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Pituitary adenomas (PAs) can be classified as non-secreting adenomas, somatotroph
adenomas, corticotroph adenomas, lactotroph adenomas, and thyrotroph adenomas.
Substantial advances have been made in our knowledge of the pathobiology of PAs. To
obtain a comprehensive understanding of the molecular biological characteristics of
different types of PAs, we reviewed the important advances that have been made
involving genetic and epigenetic variation, comprising genetic mutations, chromosome
number variations, DNA methylation, microRNA regulation, and transcription factor
regulation. Classical tumor predisposition syndromes include multiple endocrine
neoplasia type 1 (MEN1) and type 4 (MEN4) syndromes, Carney complex, and X-LAG
syndromes. PAs have also been described in association with succinate dehydrogenase-
related familial PA, neurofibromatosis type 1, and von Hippel–Lindau, DICER1, and Lynch
syndromes. Patients with aryl hydrocarbon receptor-interacting protein (AIP) mutations
often present with pituitary gigantism, either in familial or sporadic adenomas. In contrast,
guanine nucleotide-binding protein G(s) subunit alpha (GNAS) and G protein-coupled
receptor 101 (GPR101) mutations can lead to excess growth hormone. Moreover, the
deubiquitinase gene USP8, USP48, and BRAF mutations are associated with
adrenocorticotropic hormone production. In this review, we describe the genetic and
epigenetic landscape of PAs and summarize novel insights into the regulation of
pituitary tumorigenesis.

Keywords: pituitary adenomas, molecular markers, acromegaly, Cushing’s disease, non-secreting adenomas
INTRODUCTION

Pituitary adenomas (PAs) are the second most common brain tumors, accounting for
approximately 15% of all primary brain tumors (1). PAs can be classified based on the types of
hormones that they excessively secrete into the blood. The clinical presentations caused by hormone
overproduction in PAs are closely related to the pituitary cell types, as follows: corticotropin-secreting
corticotroph adenomas result in Cushing’s disease, growth hormone (GH)-secreting somatotroph
adenomas result in acromegaly, prolactin-secreting lactotroph adenomas result in hyperprolactinemia,
and thyrotropin-secreting thyrotroph adenomas result in hyperthyroidism (2). Non-secreting
adenomas, such as null cell adenomas, silent gonadotroph adenomas, silent corticotroph adenomas,
and silent somatotroph adenomas, lead to hypogonadism and often manifest as incidental sellar
masses (2). Of the different PA types, only lactotroph adenomas are treated with dopamine agonists as
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a first-line option. Because of a lack of effective drugs, other PA
subtypes are generally treated with transsphenoidal surgery as the
first-line therapy (3). Furthermore, because many PAs are invasive
and unresectable—or in some cases of Cushing’s disease, because
the tumors themselves are too small to be detected or completely
removed during surgery—drugs and stereotactic radiosurgery are
needed to achieve tumor control or biochemical remission.
However, despite current treatments, the 10-year recurrence rate
remains as high as 7–12% (3, 4). It is therefore important to obtain
a comprehensive understanding of the molecular biological
characteristics of different types of PAs, such as gene mutations,
DNA methylation, microRNA (miRNA) regulation, and
regulation at other levels, to allow the targeted treatment of
individuals, thus achieving better prognoses. Herein, we
summarize the known variation in the different types of PAs
and review the potential molecular targets for future
clinical application.
SYNDROMIC PITUITARY ADENOMA-
RELATED VARIATIONS

Familial PAs can be divided into two types: isolated and
syndromic (5). These familial PAs and their molecular
mechanisms are described herein.

Multiple Endocrine Neoplasia
Type 1 Syndrome
MEN1 syndrome is classically characterized by the combined
occurrence of parathyroid adenomas, PAs (in approximately 30–
40% of cases), and neuroendocrine tumors (6). PAs that develop in
MEN1 syndrome include lactotroph adenomas (42–62%), silent
PAs (15–42%), somatotroph adenomas (6.5–9%), and corticotroph
adenomas (3–4%). In addition, somatic mutations in MEN1 can
also be found in sporadic PAs (7). The MEN1 gene is located on
chromosome 11q13.1 and encodes a ubiquitously expressed
transcription cofactor of cyclins; MEN1 also participates in G1/S
checkpoint regulation (8, 9). Approximately 10% of all MEN1-
related PA cases can be attributed to de novo mutations, which are
sometimes identified as a mosaicism in the proband (10, 11).

Multiple Endocrine Neoplasia
Type 4 Syndrome
Some patients with MEN1 syndrome harbor noMEN1mutation.
Instead, cyclin-dependent kinase inhibitor 1B (CDKN1B)
mutations have been detected in these patients. This syndrome
is known as MEN4 syndrome (12). Patients with MEN4
syndrome are prone to developing somatotroph adenomas,
and can also develop other types of Pas (13). CDKN1B
mutations are rarely found in sporadic pituitary tumors (14,
15). CDKN1B encodes a cyclin-dependent kinase inhibitor that
regulates the cell cycle and mitosis from the G1 to the S phase
(13). CDKN1B-knockout mice develop various types of tumors,
including PAs, and this tumorigenesis is associated with
accelerated pituitary cell proliferation (16, 17). CDKN1B
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mutations likely lead to PAs by influencing cell cycle regulation.

