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Epigenetic dysregulation has been implicated in a variety of pathological processes
including carcinogenesis. A major group of enzymes that influence epigenetic
modifications are lysine demethylases (KDMs) also known as “erasers” which remove
methyl groups on lysine (K) amino acids of histones. Numerous studies have implicated
aberrant lysine demethylase activity in a variety of cancers, including melanoma. This
review will focus on the structure, classification and functions of KDMs in normal biology
and the current knowledge of how KDMs are deregulated in cancer pathogenesis,
emphasizing our interest in melanoma. We highlight the current knowledge gaps
of KDMs in melanoma pathobiology and describe opportunities to increases our
understanding of their importance in this disease. We summarize the progress of several
pre-clinical compounds that inhibit KDMs and represent promising candidates for further
investigation in oncology.
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INTRODUCTION

There are numerous genetic alterations which promote carcinogenesis which include mutations
of certain genes and chromosomes. Epigenetics is defined as heritable functional changes in the
genome which do not involve a change in the DNA sequence (Dupont et al., 2009). The Greek
prefix “epi” denotes “over, outside of, or around” implying additional factors that may influence
traditional genetic inheritance patterns. Epigenetics is essential in normal development and biology
but dysregulation has been implicated as a key impetus of carcinogenesis and resistance. All
cells contain genetic information in the form of DNA which is wound around proteins called
histones (Kornberg, 1974). The DNA is assembled into units called nucleosomes which form
a complex consisting of histones and DNA known as chromatin (Kornberg, 1974). Chromatin
is organized into compact, transcriptionally inactive regions called heterochromatin, usually
around the periphery of the nucleus and loosely arranged, transcriptionally active chromatin
called euchromatin (Elgin, 1996). This formation has an important role in the regulation of gene
expression as well as controlling the transcription, replication, recombination and repairing of
DNA (Elgin, 1996). Various epigenetic changes can affect chromatin structure and hence gene
expression. One of the most well studied epigenetic changes involves methylation which may occur
at the DNA or histone level (Tost, 2010). DNA methylation involves the transfer of methyl groups
by DNA methyltransferases (DNMTs) to individual nucleotide bases, altering gene expression

Frontiers in Genetics | www.frontiersin.org 1 June 2021 | Volume 12 | Article 680633

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.680633
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.680633
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.680633&domain=pdf&date_stamp=2021-06-16
https://www.frontiersin.org/articles/10.3389/fgene.2021.680633/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-680633 June 10, 2021 Time: 17:20 # 2

Punnia-Moorthy et al. Lysine Demethylases in Cancer

(Bilian Jin and Robertson, 2011). The family of DNMT enzymes
adds methyl groups while removal is mediated by the ten eleven
translocation (TET) family (Zhang et al., 2010).

The other major class of methylation is histone methylation
which is a post-translational modification (PTM) of histone
tails. Histone methylation involves the addition of (via writer
enzymes) or removal of (via eraser enzymes) methyl groups,
typically on lysine (K) or arginine (R) amino acids of histone type
1–4 tails (Figure 1). Lysine methyltransferases (KMTs) drive the
addition of methyl groups, whereas lysine demethylases (KDMs)
are responsible for the removal of methyl groups. Depending on
the type of histone modifications, the consequence might induce
either an open or closed chromatin state which regulates gene
expression. KDMs rarely act in isolation as enzymatic erasers but
are typically members of large epigenetic complexes, consisting
of other enzymes and transcription factors. This is suggestive of
a scaffolding protein role for KDMs in addition to a catalytic
one. The most well investigated histone lysine methylation sites
include H3K4, H3K9, H3K27, H3K36, H3K79, and H4K20
(Figure 1) that will either compact or open chromatin depending
on lysine position and the number of methyl groups. Hence this
review will focus on what is currently known about KDMs in
normal biology and cancers including melanoma. A summary of
the progress of current KDM inhibitors is also discussed.

THE FUNCTION OF KDMs IN NORMAL
DEVELOPMENT AND DEREGULATION IN
CANCER

Lysine demethylases are critical for normal development but
numerous studies have implicated the dysregulation of several
KDMs in cancers. This is likely due to the ability of KDMs
to govern major changes in the transcriptional networks of
hundreds of genes with potential roles in all major hallmarks of
cancer. The roles of each KDM in normal biology and cancer is
described below and Table 1 summarizes studies in cancer.

Amine Oxidase KDMs
Lysine demethylases are classified into two groups according
to the catalytic mechanisms of demethylation- amine oxidase
or jumonji C domain containing KDMs. Class I is the amine-
oxidase lysine specific demethylases 1 and 2 (LSD1 and 2), also
known as KDM1A and KDM1B. KDM1A and KDM1B use
Flavin adenine dinucleotide (FAD) as a substrate to generate
an imine intermediate which is hydrolyzed to produce the
demethylated lysine residue (Walport et al., 2012). The amines-
oxidase like (AOL) catalytic domain at the C-terminal in
KDM1A and KDM1B consists of two folded subdomains. The
FAD and substrate binding regions are structurally related to
the superfamily of monoamine oxidases (MAO). In particular
MAO-A and MAO-B- enzymes which catalyze the oxidation of
monoamine (contain one amino group) neurotransmitters which
include serotonin and dopamine (Shi et al., 2004; Willmann et al.,
2012). The N-terminal of KDM1A contains the SWIRM domain
which is named after the SWI3, RSC8 and MOIRA proteins and
is essential for protein stability and interactions with histone tails.

KDM1A was the first histone demethylase identified (Shi
et al., 2004). Functionally, KDM1A predominantly catalyzes the
removal of methyl groups from mono and di-methylated lysine
residues at H3K4 inducing gene repression (Walport et al., 2012).
An early in vivo study showed that KDM1A demethylation of
K1096 in the DNA methyl transferase enzyme DNMT1 was
essential for the gastrulation stage of murine embryogenesis
(Wang et al., 2009). Genetic ablation of KDM1A in a knockout
mouse model was embryonic lethal (Wang et al., 2007, 2009).

