5814–24 [PubMed: 21471234] 

54. Yuan S, Chu H, Chan JF, Ye ZW, Wen L, et al. 2019. SREBP-dependent lipidomic reprogramming 
as a broad-spectrum antiviral target. Nat. Commun. 10:120 [PubMed: 30631056] 

55. Hulse M, Johnson SM, Boyle S, Caruso LB, Tempera I. 2020. Epstein-Barr virus-encoded latent 
membrane protein 1 and B-cell growth transformation induces lipogenesis through fatty acid 
synthase. J. Virol. 95(4):e01857–20

56. Wilsky S, Sobotta K, Wiesener N, Pilas J, Althof N, et al. 2012. Inhibition of fatty acid synthase 
by amentoflavone reduces coxsackievirus B3 replication. Arch. Virol. 157:259–69 [PubMed: 
22075919] 

57. Ohol YM, Wang Z, Kemble G, Duke G. 2015. Direct inhibition of cellular fatty acid synthase 
impairs replication of respiratory syncytial virus and other respiratory viruses. PLOS ONE 
10:e0144648 [PubMed: 26659560] 

58. Kapadia SB, Chisari FV. 2005. Hepatitis C virus RNA replication is regulated by host 
geranylgeranylation and fatty acids. PNAS 102:2561–66 [PubMed: 15699349] 

59. Long S, Zhou Y, Bai D, Hao W, Zheng B, et al. 2019. Fatty acids regulate porcine reproductive and 
respiratory syndrome virus infection via the AMPK-ACC1 signaling pathway. Viruses 11:1145

60. Fujimoto T, Parton RG. 2011. Not just fat: the structure and function of the lipid droplet. Cold 
Spring Harb. Perspect. Biol. 3:a004838 [PubMed: 21421923] 

61. Olzmann JA, Carvalho P. 2019. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 
20:137–55 [PubMed: 30523332] 

62. Walther TC, Chung J, Farese RV Jr. 2017. Lipid droplet biogenesis. Annu. Rev. Cell Dev. Biol. 
33:491–510 [PubMed: 28793795] 

Girdhar et al. Page 15

Annu Rev Virol. Author manuscript; available in PMC 2022 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



63. Takahashi Y, Shinoda A, Furuya N, Harada E, Arimura N, et al. 2013. Perilipin-mediated lipid 
droplet formation in adipocytes promotes sterol regulatory element-binding protein-1 processing 
and triacylglyceride accumulation. PLOS ONE 8:e64605 [PubMed: 23734208] 

64. Herker E, Ott M. 2012. Emerging role of lipid droplets in host/pathogen interactions. J. Biol. 
Chem. 287:2280–87 [PubMed: 22090026] 

65. Dias SSG, Soares VC, Ferreira AC, Sacramento CQ, Fintelman-Rodrigues N, et al. 2020. Lipid 
droplets fuel SARS-CoV-2 replication and production of inflammatory mediators. PLOS Pathog. 
16:e1009127 [PubMed: 33326472] 

66. Jassey A, Liu CH, Changou CA, Richardson CD, Hsu HY, Lin LT. 2019. Hepatitis C virus 
non-structural protein 5A (NS5A) disrupts mitochondrial dynamics and induces mitophagy. Cells 
8(4):290

67. Vogt DA, Camus G, Herker E, Webster BR, Tsou CL, et al. 2013. Lipid droplet-binding protein 
TIP47 regulates hepatitis C virus RNA replication through interaction with the viral NS5A protein. 
PLOS Pathog. 9:e1003302 [PubMed: 23593007] 

68. Hou W, Cruz-Cosme R, Armstrong N, Obwolo LA, Wen F, et al. 2017. Molecular cloning and 
characterization of the genes encoding the proteins of Zika virus. Gene 628:117–28 [PubMed: 
28720531] 

69. Samsa MM, Mondotte JA, Iglesias NG, Assuncao-Miranda I, Barbosa-Lima G, et al. 2009. Dengue 
virus capsid protein usurps lipid droplets for viral particle formation. PLOS Pathog. 5:e1000632 
[PubMed: 19851456] 

70. Martins AS, Carvalho FA, Faustino AF, Martins IC, Santos NC. 2019. West Nile virus capsid 
protein interacts with biologically relevant host lipid systems. Front. Cell. Infect. Microbiol. 9:8 
[PubMed: 30788291] 

