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Assembling the genome of the African wild rice
Oryza longistaminata by exploiting synteny in
closely related Oryza species
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The African wild rice species Oryza longistaminata has several beneficial traits compared to
cultivated rice species, such as resistance to biotic stresses, clonal propagation via rhizomes,
and increased biomass production. To facilitate breeding efforts and functional genomics
studies, we de-novo assembled a high-quality, haploid-phased genome. Here, we present our
assembly, with a total length of 351 Mb, of which 92.2% was anchored onto 12 chromosomes.
We detected 34,389 genes and 38.1% of the genome consisted of repetitive content. We
validated our assembly by a comparative linkage analysis and by examining well-
characterized gene families. This genome assembly will be a useful resource to exploit
beneficial alleles found in O. longistaminata. Our results also show that it is possible to
generate a high-quality, functionally complete rice genome assembly from moderate SMRT
read coverage by exploiting synteny in a closely related Oryza species.
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cultivated rice species Oryza sativa from Asia and Oryza

glabberima from Africa. In addition, the Oryza genus
consists of at least 20 wild species with a global distribution which
contain an enormous reservoir of untapped variation!2. The
genus contains mostly diploid (2n = 24) species with occasional
tetraploids (4n = 48) and can be divided into genome types based
on their ability for interbreeding. Genome types range from
diploid AA to tetraploid KKLL, with both commercially used
species (O. sativa and O. glabberima) belonging to the AA type.
Recent advances in DNA sequencing technology have enabled the
(re-)sequencing of several commercial and wild AA genome-rice
varieties, although some reported assemblies do not attempt to
reconstruct full chromosomes3-1°.

The wild rice Oryza longistaminata is of the AA genome type.
It is found in tropical regions of western Africa near fresh water
and in swampy areas!. It is rarely used for human consumption,
but holds a number of beneficial traits, such as resistance to
bacterial blight linked to the Xa21 locus'!, perennial growth, and
a high biomass production. The latter two are likely associated
with the ability of O. longistaminata to propagate clonally via
rhizomes. Efforts have been made to transfer beneficial alleles
from O. longistaminata into commercial varieties by evaluating
the agricultural potential of introgressed chromosomal segments
from O. longistaminata into a commercial background!%13. In
addition to breeding efforts, O. longistaminata is also used to
study the genetic basis and the development of rhizomes>!4-16,

The assembly of a complete plant genome provides a strong
basis for functional genomics studies or for efforts to identify
candidate genes through traditional mapping approaches. How-
ever, truly chromosome-complete plant genomes are still not a
trivial achievement!”. Among the cereals, the rice genome is more
amendable to assembly due to the fact that it is less repetitive and
its size is generally less than 500 Mb. For large cereal genomes
such as barley (ca. 5Gb), a full chromosome assembly was
achieved by a combination of ultra-high coverage of small reads,
BAC libraries, manual curation, and a number of technologies
that produce long-range positional information, such as optical
mapping or chromosome conformation capturel®. For rice gen-
ome assembly, the same technologies can be used, however due to
the smaller genome size, sequencing efforts should require less
extensive resources.

The possibility to produce long reads (10-40 kb) from genomic
DNA by single molecule real-time (SMRT) sequencing technol-
ogy has enabled complete genome assemblies for diverse organ-
isms, including notoriously repetitive plant genomes!?20, Despite
the advantages of long-read sequencing, recent rice genomes
assemblies still rely on supplemental technologies to provide
large-scale genomic context of contig sequences>*. In addition,
short reads are still necessary to correct single nucleotide and
small indel errors in the SMRT reads.

In this work, we assembled the genome of O. longistaminata,
including 12 chromosome-scale sequences with alternative par-
ental haplotypes. We used a comparatively moderate coverage
(66x) of SMRT reads and exploited gene-synteny in the Oryza
genus and a previously generated genetic map for our assembly.
In total, we assembled 351 Mb of which 92.2% could be placed on
12 chromosomes. We furthermore validate our genome assembly
for its usefulness in possible functional genomics studies and
breeding efforts.