Carney Complex
Carney complex is characterized by endocrine and non-
endocrine tumors with spotty skin pigmentation, as well as by
cardiac and cutaneous myxomas (18). More than two-thirds of
patients present asymptomatic elevations of insulin-like growth
factor 1 (IGF-1), GH, and prolactin caused by pituitary
hyperplasia, and 10% of patients present with adenomas and
symptomatic acromegaly (19). In some cases, Carney complex is
caused by an inactivating mutation of the PRKAR1A gene, which
encodes the type 1-alpha regulatory subunit of protein kinase A
(20). In addition, a gain-of-function mutation has been described
in the gene encoding the catalytic subunit of protein kinase A,
PRKACB (21).

X-LAG Syndrome
X-LAG syndrome is a newly defined syndrome in patients with
pituitary gigantism or PA who carry microduplications on
chromosome Xq26.3 (22, 23). X-LAG syndrome is generally
recognized as an aggressive disease because it is difficult to control
the excess GH. Most patients require multiple interventions (both
surgical and medical), and subtotal or total hypophysectomy is
sometimes necessary. In contrast, radiation therapy is not usually
helpful. X-LAG syndrome is probably caused by G protein-coupled
receptor 101 (GPR101) overexpression because the GPR101 gene is
located on chromosome Xq26.3. GPR101 is coupled to the
stimulatory G protein complex and activates adenylate cyclase,
increasing cyclic adenosine monophosphate (cAMP) production.
In addition, GPR101 amplification has also been identified as a
germline or mosaic mutation (22).

Succinate Dehydrogenase-Related
Familial Pituitary Adenoma
This “3PAs” syndrome, which combines PA with
pheochromocytoma/paraganglioma (PPGL), is sometimes
associated with mutations in PPGL-predisposing genes, such as the
genes encoding SDHx (24, 25). Such mutations occur in SDHA-D
and SDHA2F, among others (24–28). SDH is a multimeric enzyme
that binds to the innermembranes of mitochondria. It has a dual role:
it serves both as a critical step of the tricarboxylic acid or Krebs cycle,
and as a member of the respiratory chain that transfers electrons
directly to the ubiquinone pool (25, 27, 29). Pituitary hyperplasia has
been reported to develop in a Sdhb-knockout mouse model (25).

Neurofibromatosis Type 1 Syndrome
Rarely, optic pathway gliomas cause high GH levels in NF1,
while true PAs are extremely rare. Empty sella syndrome and
hypopituitarism may also occur in the context of NF1. Lifelong
endocrine follow-up is recommended for all NF1 patients (13). A
recent case report described a patient with a heterozygous
guanine nucleotide-binding protein G(s) subunit alpha (GNAS)
R201C mutation in a somatotroph adenoma. This was the first
reported rare MEN1-like case of genetically diagnosed NF1
complicated with acromegaly caused by somatotroph
adenoma (14).
January 2021 | Volume 11 | Article 596554
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Von Hippel–Lindau Syndrome
VHL syndrome is a heritable multisystem cancer syndrome that
is caused by germline mutations of the VHL tumor suppressor
gene. The incidence of this disorder is as high as 1 in 36,000 live
births (15). Patients with VHL syndrome are at risk of
developing various benign and malignant tumors of the central
nervous system [i.e., pituitary stalk hemangioblastomas (15)],
kidneys, adrenal glands, pancreas, and reproductive adnexal
organs (16). It has been reported that propranolol can decrease
the viability of VHL-related hemangioblastomas and renal cell
carcinomas in vitro, likely by modulating vascular endothelial
growth factor expression and inducing apoptosis (17). However,
propranolol treatment for this disease is limited to early
clinical trials.

DICER1 Syndrome
DICER1 syndrome is caused by heterozygous germline
mutations in the DICER1 gene (30). Several cases have been
reported of rare infantile-onset pituitary blastoma that were
mainly caused by germline mutations in DICER1 (31).
Recently, corticotroph adenomas have also been identified in
this tumor syndrome (31). DICER1 encodes a cytoplasmic
endoribonuclease that processes hairpin precursor miRNAs
into short, functional miRNAs that downregulate targeted
mRNAs, thereby modulating cellular protein production (32).
In addition, specific somatic mutations in the DICER1 RNase III
catalytic domain have been identified in several DICER1-
associated tumor types (31, 33).

Lynch Syndrome
Lynch syndrome is a cancer-predisposing syndrome caused by
germline mutations in genes involved in DNA mismatch repair
(34). Germline mutations in MLH1 (35) and MSH2 (34) in the
mismatch repair pathway, have been identified in Lynch
syndrome patients with aggressive corticotropin-secreting
adenomas, although these are isolated case reports. Missense
mutations have also been detected in four mismatch repair genes
(MSH5 , MSH6 , MLH1 , and MLH3) in non-secreting
adenomas (3).
SOMATOTROPH ADENOMAS

The incidence of somatotroph adenomas is approximately 10 cases
per 1 million individuals (2, 36, 37). Somatotroph adenomas are
GH-secreting somatotropic tumors that exhibit excessive secretion
of GH and IGF-1, causing acromegaly and abnormal growth of
bones, tissues, and organs in patients. Currently, treatment methods
are limited to surgery, radiotherapy, somatostatin receptor (SSTR)
ligands, and GH receptor antagonists. Each of these treatments has
specific side effects, and the efficacy varies greatly among different
patients; thus, it is hard to directly target and inhibit the continuous
secretion of GH in postoperative patients (2). It is necessary to
further understand the molecular mechanisms of somatotroph
adenomas to elucidate new therapeutic targets.
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Genetic Variations
Somatotroph adenomas have greater genomic disruption than
corticotroph adenomas or inactive tumors with no clinical
evidence of hormone secretion (38). Gene mutations in PAs
can be divided into heritable germline variations, mosaic
mutations, and non-heritable somatic mutations (29). The
former two are often familial and associated with syndromes,
while the latter are sporadic (29). Mutations in aryl hydrocarbon
receptor-interacting protein (AIP), GNAS, and cadherin-related
23 (CDH23), which are all involved in cAMP-associated
pathways, are key for somatotroph tumorigenesis (Figure 1,
Table 1).