71. Cheung W, Gill M, Esposito A, Kaminski CF, Courousse N, et al. 2010. Rotaviruses associate with 
cellular lipid droplet components to replicate in viroplasms, and compounds disrupting or blocking 
lipid droplets inhibit viroplasm formation and viral replication. J. Virol. 84:6782–98 [PubMed: 
20335253] 

72. Episcopio D, Aminov S, Benjamin S, Germain G, Datan E, et al. 2019. Atorvastatin restricts the 
ability of influenza virus to generate lipid droplets and severely suppresses the replication of the 
virus. FASEB J. 33:9516–25 [PubMed: 31125254] 

73. Tanner LB, Chng C, Guan XL, Lei Z, Rozen SG, Wenk MR. 2014. Lipidomics identifies a 
requirement for peroxisomal function during influenza virus replication. J. Lipid Res. 55:1357–65 
[PubMed: 24868094] 

74. Keshavarz M, Solaymani-Mohammadi F, Namdari H, Arjeini Y, Mousavi MJ, Rezaei F. 2020. 
Metabolic host response and therapeutic approaches to influenza infection. Cell. Mol. Biol. Lett. 
25:15 [PubMed: 32161622] 

75. Ayres JS. 2020. A metabolic handbook for the COVID-19 pandemic. Nat. Metab. 2:572–85 
[PubMed: 32694793] 

76. Amako Y, Munakata T, Kohara M, Siddiqui A, Peers C, Harris M. 2015. Hepatitis C virus 
attenuates mitochondrial lipid β-oxidation by downregulating mitochondrial trifunctional-protein 
expression. J. Virol. 89:4092–101 [PubMed: 25673715] 

77. Seo JY, Cresswell P. 2013. Viperin regulates cellular lipid metabolism during human 
cytomegalovirus infection. PLOS Pathog. 9:e1003497 [PubMed: 23935494] 

78. Kao YT, Chang BL, Liang JJ, Tsai HJ, Lee YL, et al. 2015. Japanese encephalitis virus 
nonstructural protein NS5 interacts with mitochondrial trifunctional protein and impairs fatty acid 
β-oxidation. PLOS Pathog. 11:e1004750 [PubMed: 25816318] 

79. Heaton NS, Randall G. 2010. Dengue virus-induced autophagy regulates lipid metabolism. Cell 
Host Microbe 8:422–32 [PubMed: 21075353] 

80. Greseth MD, Traktman P. 2014. De novo fatty acid biosynthesis contributes significantly to 
establishment of a bioenergetically favorable environment for vaccinia virus infection. PLOS 
Pathog. 10:e1004021 [PubMed: 24651651] 

81. Alcami A 2003. Viral mimicry of cytokines, chemokines and their receptors. Nat. Rev. Immunol. 
3:36–50. [PubMed: 12511874] 

Girdhar et al. Page 16

Annu Rev Virol. Author manuscript; available in PMC 2022 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



82. Amara A, Mercer J. 2015. Viral apoptotic mimicry. Nat. Rev. Microbiol. 13:461–69 [PubMed: 
26052667] 

83. Elde NC, Malik HS. 2009. The evolutionary conundrum of pathogen mimicry. Nat. Rev. Microbiol. 
7:787–97 [PubMed: 19806153] 

84. Huang Q, Kahn CR, Altindis E. 2019. Viral hormones: expanding dimensions in endocrinology. 
Endocrinology 160:2165–79 [PubMed: 31310273] 

85. Elde NC, Child SJ, Geballe AP, Malik HS. 2009. Protein kinase R reveals an evolutionary model 
for defeating viral mimicry. Nature 457:485–89 [PubMed: 19043403] 

86. Shafee TM, Lay FT, Phan TK, Anderson MA, Hulett MD. 2017. Convergent evolution of defensin 
sequence, structure and function. Cell. Mol. Life Sci. 74:663–82 [PubMed: 27557668] 

87. Sackton TB, Clark N. 2019. Convergent evolution in the genomics era: new insights and directions. 
Philos. Trans. R. Soc. B 374:20190102

88. Altindis E, Cai W, Sakaguchi M, Zhang F, GuoXiao W, et al. 2018. Viral insulin-like 
peptides activate human insulin and IGF-1 receptor signaling: a paradigm shift for host-microbe 
interactions. PNAS 115:2461–66 [PubMed: 29467286] 