The Oryza genus in the grass family (Poaceae) contains the

Results

Genome assembly and annotation. We sequenced DNA
extracted from young leaves of one individual plant of O. long-
istaminata accession IRGC110404. In total, we used 16 PacBio

Table 1 Basic genome-wide statistics of the O.
longistaminata assembly

Genome statistic

Total size of assembled contigs (bp) 350,562,179
Total size of contigs anchored on chromosomes (bp) 324,081,576
Contig placement rate (%) 92.45
Number of contigs 1632
Longest contig (bp) 7,290,908
Contig N50 (bp) 553,927
Number of gene models 34,389
Median gene length (bp) 2700

Genic content (%) 40.19
Repeat content (%) 38.10

GC content (%) 42.71

SMRT V3 cells generating 22.6 Gb on 2.4 million reads (average
read length: 9.3 kb) (Supplementary Figure 1). The total nuclear
genome size of O. longistaminata was estimated to be around 340
Mb>, setting our average coverage to approximately 66-fold.

Assembly using FALCON-UNZIP?! resulted in 1632 primary
contigs with a total length of 350.56 Mb, an N50 of 554 kb and a
maximum contig size of 729Mb (Table 1). In addition,
FALCON-UNZIP assembled 4229 contigs representing the
alternative haplotype on the sister chromatid (haplotigs). Those
alternative contigs had a total combined length of 258.67 Mb and
an N50 of 148 kb (73.79% of the primary assembly). We also tried
the Canu assembler?? with our raw data but found that
FALCON-UNZIP performed better, possibly because of the
heterozygosity found in the O. longistaminata genome (Supple-
mentary Note 1 and Supplementary Table 1). For error-
correction of the primary contigs, we first re-aligned the SMRT
reads to the assembled contigs with blasr and then used quiver to
correct 1.3 million insertions, 0.2 million deletions, and 0.61
million substitutions. In the next step, 18.35 million pairs of short
reads (150 bp read length, 432 bp median insert size) were aligned
to the contigs and an additional 0.24 million insertions and 38.7
thousand deletions were corrected. The polished contigs were
arranged and oriented using a genetic map?® and exploiting gene
synteny with O. sativa ssp. japonica (Supplementary Figure 2),
resulting in the assembly of 12 pseudo-chromosomes with a total
length of 323.95Mb (92.2% placement rate) (Fig. 1). The
completeness of the genome assembly was assessed by detecting
a set of unique single copy genes in the genome assembly?4, Out
of 1440 unique single copy genes, 1360 (94.5%) were detected in
our assembly. Gene models in the newly assembled genome were
determined using a combination of computational gene predic-
tion and expressed transcripts based on RNAseq data from eight
diverse tissues. The final gene model set consisted of 34,389 genes
with a median gene length of 2,700 bp. Using the Mercator
annotation pipeline, MAPMAN bins (other than unassigned)
could be detected for 20,121 genes?®. Putative centromeric
regions were identified on all chromosomes. Although we failed
to identify telomeric repeat regions ([TTTAGGG],) in our final
assembly, such repeat structures were represented in the pool of
error-corrected reads. The contig coverage of the final pseudo-
molecules tended to be less fragmented in the comparably gene-
rich chromosome arms, while the centromeric regions were
mostly reconstructed from shorter contigs. This might lead to
inaccuracies in the assembly of such regions.

Whole genome alignment. To analyze the large-scale structure of
our O. longistaminata genome assembly, we performed a com-
parative analysis of gene synteny using the O. sativa ssp. japonica
genome as a reference. A genome-wide alignment of all coding
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Fig. 1 Circular overview of the 12 assembled O. longistaminata chromosomes. Circular overview plot showing basic features across the O. longistaminata

genome assembly. From outermost to innermost ring: contig coverage of the

pseudo-chromosome, density of repeat elements in % of total bp, density of

genes in % of total bp, mean gene expression in RPKM in eight tissues, number of SNPs between O. longistaminata and Oryza sativa ssp. japonica cv.
Nipponbare, % of GC. All tracks except contig mapping show binned data with a window size of 0.5 Mb. Axis limits are shown in the center of the plot.