Aryl Hydrocarbon Receptor-Interacting Protein
Familial isolated pituitary adenoma (FIPA) is characterized by
the familial occurrence of PAs in the absence of other clinical
features (39). Germline mutations in the AIP gene are detected in
approximately 20% of FIPA families and 50% of familial
acromegaly families (40–43). AIP is located on human
chromosome 11q13.2, and acts as a tumor suppressor in PAs
(44). Mutations in AIP have been identified as causing a
predisposition for PAs of variable penetrance in 20% of FIPA
families (41). AIP mutations are usually associated with
somatotropinomas, but prolactinomas, non-functioning PAs
(NF-PAs), Cushing’s disease, and other infrequent clinical
adenoma types can also occur (40–43). AIP mutations are
common in male pediatric acrogigantism patients, and tend to
cause large and invasive tumors; densely granulated subtypes
rarely occur, and patients with AIP mutations are often resistant
to somatostatin analogue (SSA) treatment (42, 43, 45, 46).
Families with AIP mutations show incomplete penetrance, of
approximately 15–30% (40, 42, 47). Genetic screening can
identify carrier family members, and clinical screening has
been reported to result in the earlier recognition of clinically
relevant disease in approximately 20% of patients (22/187) (43).

Mechanically, some of the mutations lead to truncation of the
AIP protein and loss of the C-terminal sequence, which affects
protein interactions and leads to disrupted AIP function. A
number of mechanisms may explain the resistance of AIP-
mutated patients to SSAs. First, one mechanism may involve
the reduced expression of the inhibitory G protein subtype, Gai-
2, which mediates the inhibitory effects of SSAs (44). Second, AIP
has been reported to interact with both phosphodiesterase
(PDE) and guanine nucleotide-binding proteins (G proteins);
PDE4 expression is lower in AIP-mutated PAs, and interactions
between PDE4 and AIP are disrupted by such mutations (44, 48,
49). Consistent with these findings, both PDE isoforms are
reportedly overexpressed in GH cells from sporadic AIP
mutation-negative GH-secreting adenomas (49). Third,
AIP interacts with the protein kinase A (PKA) complex. AIP
mutations affect the PKA pathway, thus affecting cell
proliferation and development and the inflammatory response
(42, 49). Fourth, another mechanism of SSA resistance may be
related to the SSTR2–zinc-finger protein 1 PLAGL1 (ZAC1)
pathway (50). AIP is upregulated by SSAs, and AIP can in turn
January 2021 | Volume 11 | Article 59655
4

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Chang et al. Pituitary Tumorgenesis Mechanism
FIGURE 1 | Tumorigenic mechanisms in somatotroph cells. Several mechanisms increase cAMP production, which is key for somatotroph tumorigenesis.
Hormones bind to receptors, including GHRH-R, SSTR, GPR101, and GIPR, on the somatotroph cell membrane and increase the activation of adenylyl cyclase
through Gsa. The consequent increase in cAMP production leads to the dissociation of the regulatory subunits of PKA from the catalytic subunits, which then
translocate to phosphorylate CREB in the nucleus and other targets, leading to increased GH expression and cell proliferation. Gsa activation induced by GNAS
mutations also leads to upregulation of the cAMP pathway. In addition, ectopic expression of GIPR may lead to an activated cAMP pathway, and GPR101 is a Gsa-
coupled constitutively active receptor that leads to increased cAMP signaling. AIP, aryl hydrocarbon receptor-interacting protein; ATP, adenosine triphosphate; C,
catalytic subunit; cAMP, cyclic adenosine monophosphate; CREB, cAMP response element; GHRH, growth hormone-releasing hormone; GHRH-R, GHRH receptor;
GIPR, gastric inhibitory polypeptide receptor; GPR101, G protein-coupled receptor 101; Gsa, G protein stimulatory alpha subunit; GTP, guanine triphosphate; PKA,
protein kinase A; R, regulatory subunit; SSTR, somatostatin receptor; ZAC1, zinc finger protein PLAGL1.
TABLE 1 | Genes affected in different pituitary tumors via genetic mutation or DNA methylation.

Gene (symbol) Gene name Location Function of gene product and mechanism of
tumorigenesis

Tumor types associated with each
genetic defect

MEN1 Multiple Endocrine Neoplasia
type 1

11q13.1 Tumor suppressor; Involved in cell proliferation, genome
stability and gene transcription

Lactotroph adenomas, somatotroph
adenoma, corticotroph adenomas, and
nonsecreting adenomas

CDKN1B cyclin-dependent kinase
inhibitor 1B

12p13.1 Cell cycle regulation Prone to developing somatotroph
adenomas, and can also develop other
types of PAs

PRKAR1A Protein Kinase CAMP-
Dependent Type I Regulatory
Subunit Alpha

17q24.2 Loss of PRKAR1A causes enhanced PKA signaling. Somatotroph adenomas and lactotroph
adenomas

