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High expression levels of pyrimidine metabolic rate–limiting
enzymes are adverse prognostic factors in lung adenocarcinoma:
a study based on The Cancer Genome Atlas and Gene Expression
Omnibus datasets
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Abstract
Reprogramming of metabolism is described in many types of cancer and is associated with the clinical outcomes.
However, the prognostic significance of pyrimidine metabolism signaling pathway in lung adenocarcinoma (LUAD) is
unclear. Using the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets, we found that the
pyrimidine metabolism signaling pathway was significantly enriched in LUAD. Compared with normal lung tissues, the
pyrimidine metabolic rate–limiting enzymes were highly expressed in lung tumor tissues. The high expression levels of
pyrimidine metabolic–rate limiting enzymes were associated with unfavorable prognosis. However, purinergic receptors
P2RX1, P2RX7, P2RY12, P2RY13, and P2RY14 were relatively downregulated in lung cancer tissues and were associ-
ated with favorable prognosis. Moreover, we found that hypo-DNA methylation, DNA amplification, and TP53 mutation
were contributing to the high expression levels of pyrimidine metabolic rate–limiting enzymes in lung cancer cells.
Furthermore, combined pyrimidine metabolic rate–limiting enzymes had significant prognostic effects in LUAD.
Comprehensively, the pyrimidine metabolic rate–limiting enzymes were highly expressed in bladder cancer, breast cancer,
colon cancer, liver cancer, and stomach cancer. And the high expression levels of pyrimidine metabolic rate–limiting
enzymes were associated with unfavorable prognosis in liver cancer. Overall, our results suggested the mRNA levels of
pyrimidine metabolic rate–limiting enzymes CAD, DTYMK, RRM1, RRM2, TK1, TYMS, UCK2, NR5C2, and TK2 were
predictive of lung cancer as well as other cancers.
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Background

Lung cancer is one of the most commonly diagnosed
cancer and the leading cause of cancer-related mortality
[1–3]. Although some improvements of treatment have
been achieved in the past few decades, the 5-year sur-
vival rate of lung cancer patients is still low [4, 5]. Lung
cancer is a heterogeneous disease, including small cell
lung cancer and non-small cell lung cancer (NSCLC)
[6]. NSCLC accounts for the 85% of lung cancer cases
and could be further divided into 3 major pathologic
subtypes: lung adenocarcinoma (LUAD), lung squamous
cell carcinoma (LUSC), and large-cell carcinoma [7].
Each subtype of NSCLC demonstrates different molecu-
lar profiles and different drug response [8, 9]. Although
gene alterations [10, 11], mRNA expression signature
[12, 13], microRNA profiles [14, 15], long non-coding
RNAs [16, 17], immune signature [18], and tumor mi-
croenvironment [19] are used for the prognosis of
NSCLC, more candidate biomarkers are needed.

Reprogramming of cell metabolism is a hallmark of
cancer [20]. Cancer cells increase glucose uptake and
utilize aerobic glycolysis to facilitate the uncontrolled
cell proliferation [21]. Glycolysis-related gene signature
is associated with the overall survival of LUAD patients
[22]. Besides the misregulation of glucose metabolism,
the pyrimidine metabolism is also disrupted during the
development of cancer [23]. The disruption of the pyrim-
idine metabolism is reflected by the malfunctions of the
pyrimidine metabolic rate–limiting enzymes. The high
expression levels of pyrimidine metabolic rate–limiting
enzymes CAD, CTPS, CTPS2, DHODH, DTYMK,
NT5C2, NT5C3, RRM1, RRM2, TK1, TK2, TYMS,
UCK2, and UCKL1 are illustrated in poorly differentiat-
ed liver cancer patients and correlated poor clinical out-
comes [24]. Inhibition of pyrimidine synthesis by
targeting pyrimidine metabolic rate–limiting enzymes
DHODH and CAD could accentuate the molecular ther-
apy response in glioblastoma [25]. Also, inhibition of
pyrimidine synthesis sensitizes triple-negative breast can-
cer cells to chemotherapy [26]. However, the prognostic
significance of the pyrimidine metabolism signaling path-
way in LUAD is unclear.

In the present study, we used large cohorts of lung cancer
patients derived from Gene Expression Omnibus (GEO) and
The Cancer Genome Atlas (TCGA) datasets to demonstrate
the prognostic significance of pyrimidine metabolic rate–
limiting enzymes and purinergic receptors in LUAD.
Overall, the analysis of GEO and TCGA datasets allowed an
improved understanding of the functions of pyrimidine meta-
bolic rate–limiting enzymes and purinergic receptors. The re-
sults also indicated the potential biomarkers of the pyrimidine
metabolic rate–limiting enzymes for further clinical studies.