89. Huang Q, Chow I-T, Brady C, Raisingani A, Li D, et al. 2020. Parabacteroides distasonis 
enhances type 1 diabetes autoimmunity via molecular mimicry. bioRxiv 2020.10.22.350801. 
10.1101/2020.10.22.350801

90. Smith CA, Davis T, Wignall JM, Din WS, Farrah T, et al. 1991. T2 open reading frame from 
the shope fibroma virus encodes a soluble form of the TNF receptor. Biochem. Biophys. Res. 
Commun. 176:335–42 [PubMed: 1850261] 

91. Benedict CA, Butrovich KD, Lurain NS, Corbeil J, Rooney I, et al. 1999. Cutting edge: a novel 
viral TNF receptor superfamily member in virulent strains of human cytomegalovirus. J. Immunol. 
162:6967–70 [PubMed: 10358135] 

92. Tidona CA, Darai G. 1997. The complete DNA sequence of lymphocystis disease virus. Virology 
230:207–16 [PubMed: 9143276] 

93. Alcamí A, Smith GL. 1992. A soluble receptor for interleukin-1β encoded by vaccinia virus: a 
novel mechanism of virus modulation of the host response to infection. Cell 71:153–67 [PubMed: 
1394428] 

94. Spriggs MK, Hruby DE, Maliszewski CR, Pickup DJ, Sims JE, et al. 1992. Vaccinia and cowpox 
viruses encode a novel secreted interleukin-1-binding protein. Cell 71:145–52 [PubMed: 1339315] 

95. Upton C, Mossman K, McFadden G. 1992. Encoding of a homolog of the IFN-gamma receptor by 
myxoma virus. Science 258:1369–72 [PubMed: 1455233] 

96. Song WJ, Qin QW, Qiu J, Huang CH, Wang F, Hew CL. 2004. Functional genomics analysis 
of Singapore grouper iridovirus: complete sequence determination and proteomic analysis. J. 
Virol.78:12576–90 [PubMed: 15507645] 

97. Tsai CT, Ting JW, Wu MH, Wu MF, IC Guo, Chang CY. 2005. Complete genome sequence of 
the grouper iridovirus and comparison of genomic organization with those of other iridoviruses. J. 
Virol. 79:2010–23 [PubMed: 15681403] 

98. Lopez-Bueno A, Mavian C, Labella AM, Castro D, Borrego JJ, et al. 2016. Concurrence of 
iridovirus, polyomavirus, and a unique member of a new group of fish papillomaviruses in 
lymphocystis disease-affected gilthead sea bream. J. Virol. 90:8768–79 [PubMed: 27440877] 

99. Kramna L, Kolarova K, Oikarinen S, Pursiheimo JP, Ilonen J, et al. 2015. Gut virome sequencing 
in children with early islet autoimmunity. Diabetes Care 38:930–33 [PubMed: 25678103] 

100. Monaco CL, Gootenberg DB, Zhao G, Handley SA, Ghebremichael MS, et al. 2016. 
Altered virome and bacterial microbiome in human immunodeficiency virus-associated acquired 
immunodeficiency syndrome. Cell Host Microbe 19:311–22 [PubMed: 26962942] 

101. Minot S, Bryson A, Chehoud C, Wu GD, Lewis JD, Bushman FD. 2013. Rapid evolution of the 
human gut virome. PNAS 110:12450–55 [PubMed: 23836644] 

102. Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, et al. 2015. Disease-specific 
alterations in the enteric virome in inflammatory bowel disease. Cell 160:447–60 [PubMed: 
25619688] 

103. Breitbart M, Haynes M, Kelley S, Angly F, Edwards RA, et al. 2008. Viral diversity and dynamics 
in an infant gut. Res. Microbiol. 159:367–73 [PubMed: 18541415] 

Girdhar et al. Page 17

Annu Rev Virol. Author manuscript; available in PMC 2022 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



104. Chrudinova M, Moreau F, Noh HL, Panikova T, Zakova L, et al. 2020. Characterization of viral 
insulins reveals white adipose tissue-specific effects in mice. Mol. Metab. 44:101121 [PubMed: 
33220491] 

105. Moreau F, Brandao B, Cederquist C, Batista TM, Dimarchi R, et al. 2020. 1725-P: viral insulins 
as agonists and antagonists on insulin/IGF-1 receptors. Diabetes 69:1725–P