GPR101 G-protein-coupled receptor
gene

Xq26.3 G-protein-coupled receptor; defects lead to constitutive
activation of the cAMP-PKA pathway

Somatotroph adenomas

SDHx Succinate dehydrogenase x / Unknown More likely to produce prolactin; pituitary
hyperplasia in mice

VHL Von Hippel–Lindau 3p25.3 likely by modulating vascular endothelial growth factor
expression and inducing apoptosis

Pituitary stalk hemangioblastomas

DICER Dicer 1, Ribonuclease III 14q32 Unknown Pituitary blastoma
MLH1 MutL Homolog 1 3p22.2 Unknown Corticotroph adenomas
MSH2 MutS Homolog 2 2p21 Unknown Corticotroph adenomas
AIP Aryl hydrocarbon receptor

interacting protein
11q13.2 Interaction in cAMP synthesis All types

(Continued)
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TABLE 1 | Continued

Gene (symbol) Gene name Location Function of gene product and mechanism of
tumorigenesis

Tumor types associated with each
genetic defect

GNAS Guanine nucleotide activating
subunit

20q13.32 cAMP-regulating protein Gsa; activation leads to increased
cAMP levels and activation of protein kinase A (PKA)

Mainly in somatotroph adenomas

PTTG1 Pituitary tumor-transforming
gene-1

5q33.3 Enhanced PTTG1 is a regulator of sister chromatid
segregation, this may subsequently drive chromosomal
instability

All types

STAT3 Signal Transducer and
Activator of Transcription 3

17q21.2 Enhanced STAT3 increased GH transcription. Somatotroph adenomas

CDH23 Cadherin related 23 10q22.1 Calcium-dependent cell-cell adhesion glycoprotein Somatotroph adenomas account for the
highest proportion

IGSF1 Immunoglobulin superfamily
member 1

Xq26.1 IGSF1 mutation weakens its transport to the cell surface in
allogenic cells and increased total GH secretion and IGF-1
levels

Hyperplasia with increased total GH
secretion and IGF-1 levels

SLC20A1 Solute Carrier Family 20
Member 1

2q14.1 Increased expression of SLC20A1 may be associated with
the activation of the Wnt/b-catenin signaling pathway

Somatotroph adenomas

PRDM2 PR/SET Domain 2 1p36.21 The absence of PRDM2 involved the tumorigenesis through
regulating c-Myc

Somatotroph adenomas

SSTRs and DRDs Somatostatin receptors
(SSTR1-5) and dopamine
receptors (DRD1-5)

/ Decreased expression of receptors (DRD4, DRD5, SSTR1
and SSTR2) may be associated with poor response to
SSAs

Somatotroph adenomas and silent
somatotroph adenomas

IGSF1 Immunoglobulin Superfamily
Member 1

Xq26.2 Membrane glycoprotein with modified residue possibly
altering interaction with an extracellular ligand

Hyperplasia, and sometimes with GH
secretion and IGF-1 level increasing

SLC20A1 Solute Carrier Family 20
Member 1

2q14.1 Increased SLC20A1 expression may be associated with
activation of the Wnt–b-catenin signaling pathway

Somatotroph adenomas

PRDM2 PR domain zinc finger protein
2

1p36.21 c-Myc regulation Somatotroph adenomas

GADD45g Growth Arrest and DNA
Damage Inducible Gamma

9q22.2 Tumor suppressor; Involved in DNA damage and function in
the negative regulation of cell growth

Non-secreting adenomas and
somatotroph adenomas

LGALS3 Galectin 3 14q22.3 Promoter methylation status of LGALS3 for the regulation of
Gal-3 expression in PA

Lactotroph adenomas, corticotroph
adenomas

RASSF1A Ras Association Domain
Family Member 1

3p21.31 Promoter methylation of RASSF1A is detected in all types of
PAs and mechanism is unknown,

All types

USP8 Ubiquitin Specific Peptidase 8 15q21.2 Involved in deubiquitination of EGFR; gain of functions
mutations results in increased EGFR, and POMC expression

Corticotroph adenomas

USP48 Ubiquitin Specific Peptidase
48

1p36.12 Deubiquitination; activation of MAPK and increased POMC
expression

Corticotroph adenomas

BRAF B-Raf Proto-Oncogene,
Serine/Threonine Kinase

7q34 Proto-oncogene with tyrosine kinase activity; activation of
MAPK and increased POMC expression

Corticotroph adenomas

USP90 Heat Shock Protein 90 / Unknown Corticotroph adenomas
HDAC2 histone deacetylase 2 6q21 Unknown Corticotroph adenomas
CABLES1 Cdk5 And Abl Enzyme

Substrate 1
18q11 Unknown Corticotroph adenomas

SFRP2 Secreted Frizzled-Related
Protein 2

4q31.3 overexpression of SFRP2 in AtT20 cells reduces b-catenin
levels in the cytoplasm and nucleus, and also decreases
Wnt signaling activity

Corticotroph adenomas

POMC Proopiomelanocortin 2p23.3 Unknown Corticotroph adenomas
FGFR2 Fibroblast Growth Factor

Receptor 2
10q26.13 Inducing Rb phosphorylation and regulation of cell cycle

progression by p21 and p27
Corticotroph adenomas

PTAG Pituitary Tumor Apoptosis
Gene

22q12.2 Unknown Corticotroph adenomas

TSP-1 Thrombospondin-1 15q14 Unknown Corticotroph adenomas
CASP-8 Caspase-8 2q33.1 Unknown Corticotroph adenomas
CABLES1 Cdk5 And Abl Enzyme