Data sources are fully described in the main text

sequences (CDS) in each of the two genomes was performed,
followed by the identification of syntenic pairs of orthologues
(Fig. 2). In total, we identified 9976 pairs of syntenic CDS, which
were used to construct the genome-wide alignment. As expected,
the genomes of O. sativa and O. longistaminata appeared highly
syntenic, indicated by the central diagonal in Fig. 2. A close-up
inspection revealed several minor differences in the CDS order
between both genomes, including small-scale (<0.1 Mb) inver-
sions and duplications. In addition to the direct orthologues, also
several groups of inter-chromosomal syntenic gene pairs were
detected. The median rate of synonymous mutations (Ks) in those
paralogues was 1.37 compared to 0.04 in direct orthologues. This
indicated that those inter-chromosomal orthologues are the result
of an ancient whole genome duplication event that is conserved in
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the whole Oryza genus®®. In the O. sativa genome, 24 pairs of
duplicated segments were found?’. In our cross-genome align-
ment, this known pattern of duplications was very well replicated
and all major duplication blocks could be detected (Supplemen-
tary Figure 3). In summary, genome-wide alignments confirmed
that our assembly shows the expected syntenic gene order in the
Oryza genus, including difficult-to-assemble regions that origi-
nated from an ancient genome duplication event.

Haplotype variations. Since O. longistaminata is an outcrossing
species, it is reasonable to expect higher haplotype diversity in the
O. longistaminata genome as compared to the highly inbred
cultivated rice species O. sativa ssp. japonica and O. sativa ssp.
indica. However, this is difficult to exactly quantify, as
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Fig. 2 Genome-wide alignment of CDS from O. longistaminata and O. sativa. Pairwise comparisons of CDS from the O. longistaminata genome assembly and
the Oryza sativa ssp. japonica cv. Nipponbare genome were used to detect syntenic chains of genes. Pairs of CDS are plotted according to their position in
the O. longistaminata genome (x-axis) and O. sativa genome (y-axis). Dot-colors represent the rate of synonymous mutation (Ks) within each pair of CDS.
The central diagonal represents syntenic paralogs between both species, while other chains of dots represent syntenic out-paralogs originating from an
ancient whole genome duplication event found throughout the Oryza genus. Only CDS pairs with a Ks <100 are shown

comparable haplotype-based assemblies are missing. We first
focused on SNP-based analyses and aligned the haplotigs back to
the final 12 chromosomal sequences using NUCMER?8 and called
SNPs using NUCMER’s show-snp tool. We found that a total of
973,487 bp were different based on the alignments generated by
NUCMER. We then analyzed the frequency of small variations
(<10bp) in different genomic features for bins of 1 Mb (Sup-
plementary Figure 4a). The lowest frequency for such variations
was found in the CDS regions with a median of 1.1 variations per
kb. The highest frequency was found in the regions 1 kb upstream
of each locus with a median of 3.1 variations per kb. This indi-
cates that haplotype diversity is most pronounced in the pro-
moter regions of protein-coding genes, which might have an
effect on haplotype-specific promoter activities. To analyze larger
variations (>10bp) we used the output of NUCMER together
with Assemblytics?®. We detected a total of 18,361 larger varia-
tions with this approach. Among those were 5,743 deletions,
6,563 insertions, 3,148 repeat contractions, 2,828 repeat expan-
sions, 13 tandem contractions, and 66 tandem expansions. The
median occurrence of those variations in bins of 1 Mb was highest
in the repetitive content (0.24 variants per kb) but considerably
lower in the protein-coding regions with 0.018 variant per kb in
the protein-coding loci (Supplementary Figure 4b). In summary,
we detected a considerable feature-specific amount of variation
between the two parental genomes of O. longistaminata. This
highlights the complexity of a genome from an outcrossing plant
species which is still largely unexplored.