Methods

Data collection

The TCGA LUAD and LUSC gene expression, DNA
mutation, and DNA methylation, along with the clinical
datasets, were downloaded from the TCGA hub (https://
tcga.xenahubs.net) . The LUAD and LUSC gene
expression data was generated from RNA-seq and the
DNA methylation data was generated from Illumina
HumanMethylation450 Bead Chip. Gene expression data
derived from bladder urothelial carcinoma (BLCA),
breast invasive carcinoma (BRCA), colon adenocarcino-
ma (COAD), esophageal carcinoma (ESCA), head and
neck squamous cell carcinoma (HNSC), kidney renal
clear cell carcinoma (KIRC), kidney renal papillary cell
carcinoma (KIRP), liver hepatocellular carcinoma (LIHC)
, stomach adenocarcinoma (STAD), and thyroid cancer
(THCA) were also downloaded from TCGA hub.

The gene expression series matrix of normal and cancerous
lung tissues was downloaded from the GEO website (www.
ncbi.nlm.nih.gov/geo) and included GSE7670, GSE10072,
GSE18842, GSE19188, GSE27262, GSE30219, GSE31210,
GSE31908, GSE33532, and GSE75324 datasets. The DNA
methylation data of patients with LUAD was downloaded
from the GEO datasets with GEO number GSE32867 and
GSE62948. All the GEO expression datasets were based on
Affymetrix Human Genome microarray.

Clinical and raw data of MSKCC dataset are downloaded
from http://cbio.mskcc.org/Public/lung_array_data/ [27]. The
detailed description of the collected data used in this study is
illustrated in Fig. 1a.

Gene Expression Omnibus data processing

The GEO expression datasets were processed using R software
(version 3.5.0, https://www.r-project.org/). The matrix file of
each dataset was annotated with corresponding platform.
When multiple probes corresponded to the same gene
symbol, the expression values were averaged using “plyr”
package (version 1.8.5) in R software. Plyr package includes
multiple tools for splitting, applying, and combining data and
could be downloaded from bioconductor (https://cran.r-project.
org/web/packages/plyr/index.html). The different gene
expression between normal and lung cancer samples was
determined using paired Student’s t test. The different DNA
methylation intensity between normal and lung cancer
samples was also determined using paired Student’s t test.

Gene set enrichment analysis

The metabolic singling pathways enriched in lung cancer
gene expression profiling were determined using Gene
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set enrichment analysis (GSEA) software (version 2.0)
[28]. The GSEA software and the signaling pathways
gene sets were downloaded from the GSEA website
(www.broad.mit.edu/gsea/index.html). Genes were

ranked by the signal-to-noise ratio, and statistical signif-
icance was determined by 1000 gene set permutations.
The results of significance should meet the criteria of
nominal P value less than 0.05.

Fig. 1 Pyrimidine metabolism signaling pathway is highly enriched in
lung cancer. a Table showed the detailed GEO datasets and TCGA
datasets used in this study. b Enrichment plots demonstrated the
enriched pyrimidine metabolism signaling pathway in GSE7670,
GSE10072, GSE18842, GSE19188, GSE27262, GSE30219,

GSE31210, GSE31908, GSE33532, GSE75324, and TCGA LUAD,
LUSC datasets. Enrichment of normalized enrichment score (NES) and
P values were presented. LUAD: lung adenocarcinoma; LUSC: lung
squamous cell carcinoma;
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Heatmap presentation

Heatmaps were created by R software “pheatmap” pack-
age (version 1.0.12). The pheatmap package and the basic
usage were downloaded from bioconductor (https://cran.r-
project.org/web/packages/pheatmap/). The clustering
scale was determined by the “average” method. The
clustering distance was determined by the “correlation”
method. Other parameters were provided in the usage of
the pheatmap.

Survival analysis using Gene Expression Omnibus
dataset

The Kaplan-Meier plotter (https://kmplot.com/analysis/)
[29, 30] was used to identify the association between
the expression levels of the pyrimidine metabolic rate–
limiting enzymes, purinergic receptors, and overall sur-
vival in lung cancer derived from GEO datasets. The
Kaplan-Meier plotter is an online survival analysis tool
to rapidly assess the prognostic effects of genes using
GEO microarray data. The patients were divided by the
auto select best cutoff using the expression of the pyrim-
idine metabolic rate–limiting enzymes. P values were
determined using Log-rank test.

Survival analysis using The Cancer Genome Atlas
dataset

R statistics software “survival” package (version 3.1–8) was
used to identify the clinical influence of pyrimidine metabolic
rate–limiting enzymes on overall survival in patients derived
from TCGA LUAD, LUSC, LIHC, BRCA, and STAD
datasets. The survival package and the basic usage were
downloaded from bioconductor (https://cran.r-project.org/
web/packages/survival/index.html). The patients were
divided into two clusters based on the mean expression
levels of genes. Kaplan-Meier estimator was applied to deter-
mine the clinical outcomes in patients with high expression
levels and low expression levels of genes. P values were de-
termined using Log-rank test.

Oncoprints of the pyrimidine metabolic rate–limiting
enzymes

The genomic alterations of pyrimidine metabolic rate–limiting
enzymes in LUAD patients were downloaded from cbioportal
(version 3.2.0) based on the TCGA datasets (http://www.
cbioportal.org/index.do).