Interestingly, KDM1A can demethylate non-histone proteins
in osteosarcoma cells such as the tumor suppressor p53 which has
an important role in regulation of pro-apoptotic genes. Another
example showed KDM1A can demethylate K185 of transcription
factor E2F1 which has an important role in regulating the cell
cycle and tumor suppressor genes in lung cancer cells (Huang
et al., 2007; Wang et al., 2009; Kontaki and Talianidis, 2010;
Xie et al., 2011). A study found that overexpression of KDM1A
induces E2F1 signaling via histone demethylation and promotes
cell proliferation in oral cancer and that inhibition of KDM1A
reduces E2F1 signaling, implying an oncogenic role of KDM1A
in oral cancer (Narayanan et al., 2015).

The other KDM1 family member, KDM1B has been reported
to catalyze the removal of methyl groups at H3K4 and this
enzyme is essential for oocyte development (Ciccone et al., 2009).
KDM1B knockout mice exhibit embryonic lethality (Ciccone
et al., 2009), highlighting its importance in normal biology.

Jumonji C Demethylases
Class II KDMs are the demethylases that contain a Jumonji
C domain (JMjC KDMs “Jumonji” meaning cruciform in
Japanese). This includes the KDM2-6 subfamilies which consists
of 20 enzymes that are grouped into five subfamilies: KDM2,
KDM3, KDM4, KDM5, and KDM6 (Klose et al., 2006). The
JMjC KDMs catalyze the removal of methyl groups from
mono, di and trimethylated lysines at various sites and use
dioxygen and 2-oxoglutarate (2OG) as substrates with Fe
(II) as an essential cofactor (Walport et al., 2012). Unlike
KDM1A/1B the JMjC KDMs are able to remove methyl groups
from trimethylated lysine sites since the mechanism doesn’t
require a formation of an imine. The catalytic domain of
the JMjC KDMs is structurally related to the superfamily of
2OG- dependent oxygenases which play an important role in
fatty acid metabolism, protein biosynthesis and nucleic acid
repair/modification (Loenarz and Schofield, 2008).

KDM2/3 Demethylases
The KDM2 subfamily consists of two demethylases KDM2A
and KDM2B. Both KDM2A and KDM2B have been reported
to be oncogenic (Pedersen and Helin, 2010). KDM2A has
been reported to be upregulated and induces proliferation
in lung, gastric and breast cancer. KDM2A overexpression
was found to increase cell proliferation and invasion through
activation of ERK1/2 signaling in lung cancer as well as
being associated with poor prognosis in lung cancer patients
(Wagner et al., 2013). KDM2A overexpression also promoted
cell growth and migration in gastric cancer by downregulation
of tumor suppressor gene programmed cell death 4 (PDCD4)
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FIGURE 1 | Depicting the mechanism of action of KDMs on histones. Nucleosomes consist of four subunits of histones which contain amino acid tails that are
modified by epigenetic regulators including KDMs. KDM1A/B demethylates H3K9me1/H3K9me2 and H3K4me1/me2 inducing gene repression or activation. KDM2
and KDM4 demethylases target H3K36me1/me2/me3 inducing gene activation. KDM3 demethylases target H3K9me1/me2 inducing gene activation. KDM5
demethylases targets H3K4me2/me3 inducing gene repression. KDM6 and KDM7 demethylases target H3K27me2/me3 inducing gene activation. KDM7
demethylases target H4K20me1 and H3K9me2/me3. KDM8 demethylase target H3K36me3 inducing gene activation. Figure is adapted from Verde et al. (2017).

(Huang et al., 2015). In breast cancer, KDM2A is highly expressed
in myoepithelial cells which have been reported to have anti-
tumor properties. KDM2A ablation in these cells induced
increased invasion and migration via downregulation of MMP
proteins and repression of EF21 signaling (Rizwani et al., 2014).

KDM2B is overexpressed in numerous cancers. Knockdown of
KDM2B reduced cell growth in gastric cancer in vitro and in vivo
and induced autophagy- a process in which cells remove damaged
cell components (Zhao et al., 2017). KDM2B overexpression
induces transformation of hematopoietic progenitor cells in
acute myeloid leukemia whereas reduction of KDM2B inhibited
Hox9/Meis1 induced leukemic transformation (He et al., 2011).
Overexpression of KDM2B is observed in ovarian cancer
and when knocked down in vitro and in vivo reduced cell
proliferation, migration and tumor growth (Kuang et al., 2017).
Pancreatic cancers with increased KDM2B promoted tumor
formation in cooperation with the oncogene Kras in an in vivo
model (Tzatsos et al., 2013). Another study showed that KDM2B
overexpression was associated with poor prognosis in glioma and
KDM2B knockdown inhibited cell proliferation and induced cell
cycle arrest (Wang Y. et al., 2018).

The KDM3 subfamily consists of three demethylases; KDM3A,
KDM3B, and JMJD1C. It has been reported that KDM3A is
important in spermatogenesis and male KDM3A knockout mice
are infertile (Pedersen and Helin, 2010). The function of KDM3B
and JMJD1C is largely unknown.

KDM4/5 Demethylases
The KDM4 subfamily consists of five demethylases- KDM4A,
KDM4B, KDM4C, KDM4D, and KDM4E. KDM4A, KDM4B,
KDM4C, and KDM4D have been reported to be important
in oncogenesis, but the function of KDM4E is unknown

(Pedersen and Helin, 2010). KDM4A overexpression was found
to stimulate the AR, inducing the expression of prostate specific
antigen, implicated in the progression of prostate cancer (Kim
et al., 2016). KDM4A is overexpressed in breast cancer and
KDM4A knockdown inhibited cell proliferation, migration and
invasion (Li et al., 2012). Lung cancers with increased KDM4A
are associated with poor prognosis (Xu et al., 2016).