Repeat content. Since mobile genomic elements (transposons)
are known drivers of genome evolution, we analyzed the trans-
poson content of the O. longistaminata genome. Using Repeat-
Masker3? and a database of rice repetitive elements, we found that
38.10% of the total genome assembly consisted of interspersed
repeats (Table 2). Further classification of repeat elements
revealed that 13.46% of the assembly was classified as long-
terminal repeats (LTR) elements and 16.83% was classified as
DNA transposons. To put results for O. longistaminata into
context within the Oryza genus, we also analyzed five other rice
genomes using the same procedure we used for O. longistaminata.
The overall amount of repeats in the O. longistaminata genome
was comparable to the other analyzed rice genome and most
similar to the wild African rice species Oryza barthii. To further
analyze the differences in the observed repeat sizes, especially
between the two more repetitive O. sativa cultivars and O. long-
istaminata, we plotted the total size of the top 20 most prevalent
(by size) repeat elements in O. longistaminata for all analyzed
species (Fig. 3). LTR retrotransposons from the Gypsy family
showed the largest absolute changes in size among the analyzed
species and are the major contributor to rice genome size dif-
ferences. In the O. longistaminata genome, the total size of Gypsy
family transposons was most comparable to O. barthii and O.
glabberima. The distribution of repeat elements along the chro-
mosomes followed a repeat-family specific pattern. Repeat ele-
ments belonging to the Copia, EnSpm, and Gypsy-family showed
the highest density in centromeric regions, while repeat elements
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Table 2 Repeat content in the genome of O. longistaminata and five selected rice species.

Oryza sativa ssp. japonica 373.2 1711 [45.87%]

Species Genome size Total repeat size (Mb) Retroelements (Mb) DNA transposons (Mb)
(Mb) [% of total sequence] [% of total sequence] [% of total sequence]

Oryza longistaminata 350.6 133.9 [38.10%] 53.1 [15.11%] 59.1 [16.83%]

Oryza barthii 3083 110.3 [36.08%] 49.4 [16.15%] 48 [15.68%]

Oryza brachyantha 260.8 53.3 [21.92%] 18 [7.38%] 31.8 [13.08%]

Oryza glabberima 316.4 17.2 [38.65%] 58 [19.13%] 47.7 [15.71%]

Oryza sativa ssp. indica ~ 427.0 184.5 [44.91%] 106.9 [26.03%] 61.9 [15.08%]

93 [24.93%] 63 [16.88%]

included the unmapped contigs

The O. longistaminata genome and five other selected rice species were analyzed by RepeatMasker and values shown were taken directly from the .tbl file. The O. longistaminata genome used here
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Fig. 3 Comparison of repeat-element size in O. longistaminata and five related rice species. The total length of selected types of repeat elements is shown.
Repeat elements were identified by RepeatMasker. The total size in bp was calculated for each type of repeat element and the top 20 repeat element types
in O. longistaminata were selected for display. Each color represents one species (Obart Oryza barthii, Obrac Oryza brachyantha, Oglab Oryza glabberima, Osati

Oryza sativa ssp. indica, Osatj Oryza sativa ssp. japonica)

of the Explorer, Gaijin, Harbinger, and SINE-type were typically
found at lower density in those regions. (Supplementary
Figure 5).

Using the O. longistaminata genome in quantitative trait locus
(QTL) studies. In our recent work, we applied genotyping-by-
sequencing to a population of F2 plants from a cross of
O. longistaminata and O. sativa ssp. japonica cv. Nipponbare?>.
In that work, we used the O. sativa genome (IRGSP V1.0) as the
reference in the initial read mapping step, as no high-quality
O. longistaminata genome was available at the time. To test the

usefulness of our O. longistaminata assembly for breeding and
mapping applications, we repeated genotyping-by-sequencing
and quantitative trait locus (QTL) mapping using the newly
assembled O. longistaminata genome as the reference.

We used a population of 1081 F2 individuals and set the
threshold for missing data per SNP marker to <5%. This resulted
in 2357 available SNP markers when using the O. longistaminata
genome as a reference compared to 2435 SNP markers for the NB
genome. We proceeded to detect QTL affecting the number of
tillers per plant separately for each of the two reference genomes.
Using either reference genome, we detected four QTL on
chromosomes 1, 3, 4 and 8 (Fig. 4). In addition, the LOD profiles
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Fig. 4 Comparative QTL analysis using two reference genomes. A population of 1081 F2 plants from a cross of O. longistaminata and Oryza sativa ssp.
japonica cv. Nipponbare (O. sativa) was genotyped. In a, the O. longistaminata reference genome was used and 2357 SNP markers were detected. In

b, the O. sativa reference genome and 2435 SNP markers were detected. QTL analysis for the number of tiller was performed separately for each of the two
reference genomes. The black lines show the LOD scores for the presence of a QTL controlling tiller number using a linear regression model with multiple
imputations. The dashed orange lines show the significance threshold for P < 0.05 using 100 permutation tests

were found to be very similar when the two reference genomes
were compared. Based on those results, we concluded that our
genome assembly is suitable to be used as a resource in breeding
programs involving O. longistaminata as a parent.