Correlation plots of the pyrimidine metabolic rate–
limiting enzymes

Correlation plots of the pyrimidine metabolic rate–limiting
enzymes were created using the “corrplot” package (version
0.84) in R. The corrplot package and the basic usage were
downloaded from bioconductor (https://cran.r-project.org/
web/packages/corrplot/index.html). The Spearman’s
correlation test was used to demonstrate the correlation
efficiency.

Multivariate Cox regression

Multivariate Cox regression was analyzed by “coxph”method
in R software survival package (version 3.1–8). The survival
package and the basic usage were downloaded from
bioconductor (https://cran.r-project.org/web/packages/
survival/index.html). Log-rank test was used to calculate the
P values.

Statistical analysis

The box plots were generated from GraphPad Prism software
(version 5.0). Statistical analysis was performed using the
paired Student’s t test using R software. P value less than
0.05 was chosen to be significantly different.

Results

Pyrimidine metabolism signaling pathway is highly
enriched in lung tumor samples across different
datasets

In order to reveal the metabolism-related transcriptional pro-
filing in lung cancer, we analyzed lung cancer patients with
expression data from previously published GEO datasets.
Totally, 1290 samples were collected from ten previously
published datasets based on Affymetrix gene microarray plat-
forms, including 336 normal lung samples and 954 lung tumor
samples. Most of the lung cancer patients belonged to LUAD
subtype. A detailed description of the collected data used in
this study is illustrated in Fig. 1a.

We then identified the enriched metabolic signaling path-
ways in patients with lung cancer using the GSEA assay.

�Fig. 2 Pyrimidine metabolic rate limiting enzymes are up-regulated in
lung cancer cells across different datasets. Heatmaps demonstrated the
expression levels of pyrimidine metabolic rate–limiting enzymes in nor-
mal lung tissues and lung cancer tissues in GSE7670, GSE10072,
GSE18842, GSE19188, GSE27262, GSE31908, GSE33532,
GSE75324, and TCGA LUAD datasets. Upregulated (red), downregulat-
ed (green), and unchanged (black) genes were delineated. The expression
levels of β-actin (ACTB) in normal and cancer tissues were used as
control
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Fig. 3 The expression levels of purinergic receptors in lung cancer cells.
Heatmaps demonstrated the expression levels of purinergic receptors in
normal lung tissues and lung cancer tissues in GSE7670, GSE10072,

GSE18842, GSE19188, GSE27262, GSE31908, GSE33532,
GSE75324, and TCGA LUAD datasets
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Among all the enriched metabolic signaling pathways, the
pyrimidine metabolism signaling pathway was significantly
enriched in seven out of ten datasets, including GSE10072,
GSE18842, GSE19188, GSE27262, GSE30219, GSE31210,
and GSE75324 datasets, representing the most frequently
enriched metabolic signaling pathway (Fig. 1b). Only in
GSE7670, GSE31908, and GSE33532 three datasets, the

pyrimidine metabolism signaling pathway was not signifi-
cantly correlated with the transcriptional profiling of lung can-
cer (Fig. 1b).

Using the TCGA lung cancer dataset, we found that the
pyrimidine metabolism signaling pathway was positively as-
sociated with the transcriptional profiling of lung cancer in
LUAD dataset (Fig. 1b). However, in another subtype of lung

Fig. 4 Pyrimidine metabolic rate–limiting enzymes are upregulated in
metastatic lung cancer cells and associated with lung cancer recurrence.
a Heatmaps demonstrated the expression levels of pyrimidine metabolic
rate–limiting enzymes in parental PC9 cells and PC9 BrM cells. b The
Kaplan-Meier plotters demonstrated the associations between pyrimidine

metabolic rate–limiting enzymes and lung cancer recurrence using the
MSKCC dataset. The log-rank test was used to determine the overall
survival P value. c The Kaplan-Meier plotters demonstrated the associa-
tions between purinergic receptors P2RX1, P2RX2, P2RY13, and
P2RY14 and lung cancer recurrence using the MSKCC dataset
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cancer LUSC, pyrimidine metabolism signaling pathway was
not highly enriched (Fig. 1b).

Pyrimidine metabolic rate–limiting enzymes are up-
regulated in lung cancer cells across different
datasets

The pyrimidine metabolism signaling pathway was involving
multiple genes. Previous results suggested that pyrimidine
metabolism was highly controlled by pyrimidine metabolic
rate–limiting enzymes [24]. CAD, CTPS, CTPS2, DHODH,
DTYMK, NT5C2, NT5C3, RRM1, RRM2, TK1, TK2,
TYMS, UCK2, and UCKL1 were reported pyrimidine meta-
bolic rate–limiting enzymes [24]. The expression levels of
those pyrimidine metabolic rate–limiting enzymes in lung
normal and tumor tissues were investigated in GSE7670,
GSE10072, GSE18842, GSE19188, GSE27262, GSE31908,
GSE33532, and GSE75324 datasets. As illustrated in the
heatmaps, pyrimidine metabolic rate–limiting enzymes
CAD, CTPS, CTPS2, DHODH, DTYMK, NT5C3, RRM1,
RRM2, TK2, TYMS, UCK2, and UCKL1 were upregulated
in lung cancer tissues (Fig. 2). However, TK2 and NT5C2
were relatively downregulated in lung cancer tissues (Fig. 2).