KDM4B overexpression promoted DNA damage in
breast cancer cells which was significantly reduced upon
pharmacological inhibition of KDM4B, by induction of
apoptosis in triple negative breast cancers deficient in the tumor
suppressor gene, PTEN (Wang W. et al., 2018; Xiang et al., 2019).
KDM4B overexpression also promoted proliferation, growth
and glucose uptake in colorectal cancer cells whereas KDM4B
knockdown inhibited tumor growth significantly in an in vivo
model (Li et al., 2020).

KDM4C overexpression is associated with poor prognosis in
prostate cancer and can co-regulate transcriptional activation of
the AR. KDM4C knockdown significantly reduced proliferation,
colony formation, AR transcriptional activity in prostate cancer
cells and inhibited tumor growth of a prostate cancer model in
zebrafish (Lin et al., 2019).

The KDM5 subfamily consists of four demethylases- KDM5A,
KDM5B, KDM5C, and KDM5D. This group of demethylases
can remove methyl groups from di and trimethylated lysines
on H3K4. The KDM5 subfamily has been reported to play
an important role in development, identified in drosophila
melanogaster as Lid (Little Imaginal Disks) protein due to the
phenotype visible in mutant larvae (Gildea et al., 2000). This
protein was classified as a H3K4 histone demethylase which
had all the domains of the human JARID1 family. The Lid
protein binds to drosophila Myc (dMyC)—a transcription factor
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TABLE 1 | Summary of KDMs reported to be significant in cancer.

KDM Alias Target Histone
demethylation site

Gene activation
or repression

Cancer study implicated in

KDM1A LSD1,
AOF2, BHC110,
KDM1

H3K4me1
H3K4me2

Repression
Repression

Leukemia (Harris et al., 2012), prostate cancer (Willmann et al., 2012),
breast cancer (Perillo et al., 2008), neuroblastoma (Schulte et al., 2009;
Amente et al., 2015)

KDM1B LSD2,
AOF1

H3K4me1
H3K4me2

Repression
Repression

Breast cancer (Katz et al., 2014; Chen et al., 2017)

KDM2A JHDM1A, FBXL11 H3K36me1
H3K36me2

Activation
Activation

Leukemia (Dong et al., 2013), non-small cell lung cancer (NSCLC)
(Wagner et al., 2013), gastric cancer (Huang et al., 2015; Kong et al.,
2016), breast cancer (Rizwani et al., 2014)

KDM2B JHDM1B, FBXL10 H3K36me1
H3K36me2
H3K4me3

Activation
Activation
Repression

Leukemia (He et al., 2011), pancreatic cancer (Tzatsos et al., 2013),
ovarian cancer (Kuang et al., 2017), gastric cancer (Zhao et al., 2017),
glioma (Wang Y. et al., 2018)

KDM3A JHDM2A, JMJD1A,
JMJD1

H3K9me1
H3K9me2

Activation
Activation

Breast cancer (Ramadoss et al., 2017a), ovarian cancer (Ramadoss
et al., 2017b), Ewing sarcoma (Sechler et al., 2017), prostate cancer
(Wilson et al., 2017)

KDM3B JHDM2B, JMJD1B H3K9me1
H3K9me2

Activation
Activation

Leukemia (Kim et al., 2012)

KDM3C JHDM2C H3K9me1
H3K9me2

Activation
Activation

unknown

KDM4A JMDM3A, JMJD2A H3K9me2
H3K9me3

Activation
Activation

Endometrial cancer (Qiu et al., 2015), breast cancer (Berry et al., 2012)

H3K36me2
H3K36me3

Activation
Activation

KDM4B JMDM3B, JMJD2B H3K9me2
H3K9me3

Activation
Activation
Activation
Activation

Breast cancer (Kawazu et al., 2011)
Colorectal cancer (Li et al., 2020)

H3K36me2
H3K36me3

KDM4C JMDM3C, JMJD2C H3K9me2
H3K9me3

Activation
Activation

Prostate cancer (Wissmann et al., 2007)

H3K36me2
H3K36me3

Activation
Activation

KDM4D JMDM3D, JMJD2D H3K9me3 Activation Prostate cancer (Shin and Janknecht, 2007)

KDM4E KDM4DL, JMJD2E H3K9me3 Activation Unknown

KDM5A JARID1A
RBBP2

H3K4me2
H3K4me3

Repression
Repression

Leukemia (van Zutven et al., 2006),breast cancer (Hou et al., 2012),
ovarian cancer (Feng et al., 2017), melanoma (Roesch et al., 2005)

KDM5B JARID1B PLU1 H3K4me2
H3K4me3

Repression
Repression

Breast cancer (Catchpole et al., 2011), prostate cancer (Xiang et al.,
2007), melanoma (Roesch et al., 2010)

KDM5C JARID1C SMCX H3K4me2
H3K4me3

Repression
Repression

Cervical cancer (Smith et al., 2010), renal cell carcinoma (Yan et al.,
2007; Niu et al., 2012)

KDM5D JARID1D H3K4me2
H3K4me3

Repression
Repression

Prostate cancer (Komura et al., 2016, 2018; Li et al., 2016)

KDM6A UTX H3K27me2
H3K27me3

Activation
Activation

Bladder cancer (Ler et al., 2017), cervical cancer (Soto et al., 2017),
breast cancer (Taube et al., 2017), multiple myeloma (Ezponda et al.,
2017), lung cancer (Terashima et al., 2017), pancreatic cancer
(Andricovich et al., 2018)