Completeness of gene families and metabolic pathways. One
major motivation to create a high-quality reference genome is to
accelerate functional genomics studies. This requires complete
representation of evolutionary (gene families) or functionally
(metabolic pathways) defined groups of genes. To this end, we
assessed the completeness and the quality of annotations of the
set of enzymes that synthesize the phytohormone gibberellic acid
(GA) and the SWEET (SUGARS WILL EVENTUALLY BE
EXPORTED) family of sugar transport proteins. Using BLASTP
and BLASTN searches with O. sativa sequences as the query, we
detected almost all analyzed genes in the expected chromosomal
regions in the O. longistaminata genome with a clear 1-to-1
relationship between O. sativa and O. longistaminata (Supple-
mentary Dataset 1). In general, O. longistaminata proteins were
very similar (>95% AA identity) compared to O. sativa proteins.
In five cases (CPS, SWEET1a, 2a, 4 and 11), two highly similar
loci are present in the O. longistaminata genome, as opposed to a
single locus in O. sativa. This pairs of loci were always found in
close proximity to each other. It is conceivable that, e.g., highly
heterozygous parts of the genome could lead to breaks in the
assembly and the observed duplication in reality represents two

regional haplotypes that were not correctly picked up during
haplotype phasing.

Identification of functionally enriched genomic regions.
Recently, it was reported that barley chromosomes feature
genomic compartments, which are characterized, among other
features, by an enrichment in specific gene functions!8. We could
not detect such clear compartments in our O. longistaminata
genome assembly, most likely because rice genomes are
approximately one order of magnitude smaller compared to
barley (5Gb vs. <0.5Gb) and are thus less compartmentalized.
However, by analyzing the distribution of MAPMAN functional
gene categories along the chromosomes, we discovered 153
genomic regions (0.5 Mb) in which at least one functional cate-
gory of genes was significantly (P <0.05) enriched (Fig. 5). The
functional categories which were enriched most often were 30:
signaling (15 regions), 26:misc (14 regions), 20:stress (13 regions),
and 16:secondary metabolism (12 regions). Multi-locus arrange-
ments of very similar genes are often collapsed in assemblies
based on short reads, which is highly undesirable as several
agriculturally important alleles conferring resistance to biotic
stresses are part of large, multi-gene clusters®!-33, The 13 geno-
mic regions, in which stress-related genes were significantly
enriched contained between 7 and 20 stress-related genes each.
Evaluating the potential of those regions for biotic stress
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Fig. 5 Functional enrichment in genomic regions. The O. longistaminata genome was divided into 654 regions of 0.5 Mb each. Within each region, the
number of genes associated with MAPMAN functional categories shown on the left was determined. Significant enrichment of functional categories was
tested by Fisher's exact test and P-values were corrected by the Bonferroni-Holm method. P-values for each genomic region (x-axis) and functional
category (y-axis) are color-coded according to common significance thresholds as indicated in the legend

resistance, e.g., by a targeted breeding approach, might be one
way to utilize this reference genome assembly.

Gene expression profiles. RNAseq data from eight diverse tissues
(leaf, root, shoot apical meristem, tiller bud, rhizome tip, rhizome
node, rhizome bud stage 1 and 2) was used to detect genes in the
O. longistaminata genome in combination with computational
gene prediction (Supplementary Figure 6 and Supplementary
Table 2). In total, 34,389 loci were detected and their expression
was quantified (Supplementary Dataset 2). A principal compo-
nent analysis of gene expression data indicated similar expression
profiles in related rhizomatous and non-rhizomatous tissues
(Fig. 6a). Gene expression in rhizome tips was found to be most
similar to the shoot apical meristem of above ground shoots,
while samples from rhizome buds and tiller buds were most
similar with respect to each other. To detect patterns of gene
expression and tissue-specific genes, k-means based clustering
was performed with k=14 (Fig. 6b). We found 841 genes in
cluster 8 expressed primarily in the leaf. Genes involved in
photosynthesis (light reaction, photorespiration, Calvin cycle)
and secondary metabolism (flavonoids, phenylpropanoids, iso-
prenoids) were significantly enriched (P<0.05) in that cluster
based on MAPMAN functional annotations (Supplementary
Dataset 3). Similarly, 758 genes in cluster 4 were primarily
expressed in the roots and genes putatively encoding peroxidases
and glutathione-S-transferases were enriched among those genes.
The clusters 1 (22 genes), 2 (96 genes), and 6 (127 genes) con-
tained genes which were specifically expressed in a combination
of rhizome and meristematic (shoot apical meristem, tiller bud)
tissues.