Similar results were derived from TCGA LUAD dataset.
Compared with the normal lung tissues, pyrimidine metabolic
rate–limiting enzymes CAD, CTPS, CTPS2, DTYMK,
NT5C3, RRM1, RRM2, TK2, TYMS, UCK2, and UCKL1
were all highly expressed in lung cancer tissues. However,
TK2 and NT5C2 were downregulated in lung cancer tissues
(Fig. 2). And there was no significant difference of β-actin
(ACTB) expression levels in normal and lung cancer tissues
(Fig. 2).

The expression levels of purinergic receptors in lung
cancer cells

Purinergic receptors comprise two different sub-families,
ionotropic P2X and metabotropic P2Y receptors [31, 32]. Next,
we determined the expression levels of P2X sub-families
P2RX1–7 and P2Y receptors P2RY1, P2RY2, P2RY4, P2RY5
(LPAR6), P2RY6, P2RY7 (LTB4R), P2RY8, P2RY9 (LPAR4),

P2RY10–14 in normal lung tissues and lung cancer tissues. As
depicted in GSE7670, GSE10072, GSE18842, GSE19188,
GSE27262, GSE31908, GSE33532, GSE75324, and TCGA
LUAD datasets, compared with the normal lung tissues,
purinergic receptors P2RX1, P2RX7, P2RY12, P2RY13, and
P2RY14 were relatively downregulated in lung cancer tissues
(Fig. 3). However, the expression levels of other purinergic re-
ceptors in normal and lung cancer tissues were not significantly
different (Fig. 3). Also, the expression levels of nucleoside trans-
porter SLC28A3were not changed in lung cancer tissues (Fig. 3).

Pyrimidine metabolic rate–limiting enzymes are up-
regulated in metastatic lung cancer cells and associ-
ated with lung cancer recurrence

LUAD cells can spread to the lymph nodes, adrenal glands,
bones, and the brain [33]. PC9 BrM is a sub-population cells
lines derived from parental PC9 LUAD cells, and with high
brain metastasis [34]. We found that compared with parental
PC9 cells, pyrimidine metabolic rate–limiting enzymes
NT5C2, TK2, CAD, DTYMK, DHODH, RRM1, TK1,
RRM2, TYMS, and CTPS were all highly expressed in PC9
BrM cells (Fig. 4a). Moreover, using MSKCC dataset, we
showed that LUAD patients with high expression levels of
CAD, RRM2, TK1, TYMS, or UCK2 were with high recur-
rence probability (Fig. 4b). However, purinergic receptors
P2RX1, P2RX2, P2RY13, and P2RY14 were not associated
with the tumor recurrence of lung cancer (Fig. 4c).

Expression levels of pyrimidine metabolic rate–
limiting enzymes are associated with the tumor
overall survival in lung cancer: analysis from Gene
Expression Omnibus datasets

The Kaplan-Meier plotter is an online survival analysis tool to
rapidly assess the prognostic effects of genes using the integrated
GEO microarray data derived from 1926 lung cancer patients
[29, 30]. Using Kaplan-Meier plotter, the present study showed
that high expression levels of pyrimidine metabolic rate–limiting
enzymes CAD, CTPS, DHODH, DTYMK, RRM1, RRM2,
TK1, TYMS, and UCK2 were unfavorable prognostic markers
in patients with lung cancer (Fig. 5a). However, consistent with
the decreased expression levels of NR5C2 and TK2 in lung
cancer tissues, patients with higher expression levels of NR5C2
and TK2 had better prognosis than patients with low expression
levels of those genes (Fig. 5a).

We also showed that contrast with the unfavorable progno-
sis of pyrimidine metabolic rate–limiting enzymes, purinergic
receptors P2RX1, P2RX2, P2RX7, P2RY12, P2RY13, and
P2RY14 were favorable prognostic markers in patients with
lung cancer (Fig. 5b). However, other purinergic receptors had
no prognostic effects.