KDM6B JMJD3 H3K27me2
H3K27me3

Activation
Activation

Colon cancer (Pereira et al., 2011; Tokunaga et al., 2016), pancreatic
cancer (Yamamoto et al., 2014), Prostate cancer (Daures et al., 2016),
diffuse large B-cell lymphoma (Mathur et al., 2017), non-small cell lung
cancer (Ma et al., 2015), clear cell renal carcinoma (Li et al., 2015),
multiple myeloma (Ohguchi et al., 2017), acute myeloid leukemia (Li
et al., 2018), melanoma (Park et al., 2016), ovarian cancer (Pinton et al.,
2018)

KDM7A JHDM1D H3K27me1
H3K27me2

Activation
Activation
Activation
Activation
Activation

Melanoma and cervical cancer (Osawa et al., 2011), Prostate cancer
(Lee et al., 2018)

H3K9me1
H3K9me2
H4K20me2

KDM8 JMJD5 H3K36me3 Activation Breast cancer (Hsia et al., 2010)
Prostate cancer (Wang et al., 2019)
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that is important in cell cycle progression, cell proliferation and
apoptosis, and is frequently dysregulated in cancer (Secombe and
Eisenman, 2007; Li et al., 2010).

KDM5A was initially identified as a binding partner of
retinoblastoma protein (pRB) (Defeo-Jones et al., 1991). pRB
is a tumor suppressor that inhibits cell cycle progression,
preventing cell growth and promoting senescence. Embryonic
fibroblasts isolated from KDM5A knockout mouse revealed an
important role for KDM5A in mitochondrial function (Varaljai
et al., 2015) and cell differentiation (Benevolenskaya et al., 2005;
Lopez-Bigas et al., 2008).

KDM5B/JARID1B/PLU1 was initially identified in a study
targeting genes regulated by the tyrosine kinase HER2 (Lu
et al., 1999). A later study found that KDM5B had H3K4
histone demethylase activity and inhibited the expression
of tumor suppressor genes BRAC1 and CAV1 (Yamane
et al., 2007). In addition, KDM5B has been reported to be
overexpressed in numerous cancers and has been identified as a
potential oncogene.

KDM5D/JARID1D is the least well investigated demethylases
from the KDM5 subfamily, but has been implicated in prostate
cancer progression (Perinchery et al., 2000).

KDM6/7 Demethylases
The KDM6 subfamily consists of three demethylases- KDM6A,
KDM6B, and UTY. KDM6A also known as UTX can remove
methyl groups from di and trimethylated lysines on H3K27-
a mark associated with suppression of gene transcription
(Pedersen and Helin, 2010). KDM6A was initially identified
as playing an important role in embryonic development and
cell differentiation (Hong et al., 2007). KDM6A together with
methyltransferases MLL2 (KMT2D) and MLL3 (KMT2C) is an
important component of the COMPASS complex also known
as the ASCOM complex which mediates the transcriptional
activation of genes via H3K4 trimethylation and H3K27me2/3
demethylation (Shilatifard, 2008; Van der Meulen et al., 2014;
Ford and Dingwall, 2015). The COMPASS complex can
also promote histone acetylation a demethylation independent
activity, by interaction with histone acetyltransferase p300 (CBP)
as well as chromatin remodeling via the SWI/SNF complex
and transcriptional elongation by interacting with transcription
elongation factors (Figure 2; Wang et al., 2017; Schulz et al.,
2019). KDM6A therefore has dual roles in activation of gene
expression. Not only does it remove suppressive marks on
H3K27 but also activates genes by H3K4 trimethylation and
H3K27 acetylation, highlighting the complex interplay between
histone erasers and writers to remodel chromatin in a highly
orchestrated fashion.

KDM6A exhibits another methylation independent role by
directly interacting with DNA binding transcription factors,
including nuclear receptors such as estrogen and retinoic
acid receptors (Cho et al., 2007; Rocha-Viegas et al., 2014;
Xie et al., 2017). KDM6A has been found to interact with
retinoblastoma binding proteins including RBBP5 in vivo,
potentially having an influence on the regulation of cell cycle and
cell differentiation by RB family proteins (Shpargel et al., 2012;
Van der Meulen et al., 2014).

KDM6A has been reported to be inactivated by mutations in
70% of non-invasive bladder cancer causing a loss of KDM6A
expression (Ler et al., 2017). This is suggestive of a tumor
suppressor role in this cancer. Studies have suggested loss of
KDM6A may amplify PRC2 complex mediated gene repression
and dependency in bladder cancer cells that can be sensitized
to EZH2 inhibitors (Atala, 2017). Loss of KDM6A expression
has also been associated with other cancers such as multiple
myeloma (MM) in which KDM6A mutations lead to low KDM6A
expression, resulting in increased proliferation, adhesion and
tumorigenicity. Loss of KDM6A also sensitized MM cells to
EZH2 inhibitors GSK343 and GSK126, inducing cell death and
decreased proliferation (Ezponda et al., 2017). Squamous cell,
metastatic pancreatic cancer in females was also associated with
loss of KDM6A expression in a knockout mouse model. This
was attributed to deregulation of the COMPASS complex and
activation of oncogenes MYC and RUNX3 (Zhu et al., 2014). The
cells also had increased sensitivity to bromodomains and extra-
terminal (BET) inhibitors that target a type of epigenetic “reader”
protein. Collectively this data suggests opportunities to indirectly
target KDMs by studying the rich network of histone eraser or
reader proteins that KDMs interact with.

In contrast to loss of KDM6A its presence may also be
associated with other cancer types such as cervical cancer, where
it appeared necessary for HPVE7 expressing cells to survive and
de-repress the cell cycle DNA replication inhibitor p21 (Soto
et al., 2017). In addition, KDM6A has been shown to support
the oncogenic function of the estrogen receptor in breast cancer
(Kim et al., 2017; Taube et al., 2017; Xie et al., 2017). This suggests
KDM6A may operate in a cell type dependant manner and
further investigation is required to resolve the tumor suppressive
vs oncogenic role in different types of cancer.