Substrate 1
18q11 Unknown Corticotroph adenomas

C5orf66-AS1 C5orf66 Antisense RNA 1 5q31.1 Unknown Pituitary null cell adenomas
IL-6R, JAK2,
STAT3, p-STAT3,
and MMP9

Interleukin 6 receptor/Janus
kinase 2/STAT3/matrix
metallopeptidase 9

/ Unknown Pituitary null cell adenomas

PI3K Phosphatidylinositol 3-
kinases

3q26.32 Oncogene; Involved in PI3K/AKT pathway which regulates
several cellular functions, including cell survival, growth,
proliferation, and metabolism

Non-secreting adenomas

CDKN2A Cyclin dependent Kinase
Inhibitor 2A

9p21 Tumor supperessor; Cell cycle regulation (G1 to S phase
transition)

Non-secreting adenomas and
somatotroph adenomas

(Continued)
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upregulate ZAC1 mRNA expression (51, 52). Disordered cAMP
regulation is important for the resistance of AIP mutations to
SSA treatment (42, 49).

Guanine Nucleotide-Binding Protein G(s)
Subunit Alpha
GNAS encodes the stimulatory a subunit of the G protein complex,
which plays an important role in transmembrane signal
transduction (53). Its mutation rate is the highest of somatic
mutations in somatotroph adenomas (up to 40%). GNAS-mutated
tumors are often smaller and less invasive, respond better to SSAs,
and are usually densely granulated somatotroph adenomas (52, 54,
55). In addition, GNAS-mutated tumors have relatively high
expression of dopamine receptor (DRD) 2, which suggests a good
response to dopamine agonists (38). Somatic mutations in GNAS
can result in sporadic somatotroph adenomas, while mosaic
mutations for codon 201 likely result in McCune–Albright
syndrome. This syndrome is characterized by polyostotic fibrous
dysplasia, skin hyperpigmentation, and autonomous endocrine
hyperfunction (56).

GNAS mutations can also lead to disruption of the cAMP
signaling pathway. Especially, mutations in codon 201 or 227
result in the inhibition of G proteins and the activation of
adenylyl cyclase, promote cAMP synthesis in cells, and drive
tumorigenesis (57). Recently, a GNAS mutation (p.Arg201Cys)
has been detected as a recurrent somatic event, and this mutation
is shared with chromosome losses (58, 59).

Copy Number Variations at the Chromosomal Level
Recent studies have indicated that increased cAMP in
tumorigenesis can probably induce DNA damage, leading to
somatic CNVs and genome instability (60). Of these, arm-level
CNVs are the most common abnormalities in somatotroph
adenomas . Spec ifica l ly , whole chromosome losses
(chromosomes 1, 6, 13, 14, 15, 16, 18, and 22) and gains
(chromosomes 3, 5, 7, 10, 19, 20, and X) have been observed
(58, 59, 61). Interestingly, GNAS mutation-positive adenomas
have relatively low CNV levels, whereas GNAS mutation-
negative adenomas have a high degree of genomic disruption
(58, 59, 61). These CNVs likely affect the Ca2+ and ATP
pathways, which are involved in PA tumorigenesis (58, 59, 61).
Thus, the CNVs in GNAS mutation-negative somatotroph
adenomas provide an alternative tumorigenic pathway, which
is linked to genomic instability (58, 59, 61).
Frontiers in Endocrinology | www.frontiersin.org 6
Less Common Genetic Variations Potentially
Associated With Pituitary Adenomas
Pituitary tumor-transforming gene 1 (PTTG1) is overexpressed
in various pituitary tumors, and its expression is higher in more
aggressive tumors (62–64). Somatotroph adenomas with
recurrent aneuploidy have relatively high expression of PTTG1;
as a regulator of sister chromatid segregation, this may
subsequently drive chromosomal instability (64–66).

Signal Transducer and Activator
of Transcription 3
STAT3 is a member of the STAT family, and participates in
cellular responses to cytokines and growth factors (67). Its
expression is enhanced in somatotroph adenomas, leading to
GH hypersecretion, which in turn promotes STAT3 expression
(68). In primary human somatotroph adenoma-derived cell
cultures, the specific inhibitor S3I-201 can inhibit STAT3
expression, thus decreasing GH transcription and reducing GH
secretion (68).

CDH23
CDH23 is involved in Wnt pathway regulation. The CDH23
c.4136G>T (p.Arg1379Leu) mutation leads to an amino acid
substitution in the calcium-binding motif of the extracellular
cadherin domain, which is predicted to disrupt cell–cell
adhesion. The incidence rate of CDH23 mutations is 33% in
FIPA patients and 12% in sporadic PA patients. Of the CDH23-
mutated PAs, somatotroph adenomas account for the highest
proportion (25.9%) (69). PAs with functional CDH23 variants
are smaller and less aggressive compared with non-mutated PAs
(69, 70). In addition, variants in this gene are associated with
Usher syndrome (70). However, CDH23 variations have been
reported in only one study, and functional validation studies
are needed.