�Fig. 5 Expression levels of pyrimidine metabolic rate limiting enzymes
are associated with the tumor overall survival in lung cancer: analysis
from GEO datasets. a The Kaplan-Meier plotters demonstrated the prog-
nostic effects of the expression levels of pyrimidine metabolic rate–
limiting enzymes TK1, UCK2, CAD, RRM1, RRM2, DTYMK,
TYMS, TK2, and NR5C2 in lung cancer using the integrated GEO
datasets. The patients were divided into two groups by the auto select
best cutoff based on the expression levels of the pyrimidine metabolic
rate–limiting enzymes. The log-rank test was used to determine the over-
all survival P value. b The Kaplan-Meier plotters demonstrated the prog-
nostic effects of the expression levels of purinergic receptors P2RX1,
P2RX2, P2RX7, P2RY12, P2RY13, and P2RY14 in lung cancer
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Expression levels of pyrimidine metabolic rate–
limiting enzymes are associated with the tumor
overall survival in lung adenocarcinoma: analysis
from The Cancer Genome Atlas lung adenocarcinoma
dataset

Furthermore, using TCGA LUAD dataset, we confirmed the
prognostic effects of pyrimidine metabolic rate–limiting en-
zymes and purinergic receptors. Similarly, the Kaplan-Meier
survival analysis showed that pyrimidine metabolic rate–
limiting enzymes DTYMK, NT5C3, RRM1, RRM2, TK1,
TYMS, and UCK2were all associated with adverse prognosis
in the lung cancer (Fig. 6a). Patients with high expression
levels of DTYMK, NT5C3, RRM1, RRM2, TK1, TYMS,
or UCK2 were with low overall survival. However, we found
that CAD, CTPS, DHODH, NR5C2, and TK2 had no prog-
nostic effects in TCGA LUAD dataset (Fig. 6a). And only
purinergic receptors P2RX1, P2RX2, P2RX7, P2RY12,

P2RY13, and P2RY14 were associated with good prognosis
in the lung cancer (Fig. 6b).

The prognostic significance of pyrimidine metabolic
rate–limiting enzymes in patients with LUSC was also
tested using TCGA LUSC dataset. However, unlike
LUAD, pyrimidine metabolic rate–limiting enzymes
CAD, CTPS, DHODH, DTYMK, NT5C3, RRM1,
RRM2, TK1, TYMS, UCK2, and NT5C2 had no prog-
nostic effects in LUSC (Fig. S1). Only high expression
levels of TK2 were associated with the adverse prognos-
tic outcomes in LUSC (Fig. S1).

Increased expression levels of the pyrimidine
metabolic rate–limiting enzymes in lung cancer cells
are induced by DNA hypomethylation

Next, we tried to determine the mechanisms that induced the
high expression levels of pyrimidine metabolic rate–limiting
enzymes in lung cancer. The high expression levels of onco-
genes are usually mediated by hypo-DNA methylation, DNA
amplification, and gene mutation [35]. Using the DNA meth-
ylation data deposited in GSE32867 and GSE62948 datasets,
we analyzed the DNAmethylation intensity of the pyrimidine
metabolic rate–limiting enzymes in normal lung tissues and
lung cancer tissues.

Compared with the lung normal tissues, the pyrimi-
dine metabolic rate–limiting enzymes CAD, RRM2, and
TK1 were hypo-methylated in lung cancer tissues

Fig. 7 Increased expression levels of the pyrimidine metabolic rate–
limiting enzymes in lung cancer cells are induced by DNA hypomethy-
lation. aBox plots demonstrated the DNAmethylation intensity (β value)
of pyrimidine metabolic rate limiting enzymes CAD, RRM2, and TK1 in
normal lung tissues and lung adenocarcinoma tissues in GSE32867
dataset. b Box plots demonstrated the DNA methylation intensity of

CAD, RRM2, and TK1 genes in normal lung tissues and lung adenocar-
cinoma tissues in GSE62948 dataset. cHeatmaps demonstrated the meth-
ylation level (β value) of the pyrimidine metabolic rate–limiting enzymes
in normal and tumor tissues in LUAD. Hypermethylated (red),
hypomethylated (green) and unchanged (black) genes were delineated

�Fig. 6 Expression levels of pyrimidine metabolic rate–limiting enzymes
are associated with the tumor overall survival in lung adenocarcinoma:
analysis from TCGA LUAD dataset. a The Kaplan-Meier plotters dem-
onstrated the associations between pyrimidine metabolic rate–limiting
enzymes and overall survival in lung cancer using the TCGA LUAD
dataset. The log-rank test was used to determine the overall survival P
value. b The Kaplan-Meier plotters demonstrated the prognostic effects
of the expression levels of purinergic receptors P2RX1, P2RX2, P2RX7,
P2RY12, P2RY13, and P2RY14 in lung cancer
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derived from GSE32867 dataset (Fig. 7a). Similar results
were obtained in GSE62948 dataset that the DNA meth-
ylation intensity of CAD, RRM2, and TK1 was lower in
lung cancer tissues, compared with normal lung tissues
(Fig. 7b). Also, in TCGA LUAD dataset, pyrimidine
metabolic rate–limiting enzymes RRM2, TK1, CAD,
UCK2, TYMS, and CTPS exhibited hypo-DNA methyl-
ation in LUAD tissues (Fig. 7c).