KDM6B also known as JMJD3 has been reported to induce
expression of oncogenes of the RAS/RAF MAP kinase signaling
pathway and is expressed on activated macrophages, purported
to play a role in inflammation (Agger et al., 2009).

Initial studies showed that KDM6B expression was important
in the progression and prognosis of colon cancer (Pereira et al.,
2011; Tokunaga et al., 2016). KDM6B has been reported to be
overexpressed in prostate cancer with its expression increasing
incrementally as the diseases progresses (Daures et al., 2016). In
addition, KDM6B was found to induce epithelial to mesenchymal
transition (EMT) and metastasis in clear cell renal carcinoma
via activation of EMT factor Slug (Li et al., 2015). KDM6B
has been reported to be overexpressed in diffuse large B-cell
lymphoma (DLBCL) and is associated with poor survival. When
DLBCL cells were treated with a small molecule KDM6 inhibitor
(GSK-J4) not only was KDM6B expression inhibited, the cells
were sensitized to chemotherapy agents (Mathur et al., 2017).
KDM6B is highly expressed in multiple myeloma cells and
when KDM6B was knocked down, growth and survival of
these cells was inhibited (Ohguchi et al., 2017). Recent studies
found that KDM6B overexpression promoted ovarian cancer cell
migration and invasion via modulation of transforming growth
factor-β1 (TGF-β1) (Pinton et al., 2018; Liang et al., 2019). In
contrast, KDM6B overexpression induced cell apoptosis in non-
small cell lung cancer (NSCLC) via translocation of FOXO1
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FIGURE 2 | Depicting the COMPASS complex and PCR2 complex that contribute to the open and closed chromatin states. In a normal healthy cell the COMPASS
complex removes methyl groups from H3K27me3 and adds methyl groups to H3K4me and prevents PRC2 complex from adding methyl groups to H3K27me. This
induces transcriptional activation of tumor suppressive and IFN-response genes. In the context of cancer UTX (KDM6A) and MLL2/3 are frequently mutated in the
COMPASS complex, causing a loss of expression. This prevents UTX from binding to the compass complex and no H3K27me3 demethylation occurs, enabling the
PRC2 complex to add methyl groups on H3K27me and remove methyl groups from H3K4me, inducing transcriptional repression of tumor suppressor and IFN
response genes, promoting cancer cell growth.

(Ma et al., 2015) indicating that the role of KDM6B may be cell
type dependent.

KDM7A/JHDM1D can remove methyl groups from di and
trimethylated lysines on histone H3K4 as well as methyl groups
from H3K9 (Klose et al., 2006; Wen et al., 2010). KDM7A has
been reported to play an important role in the regulation of neural
differentiation in particular the regions of the brain (Huang et al.,
2010; Tsukada et al., 2010) but is not well studied in cancer.

KDM8 Demethylase
The most recently identified KDM is KDM8 also known as
JMJD5 and demethylates H3K36me2 inducing gene activation.
KDM8 was initially identified to play an important role in
embryogenesis and stem cell renewal (Oh and Janknecht, 2012;
Zhu et al., 2014) and can promote carcinogenesis. A study
showed KDM8 overexpression induced the expression of cell
cycle promoter gene cyclin D1, promoting cell proliferation
in a breast cancer cells model in vitro and conversely, KDM8
knockdown inhibited cell growth (Hsia et al., 2010). In addition,
KDM8 overexpression induces activation of AR transcriptional
activity and promotes cell growth in prostate cancer in vitro and
in vivo (Wang et al., 2019).

Lysine demethylases have been implicated in a variety of
cancers (summarized in Table 1) however, very few KDMs have
been investigated in melanoma. We analyzed the percentage of
mutation rates and types found in KDMs in the melanoma cohort
obtained from the cancer genome atlas (TCGA) (Figure 3) and in

a second independent dataset known as the Australian Melanoma
Genome Project (AMGP) (Figure 4). We found that KDM1B
and KDM5B exhibited the highest mutation rates in melanoma
in the TCGA dataset. The majority of KDMs with the exception
of KDM6C are upregulated in this dataset further emphasizing
their importance in melanogenesis (Figure 3). KDM2B and
KDM4C contained the highest number of alterations in the
AMGP, however, this dataset does not include mRNA expression.
The current knowledge and relevance of KDMs in melanoma will
be discussed in the following section.

Current Knowledge and Importance of
KDMs in Melanogenesis
Melanoma is the most deadly type of skin cancer and is the
most commonly diagnosed cancer in young Australians (AIHW,
2017). Analysis of two independent cohorts showed that KDM
alterations are frequent in melanoma (Figures 3, 4) and thus
warrant further investigation into their mechanistic role.

The most extensively studied KDM in melanoma is KDM5B.
Studies found that KDM5B expression is higher in melanocytic
nevi compared to advanced and metastatic melanomas (Roesch
et al., 2005, 2010). High KDM5B expression was associated with a
slow cycling population of melanoma cells that prolonged growth
and self-renewal. An effect was observed on Notch signaling in
that KDM5B suppressed the Notch ligand Jagged 1, causing less
notch cleavage and a decrease in the expression of Notch target
genes. The study suggests that KDM5B may have an important
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FIGURE 3 | Bar graph showing the percentage and type of each KDM
mutations obtained from the cancer genome atlas (TCGA) database. The data
was obtained from a total of 472 patients with skin cutaneous melanoma
(SKCM).

FIGURE 4 | Bar graph showing the percentage of each and type of KDM
alterations in 183 melanoma patients from the Australian melanoma genome
project (AMGP).

role in the maintenance of stem like progenitors that seed tumor
progression and metastasis in melanoma.