Conclusion

In this work, we presented a high quality, haplotype-aware
reference genome for the wild rice species O. longistaminata. We
challenged our assemblies’ usefulness for QTL mapping and
functional genomics, and concluded that this work provides a
solid basis for future efforts to understand and transfer useful

traits from O. longistaminata into cultivated rice species. In
comparison to other chromosome-level assemblies®*, our
approach is based on assembling whole-genome shotgun
sequencing data directly followed by exploiting gene synteny and
a genetic map to form pseudo-chromosomal sequences. This
greatly simplified the sequencing and post-assembly workflow.
Our work provides a glimpse into the possibility for semi-
automated genome assemblies for genera of crop species, in

which at least one high-quality reference genome is available. This

would allow pan-genomic approaches for selected genera4,

Methods

Plant material. O. longistaminata (accession IRGC110404) was used for whole
genome and transcriptome sequencing. Plants were cultivated in a controlled
environment chamber at Nagoya University in Nagoya, Aichi Prefecture, Japan.
The F2 populations used for QTL analysis were described previously?3.

DNA and RNA sequencing. For long read-sequencing, DNA was extracted by the
ISOPLANT method®. In total, 20 pg of DNA (106 ng uL~!) was used for
sequencing on a Pacific Biosystems RS instrument using P6v2 chemistry and 16
SMRT V3 cells (Supplementary Figure 1). Sequencing was carried out by Macrogen
(Seoul, South Korea). For short read-sequencing, DNA from the same individual
was extracted using the same method. Libraries were prepared using the TruSeq
DNA v2 kit and sequenced on an Illumina Genome Analyzer IIx platform (Illu-
mina, San Diego, CA, USA). For transcriptome sequencing, RNA was extracted
from leaves, roots, tiller buds, shoot apical meristems, and rhizome tissues
including early (stage 1) and late (stage 2) buds, tips, and node regions of mature
rhizomes using the QIAGEN plant RNA kit (Hilden, Germany) (Supplementary
Figure 5). Paired-end reads were generated on a HiSeq2000 platform.

Genome sequence assembly. Raw SMRT sub-reads were first assembled using the
FALCON assembler (https://github.com/PacificBiosciences/FALCON-integrate,
release v2.1.2) to generate primary contigs. FALCON was configured as follows:
genome_size = 350000000, length_cutoff = 5000, length_cutoff_pr = 5000,
pa_DBsplit_option = -x500 -s200, pa_HPCdaligner_option = -v -B4 -e.70 -11000
-s1000, falcon_sense_option = --output_multi --min_idt 0.70 --min_cov 4
--max_n_read 400, ovlp_DBsplit_option = -x500 -s200, ovlp_HPCdaligner_op-
tion = -v -B4 -h60 -€.96 -1500 -s1000, overlap_filtering_setting = --max_diff 50
--max_cov 50 --min_cov 3 --bestn 10. The primary assembly was then haplotype-
phased using FALCON-UNZIP (obtained at: https://downloads.pacbcloud.com/
public/falcon/falcon-2018.03.12-04.00-py2.7-ucs2.tar.gz) and default settings.
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Fig. 6 Analysis of gene expression in eight O. longistaminata tissues. a A principal component analysis using scaled and centered RPKM data from the eight
indicated tissues was performed. For each tissue, the scores from the first two principal components (PC) were plotted along with the percentage of the
explained variation. Symbols indicate non-rhizomatous and rhizomatous tissues, respectively. b A heatmap representation of gene expression in the eight
indicated tissues is shown. Each row represents one cluster of genes and the average expression within each cluster is shown. Before averaging, gene
expression was normalized by transforming RPKM values to the log,-fold change relative to the average gene-wise expression. Clustering was performed
using the k-means method and k =14 was chosen to minimize both, the number of clusters and the within-cluster sum-of-squares (elbow method)