Increased expression levels of the pyrimidine
metabolic rate–limiting enzymes in lung cancer cells
are induced by DNA amplification and TP53 mutation

Another factor determining the activation of pyrimidine met-
abolic rate–limiting enzymes in lung cancer cells was genomic
aberration, particularly DNA amplification. We showed that
6% lung cancer patients were with UCK2 amplification and

Fig. 8 Increased expression levels of the pyrimidine metabolic rate–
limiting enzymes in lung cancer cells are induced by DNA amplification
and TP53 mutation. a Oncoprints demonstrated the alteration frequency
of pyrimidine metabolic rate–limiting enzymes in LUAD. Each line rep-
resented one patient. b Box plots demonstrated the expression levels of

the pyrimidine metabolic rate limiting enzymes in patients with lung
cancer. P values indicated the differences between patients with TP53
mutant and TP53 wild-type. c Heatmap demonstrated the expression
levels of the pyrimidine metabolic rate–limiting enzymes in TP53 mutant
and TP53 wild-type LUAD patients
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5% lung cancer patients were with UCKL1 amplification
(Fig. 8a). Also, TK1 amplification occurred in 2.2% lung can-
cer patients (Fig. 8a). However, other pyrimidine metabolic
rate–limiting enzymes were without DNA amplification in
lung cancer tissues (Fig. 8a).

TP53 is a critical regulator of multiple metabolism signal-
ing pathways in lung cancer cells [36–38]. Loss of TP53 func-
tions induces uncontrolled pyrimidine synthesis [39]. The
present study assessed whether TP53 regulated the expression
levels of the pyrimidine metabolic rate–limiting enzymes. We
found that pyrimidine metabolic rate–limiting enzymes CAD,

CTPS, DTYMK, RRM1, RRM2, TYMS, UCK2, and TK1
were all highly expressed in TP53 mutant lung cancer patients
(Fig. 8b). Interestingly, TK2 which was downregulated in
lung tumor tissues was highly expressed in lung cancer pa-
tients with wild type TP53 (Fig. 8b).

Those results were further validated in the TCGA LUAD
dataset. The expression levels of pyrimidine metabolic rate–
limiting enzymes CAD, CTPS, DTYMK, RRM1, RRM2,
TYMS, UCK2, and TK1 were particularly higher in TP53
mutant lung cancer patients (Fig. 8c). And the expression
levels of TK2 were lower in TP53 mutant lung cancer patients

Fig. 9 Pyrimidine metabolic rate
limiting enzymes are highly
correlated in lung cancer. a
Corrplots demonstrated the
correlation between pyrimidine
metabolic rate–limiting enzymes
in the GSE30219 and TCGA
LUAD dataset. The color and the
size of the circle represented the
correlation coefficients. b
Multivariate Cox regression was
used to test the relationships of
pyrimidine metabolic rate–
limiting enzyme expressions and
overall survival in lung cancer
patients in the GSE30219 and
TCGA LUAD dataset

359Purinergic Signalling (2020) 16:347–366



(Fig. 8c). Overall, our results suggested that hypo-DNAmeth-
ylation, DNA amplification, and TP53 mutation were com-
bined contributing to the high expression levels of pyrimidine
metabolic rate–limiting enzymes in lung cancer cells.

Pyrimidine metabolic rate–limiting enzymes are
highly correlated in lung cancer

Using Spearman’s correlation, we found the high correlations
of pyrimidine metabolic rate–limiting enzymes. Particularly,
RRM2 was highly associated with TK1, RRM1, TYMS, and
DTYMK in GSE30219 dataset (Fig. 9a). However, NT5C2
and TK2 were negatively correlated with other pyrimidine
metabolic rate–limiting enzymes (Fig. 9a). Similar results
were obtained from TCGA LUAD dataset. RRM2 was posi-
tively correlated with other pyrimidine metabolic rate–

limiting enzymes, while TK2 was negatively correlated with
other pyrimidine metabolic rate–limiting enzymes (Fig. 9a).

Furthermore, we used multivariate Cox regression analysis to
determine the connections between the pyrimidine metabolic
rate–limiting enzymes. It was revealed that RRM2 was an inde-
pendent prognostic marker in lung cancer in GSE30219 dataset
(Fig. 9b). In LUAD dataset, all pyrimidine metabolic rate–
limiting enzymes were interconnected with each other and those
genes were not independent prognostic markers (Fig. 9b).

Combined pyrimidine metabolic rate–limiting en-
zymes have significant prognostic effects of in lung
cancer

Next, we tested the combined prognostic effects of py-
rimidine metabolic rate–limiting enzymes in lung