106. Yan Y, Cui H, Guo C, Li J, Huang X, et al. 2013. An insulin-like growth factor homologue 
of Singapore grouper iridovirus modulates cell proliferation, apoptosis and enhances viral 
replication. J. Gen. Virol. 94:2759–70 [PubMed: 24062533] 

107. Taniguchi CM, Emanuelli B, Kahn CR. 2006. Critical nodes in signalling pathways: insights into 
insulin action. Nat. Rev. Mol. Cell Biol. 7:85–96 [PubMed: 16493415] 

108. Annunziata M, Granata R, Ghigo E. 2011. The IGF system. Acta Diabetol. 48:1–9 [PubMed: 
21042815] 

109. Kang S, Song J, Kang H, Kim S, Lee Y, Park D. 2003. Insulin can block apoptosis by decreasing 
oxidative stress via phosphatidylinositol 3-kinase- and extracellular signal-regulated protein 
kinase-dependent signaling pathways in HepG2 cells. Eur. J. Endocrinol. 148:147–55 [PubMed: 
12534368] 

110. Zhang M, Liu J, Li M, Zhang S, Lu Y, et al. 2018. Insulin-like growth factor 1/insulin-like growth 
factor 1 receptor signaling protects against cell apoptosis through the PI3K/AKT pathway in 
glioblastoma cells. Exp. Ther. Med. 16:1477–82 [PubMed: 30116397] 

111. Gendrault JL, Steffan AM, Bingen A, Kirn A. 1981. Penetration and uncoating of frog virus 3 
(FV3) in cultured rat Kupffer cells. Virology 112:375–84 [PubMed: 7257180] 

112. Grayfer L, Edholm E-S, De Jesús Andino F, Chinchar VG, Robert J. 2015. Ranavirus host 
immunity and immune evasion. In Ranaviruses: Lethal Pathogens of Ectothermic Vertebrates, ed. 
Gray MJ, Chinchar VG, pp. 141–70. Cham, Switz.: Springer

113. Ahlers LR, Bastos RG, Hiroyasu A, Goodman AG. 2016. Invertebrate iridescent virus 6, a DNA 
virus, stimulates a mammalian innate immune response through RIG-I-like receptors. PLOS 
ONE 11:e0166088 [PubMed: 27824940] 

114. Gut JP, Anton M, Bingen A, Vetter JM, Kirn A. 1981. Frog virus 3 induces a fatal hepatitis in rats. 
Lab. Invest. 45:218–28 [PubMed: 6168820] 

115. Lopez C, Aubertin AM, Tondre L, Kirn A. 1986. Thermosensitivity of frog virus 3 genome 
expression: defect in early transcription. Virology 152:365–74 [PubMed: 3523971] 

116. Anthony SJ, Epstein JH, Murray KA, Navarrete-Macias I, Zambrana-Torrelio CM, et al. 2013. 
A strategy to estimate unknown viral diversity in mammals. mBio 4:e00598–13 [PubMed: 
24003179] 

Girdhar et al. Page 18

Annu Rev Virol. Author manuscript; available in PMC 2022 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Glucose metabolism and related signaling pathways are altered by viruses. Upon 

infection, there is an increase in the rate of glycolysis that is mainly accomplished 

by an increase in GLUT activity, rate-limiting glycolytic enzyme activity, and several 

signaling proteins and transcription factors. Abbreviations: 4E-BP1, 4E-binding protein 

1; 6-PG, 6-phosphogluconate; AdV, adenovirus; AMPK, AMP-activated protein kinase; 

ARV, avian reovirus; EBV, Epstein-Barr virus; EGFR, epidermal growth factor receptor; 

eIF4E, eukaryotic translation initiation factor 4E; F1,6BP, fructose-1,6-bisphosphate; 

G6PDH, glucose-6-phosphate dehydrogenase; GLUT, glucose transporter; HBV, hepatitis 

B virus; HCMV, human cytomegalovirus; HIF, hypoxia-inducible factor; HIV, human 

immunodeficiency virus; HK, hexokinase; ISKNV, infectious spleen and kidney necrosis 

virus; KSHV, Kaposi’s sarcoma herpesvirus; LDH, lactate dehydrogenase; MNV, murine 

norovirus; mTOR, mechanistic target of rapamycin; Myc, proto-oncogene, basic helix-

loop-helix transcription factor; P, phosphate group; PDH, pyruvate dehydrogenase; PDK, 

pyruvate dehydrogenase kinase; PFK-1, phosphofructokinase 1; PI3K, phosphoinositide 
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3-kinase; PKM2, pyruvate kinase M2; Ras, rat sarcoma; RTK, receptor tyrosine kinase; RV, 

rhinovirus; TCA, tricarboxylic acid; TGEV, transmissible gastroenteritis virus; ZIKV, Zika 

virus. Created with BioRender.com.