Immunoglobulin Superfamily Member 1
IGSF1 is a membrane glycoprotein. IGSF1mutations can weaken
its transport to the cell surface in allogenic cells, resulting in a
novel X-related syndrome. This syndrome is characterized by
central hypothyroidism, macro-orchidism, and prolactin
deficiency (71–73). It can also be associated with acromegaloid
facial features, increased head circumference, and increased total
GH secretion and IGF-1 levels. However, considering that
patients present with hyperplasia rather than adenomas, these
TABLE 1 | Continued

Gene (symbol) Gene name Location Function of gene product and mechanism of
tumorigenesis

Tumor types associated with each
genetic defect

ENC1 Ectodermal-neural cortex 1 5q13.3 Unknown Null cell adenomas
MEG3 Maternally expressed 3 14q32.2 Tumor supperessor; suppress tumor genesis by both p53-

dependent and p53-independent pathways.
Non-secreting adenomas

ING2 Inhibitor of growth family
member 2

4q35.1 Unknown Non-secreting adenomas

FAM90A1 family with sequence
similarity 90 member a1

12p13.31 Unknown Non-secreting adenomas
Ja
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symptoms may be secondary to the failure of regulatory and
feedback mechanisms.

Solute Carrier Family 20 Member 1
SLC20A1 levels are positively associated with tumor size, invasive
behavior, and recurrence in somatotroph adenomas. In addition,
increased SLC20A1 expression may be associated with activation
of the Wnt–b−catenin signaling pathway (74).

PR Domain Zinc Finger Protein 2
PRDM2, a tumor suppressor, plays an important role in cancer
and obesity, including PAs. The absence of PRDM2 is likely to be
involved in the tumorigenesis of somatotroph adenomas by
regulating c-Myc (75). However, this discovery remains to be
validated by more investigation groups.

Somatostatin Receptors and Dopamine Receptors
SSTR (SSTR1–5) and DRD (DRD1–5) subtypes play critical roles
in the regulation of hormone secretion (76). Decreased
expression of some of these receptors (DRD4, DRD5, SSTR1,
and SSTR2) may be associated with a poor response to SSAs (77).
In particular, SSTR2 expression might be a good predictor of a
patient’s response to SSAs (78).

DNA Methylation
DNA methylation is the most frequently studied epigenetic
phenomenon, in which alterations of CpG dinucleotides block
the transcriptional mechanism and silence gene expression (79).
Approximately 80% of CpG dinucleotides are methylated in the
human genome throughout the lifespan, and nearly 70% of CpG
islands are methylated at any time, suggesting a widespread
regulatory scope of DNA methylation (80). Here, we summarize
the methylated genes in somatotroph adenomas (Table 1).

Growth arrest and DNA damage-inducible gene (GADD45g)
is a negative regulator of cell growth that is involved in DNA
damage repair. In one study, most PAs (22/33, 67%) did not have
GADD45g expression, and 57.6% (19/33) of PAs were detected
with GADD45g methylation; there was significantly associated
between GADD45g methylated tumors and tumors in which
GADD45g transcript was not expressed (18 of 22; 82%; P =
0.002) (81). The silencing of GADD45g is likely to confer a
selective growth advantage during PA tumorigenesis (82).

The importance of the promoter methylation status of LGALS3
(the gene encoding galectin-3) for the regulation of galectin-3
expression in PA was confirmed by Ruebel et al. Ikaros, a factor
with transcriptional functions and chromatin-remodeling properties
that determine the fate of hypothalamic neuroendocrine and pituitary
cell populations during development, may also contribute to the
expression of galectin-3 (83).

The human Ras-association domain family 1A (RASSF1A)
gene has been reported as frequently (38%, 20/52)
hypermethylated in its promoter region in all types of PAs.
RASSF1A promoter methylation is relatively low in gonadotroph
cell adenomas, higher in the most aggressive adenomas, and
potentially correlated with Ki-67 expression. Reduced expression
of RASSF1A has been identified in 18 of 20 (90%) adenomas with
hypermethylation of RASSF1A (84).
Frontiers in Endocrinology | www.frontiersin.org 7
miRNA Regulation
miRNA binding to the 3’ and 5’ untranslated regions and coding
sequences of target RNA is a form of post-transcriptional
modification that results in differential gene expression.
miRNAs play an important role in various pathways in tumors.

High-Mobility Group AT-Hook 1/2 Regulation
Palumbo et al (85). reported that miRNAs that target HMGA,
including miR-15, miR-16, miR-26a, let-7a, miR-196a2, and
other miRNAs, are downregulated in PAs. These HMGA-
targeting miRNAs have also been demonstrated to inhibit the
proliferation of a somatotroph adenoma cell line (GH3) and
promote pituitary tumorigenesis. Furthermore, D’Angelo et al.
reported that downregulated miRNAs, including miR-326, miR-
570, and miR-432, target HMGA1 and HMGA2; while miR-34b
and miR-548c-3p target HMGA2; and miR-603 and miR-326
target E2F transcription factor 1 (E2F1). In addition, some
miRNAs are downregulated in somatotroph adenomas,
including miR-34b, miR-326, miR-432, miR-548c-3p, miR-570,
and miR-603 (86). The long non-coding RNA (lncRNA)
ribosomal protein SA pseudogene 52 (RPSAP52) is
overexpressed in PAs. It promotes cell proliferation in a
competing endogenous RNA (ceRNA)-dependent manner by
competitively binding to miR-15a, miR-15b, and miR-16, and by
upregulating the expression of HMGA1 and HMGA2 (87, 88).

Phosphatase and Tensin Homolog –Protein Kinase B
Pathway
Downregulated and upregulated miRNAs sometimes work
together. For example, the downregulation of miR-26b expression
together with the upregulation of miR-128 suppresses colony
formation ability and invasiveness, and regulates the activity of
the PTEN–AKT pathway in somatotroph adenomas (85).