Fig. 10 Combined pyrimidine metabolic rate–limiting enzymes have sig-
nificant prognostic effects of in lung cancer. a Unsupervised clustering
heatmap showed the division of two clusters of lung cancer patients by
the expression levels of pyrimidine metabolic rate–limiting enzymes in
GSE30219 dataset. Each line represented one patient. b The Kaplan-
Meier plotter demonstrated the different clinical outcomes of those two
clusters of lung cancer patients in GSE30219 dataset. The log-rank test

was used to determine the overall survival P value. c Unsupervised clus-
tering heatmap showed the division of two clusters of lung cancer patients
by the expression levels of pyrimidine metabolic rate–limiting enzymes
in TCGA LUAD dataset. d The Kaplan-Meier plotter demonstrated the
different clinical outcomes of those two clusters of lung cancer patients in
TCGA LUAD dataset. The log-rank test was used to determine the over-
all survival P value
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cancer. Lung cancer patients were divided into two clus-
ters based on the unsupervised clustering of the expres-
sion levels of pyrimidine metabolic rate–limiting en-
zymes in GSE30219 dataset (Fig. 10a). The cluster1
lung patients were with lower expression levels of
CAD, CTPS, RRM1, RRM2, DTYMK, TK1, TYMS,
and UCK2 (Fig. 10a). Lung cancer patients in cluster1
were with longer overall survival time, compared with
lung cancer patients in cluster 2 (Fig. 10b).

Similarly, the patients were divided into two clusters by the
unsupervised clustering of the pyrimidine metabolic rate–
limiting enzymes in TCGA LUAD dataset (Fig. 10c). CAD,
CTPS, RRM1, RRM2, DTYMK, TK1, TYMS, and UCK2
were downregulated in cluser1 lung cancer patients
(Fig. 10c). Lung cancer patients in cluster1 demonstrated bet-
ter prognostic outcomes, compared with lung cancer patients
in cluster 2 (Fig. 10d).

Pyrimidine metabolic rate–limiting enzymes are up-
regulated in multiple types of tumor

Comprehensively, using TCGA database, we investigated
the expression levels of pyrimidine metabolic rate–
limiting enzymes across different types of cancer. The
expression levels of the pyrimidine metabolic rate–
limiting enzymes in normal tissues and corresponding
tumor tissues were investigated in bladder urothelial car-
cinoma (BLCA), breast invasive carcinoma (BRCA), co-
lon adenocarcinoma (COAD), esophageal carcinoma
(ESCA), kidney renal papillary cell carcinoma (KIRP),
liver hepatocellular carcinoma (LIHC), lung squamous
cell carcinoma (LUSC), stomach adenocarcinoma
(STAD), and thyroid cancer (THCA) (Fig. 11). As illus-
trated in the heatmaps, pyrimidine metabolic rate–
limiting enzymes CAD, CTPS, CTPS2, DHODH,
DTYMK, NT5C3, RRM1, RRM2, TK2, TYMS, UCK2,
and UCKL1 were highly expressed in tumor tissues
(Fig. 11). However, TK2 and NT5C2 were not signifi-
cantly upregulated in tumor tissues (Fig. 11). Moreover,
β-actin was not altered in cancer tissues in most types of
tumor (Fig. 11). These results indicated the universal
importance of pyrimidine metabolic rate–limiting en-
zymes in the development of cancer.

Using GSEA assay, we found that pyrimidine metab-
olism signaling pathway was only significantly enriched
in BRCA and THCA (Fig. S2). Although, pyrimidine
metabolic rate–limiting enzymes were upregulated in
BLCA, COAD, ESCA, LIHC, and STAD, the pyrimi-
dine metabolism signaling pathway was not significantly
enriched (Fig. S2).

The association between the expression levels of
pyrimidine metabolic rate–limiting enzymes and the
tumor overall survival in liver cancer, breast cancer, or
stomach cancer: analysis from breast invasive carci-
noma, stomach adenocarcinoma, and liver hepato-
cellular carcinoma datasets

Like LUAD, pyrimidine metabolic rate–limiting enzymes
were highly expressed in BRCA, LIHC, and STAD.
However, in TCGA BRCA dataset, pyrimidine metabolic
rate–limiting enzymes CAD, CTPS, DHODH, DTYMK,
NT5C3, RRM1, RRM2, TK1, TYMS, UCK2, NT5C2, or
TK2 demonstrated no prognostic effect (Fig. S3). Similarly,
expression levels of pyrimidine metabolic rate–limiting en-
zymes had no clinical relevance in stomach cancer (Fig. S4).
Only, TK1 was associated with better clinical outcomes (Fig.
S4).

On the contrary, high expression levels of pyrimidine met-
abolic rate–limiting enzymes CAD, DTYMK, NT5C3,
RRM1, RRM2, TK1, TYMS, and UCK2 were all associated
with worse clinical outcomes in TCGA LIHC dataset
(Fig. 12). Moreover, patients with higher expression levels
of TK2 had better prognosis than patients with low expression
levels of TK2 (Fig. 12). Those results highlighted the different
prognostic effects of pyrimidine metabolic rate–limiting en-
zymes in different tumor types.

Discussion

Metabolic reprogramming is a hallmark of cancer [20] and
provides critical information for cancer classification and clin-
ical prognosis [40]. Here, we identified the clinical relevance
of pyrimidine metabolic rate–limiting enzymes in lung cancer
based on their mRNA expression patterns using GEO and
TCGAdatasets. Ideally, we should use the metabolic activities
to determine the prognostic effects of the pyrimidine metabol-
ic rate–limiting enzymes. However, previous results sug-
gested that the metabolic reprogramming was caused by gene
expression changes [41] and the expression profiles of meta-
bolic pathway genes reflected the actual metabolic activities
[42]. So, the expression patterns of metabolic genes had po-
tential implications for clinical prognosis.