After assembly and haplotype phasing, error correction was performed in two
steps. First, all SMRT reads were realigned to the assembly using quiver integrated
in SMRT analysis (v.2.3.0). Quiver polishing was performed by filtering of subreads
(minLength = 50, minSubReadLength = 50, readScore = 0.75), mapping of
subreads to the assembly using blasr (maxHits = 10, maxDivergence = 30,
minAnchorSize = 12, seed = 1, minAccuracy = 0.75, minLength = 50,
algorithmOptions = -useQuality) followed by error correction. The resulting
sequences were again polished by first aligning paired-end short reads using bwa-
mem?® followed by error-correction using Pilon’” with the --diploid, --nostrays,
and --fix indels options. The same procedure was performed for primary contigs
and associated haplotype sequences (haplotigs).

The polished contigs were then arranged in a linear fashion using ALLMAPS3
with two different genome maps. The first map consisted of 301 high-confidence
SNP markers?3. To establish their respective positions in the polished contigs, a
200 bp genomic DNA sequence from O. sativa ssp. japonica cv. Nipponbare
surrounding the SNP was mapped to the polished contigs using bwa-mem. The
alignment was converted to bed format using bamtobed from bedtools v2.25.0%°
and converted to an ALLMAPS map by a custom R script. The second map
exploited gene synteny between O. longistaminata and O. sativa. Sequences
representing all gene models from IRGSP1.0 reference genome build were obtained
from http://rapdb.dna.affrc.go.jp/ and aligned to the polished contigs using
BLASTN. The best blast hit from the first isoform for each gene model was isolated
and used to create a gene synteny-based map. Spurious blast hits (blast hits from a
specific O. sativa chromosome with a run-length = 1) from contigs with three or
more hits were removed. Only the start coordinates for each gene model were used,
except for contigs with only 1 blast hit. In that case also the stop coordinate of the
gene model was used to allow orientation. In total, this map contained 34,097
anchor points. The combined genetic maps were first used to detect putative
chimeric contigs. Using the jcvi.assembly.allmaps split command with the —chunk
=4 option 37 breakpoints were identified and the contigs were split accordingly.
Both maps were remade to represent the split contigs and were finally used as input
for the jcvi.assembly.allmaps path command. The resulting 12 pseudo-
chromosomes together with all unmapped contigs (7.8% of the total genome,
merged into one DNA sequence with 1 kb separating the contigs) is referred to as
the O. longistaminata reference genome V2.0 (respecting the V1.0 assembly
described earlier®). Completeness of the assembly was assessed using BUSCO 2.0.1
with the embryophyta_odb9 dataset?4.

Genotyping and QTL detection. Genotyping based on SNPs and subsequent QTL
detection were performed as described in detail in our previous work?3. In short,
1081 F2 plants of a cross of O. longistaminata and O. sativa ssp. japonica cv.
Nipponbare were used for genotyping-by-sequencing using the TASSEL4

pipeline*’. SNPs were filtered based on minor allele frequency, parental alleles, read
depth, and missing data. As the last step, putative errors were corrected and
missing data was imputed based on flanking alleles. Phenotyping was performed by
digging up plants from the paddy field and counting all shoots for each individual
plant. In addition, six replicate plants of each of the two parents were used for
genotyping and phenotyping. QTL detection was performed using the R/qtl
package*!. A linear regression model with multiple imputations implemented in
the scanone function was used. The threshold for significance was calculated from
100 permutation tests.