Girdhar et al. Page 20

Annu Rev Virol. Author manuscript; available in PMC 2022 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://BioRender.com


Figure 2. 
Glutaminolysis signaling and related pathways are altered by viruses. Viruses increase 

glutaminolysis by targeting the glutamine transporter (SLC1A5/SLC7A5) and the activity 

and expression of the main enzymes GLS, GDH1, and ASAT to establish infection. Red 

type indicates main glutamine metabolism. Abbreviations: α-KG, α-ketoglutarate; AdV, 

adenovirus; ASAT, aspartate aminotransferase; GDH1, glutamate dehydrogenase 1; GLNA, 

glutamine synthetase; GLS, glutaminase; GLUT, glucose transporter; HSV-1, herpes simplex 

virus 1; KSHV, Kaposi’s sarcoma herpesvirus; Myc, proto-oncogene, basic helix-loop-helix 

transcription factor; OAA, oxaloacetate; Ras, rat sarcoma; SucCoA, succinyl-CoA; TCA, 

tricarboxylic acid; WSSV, white spot syndrome virus. Created with BioRender.com.
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Figure 3. 
Lipid metabolism and related pathways are altered by viruses. Upon infection, there is 

an increase in lipid synthesis, which is mediated by increasing the activity of main 

fatty acid synthesis enzymes such as ACC and FASN and transcription factors such as 

SREBP. Moreover, this figure also represents virus modulation of beta-oxidation and lipid 

droplet formation. Abbreviations: ACC, acetyl-CoA carboxylase; AMPK, AMP-activated 

protein kinase; COPII, coat protein complex II; COVID-19, coronavirus disease 2019; 

CPT, carnitine palmitoyltransferase; CVB3, coxsackievirus B3; DGAT, diacylglycerol 

O-acyltransferase; FACS, fatty acyl-CoA synthetase; FASN, fatty acid synthase; FATP, 

fatty acid transport protein; FFA, free fatty acid; HCMV, human cytomegalovirus; HCV, 

hepatitis C virus; JEV, Japanese encephalitis virus; LXR, liver X receptor; MERS, Middle 

East respiratory syndrome; mTOR, mechanistic target of rapamycin; MTP, mitochondrial 

trifunctional protein; OAA, oxaloacetate; P, phosphate group; PLIN, perlipin; PPARγ, 

peroxisome proliferator-activated receptor γ; Rheb, Ras homolog enriched in brain; 

RSV, respiratory syncytial virus; RTK, receptor tyrosine kinase; RV, rhinovirus; S6K1, 

S6 kinase beta-1; SCAP, SREBP cleavage-activating protein; SRE, sterol regulatory 

element; SREBP, sterol regulatory element-binding protein; TG, triacylglycerol; TIP47, 

tail-interacting protein-47; TSC, tuberous sclerosis complex; WNV, West Nile virus. Created 

with BioRender.com.
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Figure 4. 
Potential effects of VILPs on the host cell metabolism. We hypothesize that upon infection, 

VILPs will be translated and secreted by the host cells and act on a target cell in an 

autocrine (a), paracrine (b), or endocrine (c) manner. In the target cells, VILP may activate 

several aspects of insulin/IGF signaling and alter several pathways regulating carbohydrate 

metabolism, cell growth, proliferation, and apoptosis. Abbreviations: IGF, insulin-like 

growth factor; IGF1R, insulin-like growth factor 1 receptor; IR, insulin receptor; MAPK, 

mitogen-activated protein kinase; P, phosphate group; PI3K, phosphoinositide 3-kinase; Ras, 

rat sarcoma; T1D/T2D, type 1 diabetes/type 2 diabetes; VILP, viral insulin/IGF-like peptide. 

Created with BioRender.com.
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