Lung cancer is a heterogeneous disease, including many dif-
ferent subtypes with different genetic and epigenetic abnormality
[6]. Because of the complexity of lung cancer [43], results de-
rived from GEO and TCGA datasets were not always consistent
with each other. Also, the difference in treatment protocol and
microarray platform in individual study limited the further appli-
cations of these findings [44]. For example, CAD, CTPS, and
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DHODH had no prognostic effect in LUAD dataset but associ-
ated with the clinical outcomes in lung cancer patients derived
from GEO datasets. To address this problem, we collected and
studied multiple lung cancer GEO datasets and TCGA datasets.
Our results suggested that the converged pyrimidine metabolism

signaling pathway was generally altered in many datasets. And
the pyrimidine metabolic rate–limiting enzymes DTYMK,
NT5C3, RRM1, RRM2, TK1, TYMS, and UCK2 had particular
values in lung cancer prognosis. Those highly expressed pyrim-
idine metabolic rate–limiting enzyme increased pyrimidine me-
tabolism, facilitated the uncontrolled cell proliferation, and
changed of the immune cell responses.

Some of the pyrimidine metabolic rate–limiting enzymes,
such as TK1 [45], UCK2 [46], and RRM1 [47], were reported
to be associated with the poor outcomes of lung cancer in sys-
tematic review or meta-analysis. Functional studies identified
pyrimidine metabolic rate–limiting enzymes DHODH [48] and
DTYMK [49] as therapeutic targets in lung cancer. Using the
GEO and TCGA datasets, we confirmed the prognostic signifi-
cance of pyrimidine metabolic rate–limiting enzymes TK1,

Fig. 12 Expression levels of pyrimidine metabolic rate–limiting enzymes
are associated with the overall survival in liver cancer: analysis from
TCGA LIHC dataset. The Kaplan-Meier plotters demonstrated the asso-
ciations between pyrimidine metabolic rate limiting enzymes and overall

survival in liver cancer using the TCGA LIHC dataset. The log-rank test
was used to determine the overall survival P value. LIHC: liver hepato-
cellular carcinoma

�Fig. 11 Pyrimidine metabolic rate limiting enzymes are up-regulated in
multiple types of tumor. Heatmaps demonstrated the expression levels
(log2 count) of pyrimidine metabolic rate limiting enzymes in normal and
tumor samples in BLCA, BRCA, COAD, ESCA, KIRP, LIHC, LUSC,
STAD, and THCA. Upregulated (red), downregulated (green), and un-
changed (black) genes were delineated. BLCA, bladder urothelial carci-
noma; BRCA, breast invasive carcinoma; COAD, colon adenocarcino-
ma; ESCA, esophageal carcinoma; KIRP, kidney renal papillary cell
carcinoma; LIHC, liver hepatocellular carcinoma; LUSC, lung squamous
cell carcinoma; STAD, stomach adenocarcinoma; THCA, thyroid cancer
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UCK2, and RRM1 in LUAD. Furthermore, we found that py-
rimidine metabolic rate–limiting enzymes CAD, RRM2,
DTYMK, TYMS, TK2, and NR5C2 were all associated with
the clinical outcomes of lung cancer and liver cancer. However,
the expression levels and prognostic effects of purinergic recep-
tors in lung cancer were complex. It was reported that P2RX7
increased cancer invasiveness and metastasis and was adverse
prognostic factor [50, 51]. However, in our data, we found that
P2RX7 was downregulated and was a good prognostic factor in
lung cancer. Moreover, purinergic receptors P2RX1, P2RY12,
P2RY13, and P2RY14 shared similar expression profiling and
prognostic relevance. Those results suggested the complex func-
tions of purinergic receptors in cancer development and should
be further studied. Particularly, the purinergic receptors may in-
fluence the tumor immune cell responses by altering the tumor
microenvironment.

The present study provided potential biomarkers for clini-
cal prognosis of lung cancer. However, there were some lim-
itations in this study. First, although the expression profiles of
metabolic genes reflected the actual metabolic activities, the
enzymatic activities of pyrimidine metabolic rate–limiting en-
zymes should be further tested. Second, clinical validations
and functional studies were needed to reveal the inner mech-
anisms of how pyrimidine metabolic rate–limiting enzymes
correlated with the clinical outcomes of lung cancer patients.
Our results also suggested the different prognostic effects of
pyrimidine metabolic rate–limiting enzymes in LUAD and
LUSC. So, the clinical relevance the pyrimidine metabolic
rate–limiting enzymes in different subtypes of lung cancer
should also be further illustrated. In our further studies, we
will address those limitations and provide a more precise
and reliable prognostic signature based on the metabolic ac-
tivities of the pyrimidine metabolic rate–limiting enzymes.
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