PTTG1 Regulation
Multiple miRNAs are associated with the increased expression of
PTTG1. First, miR-338-3p is upregulated in invasive somatotroph
adenomas, and probably mediates the increased expression of
PTTG1 (89). Second, miR-423-5p, which targets PTTG1, shows
decreased expression in somatotroph adenomas, and inhibits the
expression of PTTG1 at both the mRNA and protein levels (90).
Third, overexpression of miR-524-5p downregulates the
expression of PTTG1-binding factor, which interacts with
PTTG1 to mediate downstream effects, and significantly
attenuates proliferation, migration, and invasion in vitro (91).
CORTICOTROPIN-SECRETING
ADENOMAS

Corticotropin-secreting adenomas account for 15% of PAs, with
an incidence of 1.6 cases per 1 million individuals. These
adenomas are typically small, and the excessive secretion of
corticotropin leads to adrenal hypercortisolemia (92). Although
75% of patients achieve remission after surgical treatment,
recurrence occurs in approximately 10% of these patients (93).
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Current pituitary-targeted drugs, including cabergoline and
pasireotide, can improve the clinical features of excessive
hormone secretion, but 60–75% of patients are insensitive to
these drugs, which cannot control the symptoms long after drug
treatment (94). Therefore, an understanding of the molecular
characteristics of these tumors is necessary to identify additional
drug targets. Here, we summarize the abnormal alterations in
corticotropin-secreting adenomas that may serve as potential
therapeutic targets (Figure 2, Table 1).

Genetic Variations
Ubiquitin-Specific Peptidase 8
USP8 encodes a deubiquitinase enzyme that protects epidermal
growth factor receptor (EGFR) from degradation. Up to 62.4% of
corticotropin-secreting adenomas were found to have USP8
mutations that block 14-3-3 protein binding, leading to
increased activity of USP8 (95–97). Gain-of-function
mutations in USP8 increase the deubiquitination of EGFR,
which inhibits its degradation, leading to the activation of
EGFR signaling. This mechanism likely leads to the synthesis
and secretion of adrenocorticotropic hormone (ACTH) and
promotes tumorigenesis (95–98). In USP8-mutated
corticotropin-secreting adenoma samples, the cell cycle
inhibitor p27, heat shock protein 90 (HSP90), and
phosphorylated cAMP-response element binding protein
(pCREB) were significantly reduced, suggesting that these
Frontiers in Endocrinology | www.frontiersin.org 8
proteins are direct or indirect clients of USP8 and could
therefore be potential targets for treatment (99).

USP8 mutations have also been identified in silent
corticotroph adenomas (100). Transcriptomic profiles show
significant differences between functioning and silent
corticotroph adenomas. However, USP8 mutations have
pleiotropic effects in both functioning and silent corticotroph
adenomas, and affect the expression levels of many genes that are
involved in a range of different pathways (100).

Germline USP8 mutations, which are commonly found as
somatic mutations in corticotropin-secreting adenomas, have
also recently been described in a child with dysmorphic features,
developmental delay, and a corticotroph adenoma (101). In
addition, an overall prevalence of USP8 mutations of 32% has
been reported in corticotropin-secreting adenomas. USP8-
mutated tumors are more common in females, and are
associated with earlier onset (96, 102), a smaller size (95), and
increased ACTH production (95, 102). Patients with USP8-
mutated tumors are more likely to go into initial remission
after surgery, but may also be more likely to show recurrence
later in the clinical course (102–104). In contrast, USP8-
mutation-negative tumors are more likely to show sphenoid
invasion with an increased epithelial–mesenchymal transition
signature (38). Lapatinib, an EGFR inhibitor, decreases
proliferation in vitro and reduces tumor weight in vivo (105).
In addition, SSTR5 expression is higher inUSP8-mutated tumors
FIGURE 2 | Tumorigenic mechanisms in corticotroph cells. USP8 removes ubiquitin tags from targets, such as EGFR and Smoothened (SMO), preventing them
from undergoing proteasomal degradation and allowing recycling back to the cell surface. Increased EGFR and SMO activity leads to increased cAMP and POMC
levels. Mutated USP8 cannot bind 14-3-3 protein and undergoes cleavage, which increase enzymatic activity, leading to increased deubiquitination of EGFR and SMO
and higher expression of the two proteins on the cell membrane. USP48 mutations and gain-of-function mutations of BRAF probably play a similar role to USP8.
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(38, 106), potentially allowing mutation status to be used as a
predictor of response to pasireotide (a second-generation SSA
with a greater affinity for SSTR5) (107).

USP48 and BRAF
With the recognition of the importance ofUSP8mutations, another
twomutated genes in the mitogen-activated protein kinase (MAPK)
pathway, USP48 and BRAF, have also been detected in
corticotropin-secreting adenomas (108). Missense mutations in
USP48 include M415I/V substitutions, while V600E is an
activation mutation of BRAF. Among tumors without USP8
mutations, 23% of corticotropin-secreting adenomas have USP48
mutations and 16% have BRAF mutations (108). Both mutations
enhance the promoter activity and transcription of the ACTH
precursor, the proopiomelanocortin (POMC) gene, and are
potential therapeutic targets for the excess secretion of ACTH in
corticotropin-secreting adenomas. Furthermore,USP48 variants are
associated with smaller tumors and a better response to
corticotropin-releasing hormone (CRH) stimulation (109).
Therefore, variations in EGFR regulation, the MAPK pathway,
and POMC-related genes play a certain role in corticotropin-
secreting adenomas.