Genomic feature detection. The final O. longistaminata reference genome V2.0
was annotated using a combination of in silico gene prediction and transcriptome
data. Gene prediction was carried out using the MEGANTE gene prediction
pipeline*? using the profile for O. sativa and standard settings. In addition, RNAseq
data from eight different tissues described above was used to identify expressed
genes. For this, raw RNAseq reads were first cleaned using Trimmomatic-0.36%3
with the options LEADING:3, TRAILING:3, and MINLEN:30 followed by re-
pairing reads using pairfq (https://github.com/sestaton/Pairfq). Cleaned reads were
then aligned separately for each tissue to the O. longistaminata reference genome
V2.0 using hisat244 with the —dta option. Transcripts were assembled from read
alignments using stringtie*> with the -m 50 option and all eight resulting GTF-files
were merged using stringtie with the —merge argument. TransDecoder (https://
github.com/TransDecoder/TransDecoder) was used to derive transcript sequences
and detect all ORFs longer than 50 AA (TransDecoder.LongOrfs -m 50). The likely
coding region for each transcript was detected using TransDecoder.Predict sup-
plemented by BLASTP data obtained by querying the SWISS-PROT database with
the longest ORF of each transcript. Predicted and experimentally verified gene
models were combined using a custom R/Bioconductor script and in case of
overlaps precedence was given for the experimentally verified gene models. Repeat
elements in the final O. longistaminata assembly were identified using Repeat-
Masker with the options: -pa 4 -x -excln -html -gff -no_is -species rice. Putative
centromeric regions were identified using a 154 bp monomer isolated from the O.
sativa CentO region (AY101510.1) as a query for BLASTN searches against the O.
longistaminata genome.

Functional gene annotations. Functional annotations for MEGANTE-predicted
genes including BLASTP hits, cDNA accessions numbers from similar cDNAs,
Interpro domains, and GO terms were used as reported by MEGANTE. Expressed
genes were annotated using the best BLASTP hit using a protein database con-
taining all AA sequences from UniProt with taxon ID 4527 (Oryza genus). Based
on the UniProt accession number, Interpro domain IDs and GO terms were added.
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A short human-readable description was added by using the name of the most
specific ortholog group derived from eggnog 4.5.14°. In addition, all final gene
models (using the protein encoded by the first reported splice variant) were
assigned to a MAPMAN functional annotation using Mercator?>.

Genome-wide alignments. Analyses of genome synteny were performed using the
CoGe platform (https://genomevolution.org/coge/)*”. Whole genome sequences
and all CDS as GFF annotation from the O. longistaminata reference genome and
from the O. sativa genome were uploaded to CoGe. CDS from both genomes were
aligned using LastZ (--hspthresh 3000). DAGChainer (using relative gene order, -D
20 and -A 5) was used to identify chains of syntenic genes and the Quota Align
option was used to merge neighboring syntenic regions. The results file including
synonymous mutation rates was downloaded and parsed using a custom R script
before plotting.

Haplotype analysis. For analysis of the error-corrected haploid-phased alternative
contigs (haplotigs), each sequence was aligned to the final 12 chromosomes of the
O. longistaminata reference genome using NUCMER version 3.128 with the
options: -maxmatch -1 100 —c 500. For small variations, the show-snps program
from NUCMER was used with the options —-Clr -x 1 -T and the resulting table was
converted to a vcf file using the MUMmerSNPs2VCF.py program found here:
(https://github.com/liangjiaoxue/PythonNGSTools/blob/master/
MUMmerSNPs2VCE.py). The resulting vcf file was parsed into R and only var-
iations with a length of <10 bp in both the REF and ALT fields were used for
further analysis. The output of NUCMER was also analyzed using Assemblytics?’
and the resulting BED-file was parsed into R and only variations with a length of
>10 bp in either the ref_gap_size or the query_gap_size field were used for further
analysis.

General data processing. Principal data analysis and visualization was performed
using R V3.3.2 or later. Quantification of gene expression was performed using
Rsubread*®. K-means based clustering was performed using MBCluster.Seq*’.
Principal component analysis was performed using the prcomp function. Enrich-
ment of functional categories in genomic regions or expression-based clusters was
tested for by Fisher’s exact test followed by Bonferroni-Holm correction using the
fisher.test and p.adjust functions, respectively. Manipulation of biological sequen-
ces and genome-based features was performed using Bioconductor V3.3 and the
packages Biostrings, rtracklayer, and GenomicRanges. General data visualization
was performed using ggplot2. Circular plots of genome features were created using

Circos®0.

Data availability

All reads used for genome (Bioproject PRJDB6339) and transcriptome (Bioproject
PRJDB6351) assembly have been uploaded to the DNA Databank of Japan (DDBJ). A
genome browser and other O. longistaminata genome-related data including all
sequences and annotations can be found at http://olinfres.nig.ac.jp/
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