KDM6B was found to be essential for melanoma tumor
growth and metastasis (Park et al., 2016). KDM6B could activate
NF-kB and bone morphogenic protein signaling promoting
melanoma growth and progression.

Another recent study showed that H3K9 demethylases (which
include KDM3B) can disable senescence, allowing ras/braf
mutant melanoma development and progression. This was
reversed when treated with H3K9 inhibitors in vitro and in vivo
(Yu et al., 2018). The main role of KDM6A/B may be as
an antagonist of EZH2 which has been implicated in the
growth and progression in melanoma. Early studies found that
elevated EZH2 expression was associated with poor survival

(Bachmann et al., 2006; McHugh et al., 2007). A melanoma
EZH2 mouse model showed that melanocyte specific loss of
EZH2, or treatment with an EZH2 inhibitor, abolished the
spread of metastatic melanoma (Zingg et al., 2015). EZH2 was
able to induce resistance to immunotherapy treatments anti-
CTLA-4 and IL-2 in a melanoma mouse model and when
inactivated, reversed this resistance (Zingg et al., 2017). A recent
study also found that EZH2 induced loss of primary cilia,
enhanced Wnt signaling and promoted melanoma metastasis
(Zingg et al., 2018). Collectively these studies show that EZH2
has an important role in the progression of melanoma, therefore
its only known antagonist, KDM6A/B, is likely to be of equal
importance and warrants exploration. It is also unclear what role
the COMPASS complex which contains KDM6A may have in
melanoma progression. Importantly it is not clear what role these
complexes may have in determining the sensitivity or resistance
to inhibitors of EZH2 and KDM6A/B.

Potential KDM Sex Specific Roles in
Melanoma?
There is a striking and unexplained predominance for males to be
diagnosed and die from cancer, including melanoma, compared
to females (Joosse et al., 2013; Clocchiatti et al., 2016; Enninga
et al., 2017). It is postulated that this is due to particular X-linked
genes that escape X-inactivation also known as “escape from
X-inactivation tumor suppressor” (EXITS) genes (Dunford et al.,
2017). This means that females express two copies of EXITS
genes compared to males, effectively doubling the amount of
tumor suppressive function. One of these KDMS identified in this
category was KDM6A. Our recent study showed that KDM6A
had a significant prognostic effect in female melanoma patients
inducing better overall survival (Emran et al., 2020). Our TCGA
gene set enrichment analysis (GSEA) suggests that high KDM6A
level associated with upregulation of several immune related
pathways like IFN-gamma which may help anti-tumor immunity
and survival advantage in female melanoma patients compared
to male (Emran et al., 2020).

Other studies support KDM6A in having sex-specific roles
in normal biology and cancer. An early study showed that
KDM6A expression was significantly higher in the brains
and organs of female mice compared to male mice (Xu
et al., 2008). In the context of cancer, a study showed that
KDM6A had a gender-specific, tumor suppressive effect in T-cell
acute lymphoblastic leukemia (T-ALL). The study showed that
KDM6A is frequently mutated in male T-ALL patients and
KDM6A expression is significantly lower compared to females
T-ALL patients (Van der Meulen et al., 2015). In addition, loss
of KDM6A expression in female mice induced poorer survival
by downregulation of T-ALL associated tumor suppressor genes
and upregulation of T-ALL associated oncogenes (Van der
Meulen et al., 2015). Loss of KDM6A expression in female mice
exhibited a squamous-like, malignant phenotype via activation of
oncogenes MYC and RUNX3 in a pancreatic cancer mouse model
(Andricovich et al., 2018).

UTY also known as KDM6C is the male equivalent of
KDM6A/UTX and is expressed on the Y chromosome
but importantly, has significantly reduced H3K27me3
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demethylation activity compared to KDM6A, due to the
substitution of important amino acids in the Jumonji C domain
(Walport et al., 2014).

A study in pancreatic cancer found that concurrent loss of
UTY and KDM6A in male patients was associated with a more
malignant phenotype and poorer and prognosis (Andricovich
et al., 2018). In addition, male mice that expressed UTY and
female mice with heterozygous KDM6A expression exhibited
a less aggressive pancreatic cancer phenotype, while male and
female mice with no UTY or KDM6A exhibited a more aggressive
malignant phenotype (Andricovich et al., 2018). Hence this study
suggests that KDM6A and UTY have tumor-suppressive roles
in pancreatic cancer and that sex-specific mechanism should be
investigated in melanoma and other cancers.

KDM INHIBITORS

Numerous KDM inhibitors are showing promise in targeting
KDMs in certain types of cancers in both preclinical and clinical
studies. A summary of inhibitors is provided below and in
Table 2, grouped by KDM family.

KDM1
There have been numerous irreversible and reversible inhibitors
that have been developed and tested preclinically and in
clinical trials that target the KDM1 or LSD family. These
include tranylcypromine derived KDM1A inhibitors that have
comprehensively described elsewhere (Fang et al., 2019) and
summarized below.

ORY-1001
ORY-1001 has been reported to induce expression of
differentiation markers in mixed lineage leukemia (MLL) cells
as well as reducing tumor growth in an acute myeloid leukemia
(AML) mouse model and possesses good oral bioavailability
(Harris et al., 2012; Maes et al., 2013, 2015). ORY-1001 has also
been shown to suppress growth in lung cancer in vitro (Lu et al.,
2018). ORY-1001 is currently being tested in phase I and II
clinical trials in patients with relapsed and/or refractory AML
and small cell lung cancer (SCLC) (Register ECT, 2018).

GSK2879552
Another selective KDM1A inhibitor is GSK2879552, tested in
phase I clinical trials in SCLC. A study found that GSK2879552
promotes differentiation in AML cells and when SCLC cells were
treated, proliferation was reduced in vitro. In mouse models of
AML and SCLC, GSK2879552 prolonged survival (Dhanak and
Jackson, 2014; Mohammed et al., 2014). However, clinical trials in
patients with AML and SCLC and were terminated due to adverse
side effects (Table 2).

INCB059872
Initially, the KDM1A inhibitor known as INCB059872 treatment
was shown to induce cell differentiation in progenitor cells in
AML (Johnston et al., 2020), prostate cancer and Ewing sarcoma
(Fang et al., 2019). However, INCB059872 was tested in a clinical
trial in patients with Ewing sarcoma and terminated due to

recruitment issues, this inhibitor in conjunction with an anti-PD-
1 checkpoint inhibitor is currently being tested in patients with
colorectal and lung cancer (Table 2).

4SC-202
Another strategy involves dual inhibition of both histone
deacetylases (HDAC) and KDM1A with 4SC-202 which targets
HDAC1, 2, 3, and KDM1A and has been shown to inhibit the
stem-related properties of cancer cells reducing their viability
(Henning et al., 2010). A phase I clinical study has been
conducted for 4SC-202 in patients with advanced leukemia,
found to possess anti-cancer activity and to be well-tolerated in
patients (von Tresckow et al., 2014, 2019). Another study found
that treatment with 4SC-202 significantly increased the survival
of mice that had AML tumors without any toxicity effects (Fiskus
et al., 2014). Currently, there are clinical trials being undertaken
that are testing the effect of 4SC-202 in patients with melanoma,
merkel cell carcinoma and gastrointestinal cancer (Table 2).

SP-2577
SP-2577 reversibly inhibits KDM1A demethylation and has been
recently found to promote anti tumor immunity in mutated
ovarian cancer cells in vitro and has also been found to inhibit
growth in Ewing Sarcoma xenografts (Salarius Pharmaceuticals,
Inc., 2020; Soldi et al., 2020). Currently SP-2577 is being
tested in patients with Ewing sarcoma, ovarian and endometrial
cancers (Table 2).

CC-90011
The reversible KDM1A inhibitor CC-90011 has been found to
induce cellular differentiation exhibits anti-tumor efficacy in vitro
and in vivo in AML and SCLC (Kanouni et al., 2020). CC-90011
was also tested in patients with hematological cancers, showing
robust anti-cancer properties and good tolerability in patients
(Hollebecque et al., 2021). Currently, CC-90011 is being tested
in clinical trials in patients with prostate and SCLC (Table 2).

KDM4
Caffeic Acid
The most prominent KDM4 inhibitor is caffeic acid, a naturally
occurring compound found in various sources including
eucalyptus globus (Santos et al., 2011). Caffeic acid has been
reported to mainly target KDM4C (Nielsen et al., 2012) and
displays potent anti-cancer activity against esophageal cancer
in vitro and in vivo (Hirose et al., 1998). Currently, caffeic acid
is being tested in a clinical trial in patients with esophageal
cancer (Table 2).

JIB-04
The most advanced preclinical KDM4 inhibitor is JIB-04 which
targets KDM4A, KDM4B, and KDM4E and can inhibit growth
and reduce tumor burden in non-small cell lung cancer (NSCLC)
and breast cancer in vitro and in vivo (Wang et al., 2013). In
addition, JIB-04 treatment reduced colony formation, growth
and migration in vitro and reduced tumorigenic activity in
a colorectal cancer model in vivo. The mechanism has been
attributed to downregulating genes of the Wnt signaling pathway
which are essential for promoting carcinogenesis (Kim et al.,
2018). JIB-04 is yet to be tested in clinical trials.
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TABLE 2 | Current KDM inhibitors in clinical and preclinical trials.

KDM inhibitor Target Pharmaceutical
company

Clinical trial number Cancer Phase Status

ORY-1001 KDM1A Oryzon
Genomics
S.A.

CL02-ORY 1001AML
CL03-ORY-1001SCLC
CL01-ORY-1001

Acute myeloid leukemia
Small cell lung cancer
Acute leukemia

Phase I
Phase I
Phase I

Ongoing
Ongoing
Completed

GSK2879552 KDM1A GlaxoSmithKline NCT02177812
NCT02034123

Acute myeloid leukemia
Small lung cell cancer

Phase I
Phase I

Terminated
Terminated

INCBO59872 KDM1A Incyte
corporation

NCT03514407 Refractory Ewing Sarcoma Phase I Terminated

SP-2577 (Seclidemstat) KDM1A Salarius
Pharmaceuticals

NCT03895684
NCT03600649
NCT04611139

Advanced solid tumors
Ewing sarcoma
Ovarian cancer,
endometrial cancer

Phase I
Phase I
Phase I

Recruiting
Recruiting
Not yet Recruiting

CC-90011 KDM1A Celgene NCT04628988
NCT03850067

Prostate cancer
Small cell lung cancer

Phase I
Phase I

Not yet recruiting
Recruiting

Caffeic acid KDM4C N/A (naturally
occurring)

NCT03070262
NCT04648917

Esophageal cancer
Squamous esophageal cell
cancer

Phase III
Phase III

Active, not
recruiting
Recruiting

Combination

4SC-202
(Domatinostat)

HDAC + KDM1A
(dual)

4SC-AG NCT01344707
NCT03278665
NCT03812796
NCT04393753

Leukemia
Melanoma
Gastrointestinal cancer
Merkel cell carcinoma

Phase I
Phase II
Phase II
Phase I

Completed
Recruiting
Recruiting
Recruiting

INCBO59872 +

embrolizumab +

epacadostat

KDM1A + PD-
1 + IDO1

Incyte
corporation

NCT02959437 Non-small cell lung cancer
and colorectal cancer

Phase I Completed

CC-90011 + nivolumab KDM1A + PD-1 Celgene NCT04350463 Non-small and small cell
lung cancer

Phase II Recruiting

CC-
90011 + cisplatin +

etoposide

KDM1A + DNA
damage

Celgene NCT03850067 Small cell lung cancer Phase I Recruiting

Preclinical KDM inhibitors

JIB-04 KDM4A/B,
KDM4E

Sigma N/A Non-small cell lung cancer,
breast cancer, colorectal
cancer

N/A N/A

ML324 KDM4B,
KDM4E

Sigma N/A Breast cancer, prostate
cancer

N/A N/A

(Continued)
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TABLE 2 | Continued

KDM inhibitor Target Pharmaceutical
company

Clinical trial number Cancer Phase Status

EPT-103182 KDM5B Unknown N/A AML, breast cancer,
prostate cancer

N/A N/A

PBIT KDM5B Sigma N/A Breast cancer N/A N/A

KDOAM-25 KDM5A-C Sigma N/A Breast cancer, multiple
myeloma

N/A N/A

GSK-J4 KDM6A/B GlaxoSmithKline N/A T-ALL, AML, non-small cell
lung cancer, breast cancer,
ovarian cancer,
B-lymphoma,
neuroblastoma

N/A N/A

ML324
Another KDM4 inhibitor in the toolbox is ML324 which targets
KDM4B and KDM4E (Rai et al., 2010). A study reported that
ML324 treatment reduced tumor volume and growth in a triple
negative breast cancer mouse model (Wang W. et al., 2018) and
also inhibits proliferation in prostate cancer in vitro and in vivo
(Carter et al., 2017). ML324 is yet to be tested in clinical trials.

KDM5
EPT-103182
The most advanced KDM5 inhibitor is EPT-103182. This small
molecule compound targets KDM5B which has been shown to
have an anti-proliferative effect in hematological and solid cancer
cell lines as well as inhibiting tumor growth in a dose-dependent
manner in xenograft models (Hancock et al., 2015; Maes et al.,
2015). This inhibitor has yet to be tested in clinical trials.

PBIT
Another recently identified KDM5 inhibitor is PBIT, shown to
specially target and inhibit KDM5B (Sayegh et al., 2013). In
the context of cancer, PBIT treatment inhibited proliferation of
breast cancer by derepression and upregulation of the tumor
suppressor HEXIMI in vitro (Montano et al., 2019). PBIT is yet
to be tested in clinical trials.

KDOAM-25
KDOAM-25 has been shown to target and inhibit KDM5A-
C demethylases (a pan-KDM5 family inhibitor), but especially
KDM5B (Tumber et al., 2017). KDOAM-25 treatment has
been shown to reduce proliferation and growth in breast
cancer and multiple myeloma which highly expressed KDM5B
(Tumber et al., 2017; Montano et al., 2019). KDOAM-25 is yet to
be tested in clinical trials.

KDM6
GSK-J4
Other inhibitors which target JMJC domain containing KDMs
are known as GSK-J4 that targets KDM6A and KDM6B,

shown to reduce the production of pro-inflammatory
cytokines by human macrophages, although there have
been questions in regards to its specificity (Kruidenier et al.,
2012; Heinemann et al., 2014). Over the last few years,
numerous preclinical studies have demonstrated that GSK-J4
could be a potential therapeutic for certain cancers. GSK-J4
treatment was initially shown to be effective in inhibiting
cell growth and inducing cell cycle arrest and apoptosis in
primary human T-cell acute lymphoblastic leukemia (T-ALL)
lines (Ntziachristos et al., 2014). A recent study found that
GSK-J4 treatment inhibited cell proliferation and colony
forming ability of acute myeloid leukemia (AML) cell lines and
inhibited tumor growth in an AML xenograft mouse model
(Li et al., 2018).

Other studies have shown that GSK-J4 treatment inhibited
proliferation of castration-resistant prostate cancer cells
by inhibiting AR–driven transcription and can also inhibit
proliferation in glioma cells in a dose-dependent manner
in vitro (Morozov et al., 2017; Sui et al., 2017). A study also
showed that GSK-J4 suppressed the ability of breast cancer
and ovarian cancer stem cells to proliferate and grow (Sakaki
et al., 2015; Yan et al., 2017). GSK-J4 in combination with an
anti-diabetic drug metformin induced cell death and inhibited
cell growth in non-small cell lung cancer (NSCLC) cell lines
(Watarai et al., 2016) and another study found GSK-J4 treatment
sensitized diffuse large B-lymphoma cells to chemotherapy
drugs (Mathur et al., 2017). GSK-J4 inhibited cell growth and
upregulated apoptosis markers in neuroblastoma cell lines
and inhibited tumor growth in an in vivo neuroblastoma
model (Lochmann et al., 2018). GSK-J4 is yet to be tested in
clinical trials.

CONCLUDING REMARKS

Dysregulation of lysine methyl demethylases due to
genetic changes or aberrant signaling are associated with a
number of different cancers. The amine oxidase group of
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KDMs appear to mediate their effects by action on the H3K4
and H3K9 histone marks but in addition by interactions
with the P53 tumor suppressor and E2F transcription factors
regulating cell division.

The 2-oxoglutarate dependent oxygenases are the largest
group of KDMs and mediate demethylation of histones at
several important activating or repressive marks. Their effects
in cancers range from tumor suppression to promotion and
growth of cancers. Additional roles in immune responses
against cancer have been revealed for KDM5C and KDM6A
in survival studies on human melanoma patients and may
be linked to higher expression from X linked chromosomes.
Several KDMs are part of protein complexes like the
COMPASS complex that contains KDM6A as well as methyl
transferases MLL2 and MLL3 that regulate gene transcription in
certain cancers.

The role of KDMs in cancer have identified them as potential
therapeutic targets and a wide range of pharmacological agents
have been developed. Given the complex interactions of KDMs
with other epigenetic regulators it is not surprising that drugs
targeting KDMs are yet to enter clinical practice and this remains
a focus of future research.
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