Less Common Genetic Variations Potentially
Associated With Pituitary Adenomas
Heat Shock Protein 90 (HSP90)
Corticotroph adenomas overexpress HSP90 compared with the
normal pituitary gland. N- and C-terminal HSP90 inhibitors act
at different stages of the HSP90 catalytic cycle to regulate
corticotropic cell proliferation and glucocorticoid (Gc) receptor
(GR) transcriptional activity. The C-terminal HSP90 inhibitor
silibinin has been reported to have anti-tumorigenic effects,
partially decrease hormonal secretions, and alleviate the
symptoms of Cushing’s disease in a mouse model (110).

Brg1 and Histone Deacetylase 2
The negative feedback regulation of POMC by GRs is a critical
feature of the hypothalamo–pituitary–adrenal axis. Loss of Brg1 or
HDAC2 should therefore produce Gc resistance, and we have
previously shown that approximately 50% of Gc-resistant human
and dog corticotropin-secreting adenomas, which are the hallmark
of Cushing’s disease, have deficient nuclear expression of either of
these proteins. In addition to providing a molecular basis for Gc
resistance, Brg1 and HDAC2 deficiencies may also contribute to
the tumorigenic process (111).

CDK5 and ABL1 Enzyme Substrate 1
CABLES1 is a cell cycle regulator that participates in the adrenal–
pituitary negative feedback loop. Four heterozygous germline
missense variants have been identified in CABLES1 in four
sporadic patients from a cohort of 182 patients with corticotropin-
secreting adenomas, with functional evidence. The four variants
affected residues within or close to the predicted cyclin-dependent
kinase-3 (CDK3)-binding region of the CABLES1 protein and
impaired its ability to block cell growth in a mouse
corticotropinoma cell line (AtT20/D16v-F2). However, further
studies are needed to assess the prevalence of CABLES1 mutations
Frontiers in Endocrinology | www.frontiersin.org 9
in patients with other types of PAs, and to elucidate the pituitary-
specific functions of this gene (111).

Secreted Frizzled−Related Protein 2 (SFRP2)
The RNA and protein expression of SFRP2 is decreased in
corticotroph adenomas compared with normal pituitary glands
(112). In addition, the overexpression of SFRP2 in AtT20 cells
reduces b−catenin levels in the cytoplasm and nucleus, and also
decreases Wnt signaling activity. SFRP2 may therefore act as a
tumor suppressor in Cushing’s disease by regulating Wnt
signaling pathway activity. Clinically, there is an association
between lower SFRP2 expression and aggressive adenoma
characteristics, including a larger size and invasiveness (112).

DNA Methylation
Although some corticotropin-secreting adenomas have been
found to have genetic mutations, the pathogenesis of non-
mutated adenomas remains unknown. DNA methylation, a
complementary mechanism for gene mutations, also plays an
important role in PAs.

POMC
Hypomethylation of the promoter of POMC, which encodes the
precursor of ACTH, leads to the occurrence of corticotropin-
secreting adenomas. A comparison of the methylation profiles of
ACTH-PAs and NF-PAs showed that the overexpression of
POMC likely accounts for promoter hypomethylation (3). As a
pituitary hormone, ACTH leads to increased serum cortisol
levels in patients with Cushing’s disease, which is associated
with the occurrence of corticotropin-secreting adenomas.

Fibroblast Growth Factor 2
FGF2 is a potent growth factor that regulates stem cell
maintenance and neurogenesis during embryonic development
and in response to challenges such as stress or injury in the adult
brain (113–117). FGFR2 encodes a growth factor receptor, and
was found to be methylated by a 5’ promoter in mouse AtT20
cells, leading to significantly downregulated expression (80).

Pituitary Tumor Apoptosis Gene
In a model pituitary tumor cell line (AtT20), enforced expression
of PTAG is associated with significantly increased sensitivity to
the apoptotic effects induced by bromocriptine challenge (118).

Thrombospondin-1
The secreted angioinhibitory factor TSP-1 is an adhesive
glycoprotein that mediates cell-to-cell and cell-to-matrix
interactions, and is associated with platelet aggregation,
angiogenesis, and tumorigenesis. Overexpression of TSP-1 in a
murine AtT20 pituitary corticotroph tumor cell line leads to
increased ACTH secretion (119).

ESR1 and Caspase 8
The methylation levels of ESR1 and CASP8 in corticotropin-secreting
adenomas are also increased compared with those of silent
corticotroph adenomas. CASP8 plays an important role in
apoptosis. Furthermore, CASP8 has been suggested to affect the
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functional behavior of corticotroph adenomas, but the specific
mechanisms remain unknown. The methylation of POMC, FGFR2,
RASSF1A, LGALS3, and apoptosis-related factors plays a potential
role in the development of corticotropin-secreting adenomas.

MiRNA Regulation
The tumor suppressors miR-15a, miR-16, and miR-132 are
downregulated in corticotroph adenomas. These miRNAs
inhibit the proliferation, invasion, and migration of pituitary
tumor cells by targeting sex-determining region Y-box 5 (SOX5)
(120). In addition, the following miRNAs are also reportedly
downregulated in corticotroph adenomas: miR-145 (2.0 fold),
miR-21 (2.4 fold), miR-141 (2.6 fold), let-7a (3.3 fold), miR-150
(3.8 fold), and miR-143 (6.4 fold), suggesting that they may play
a role in the tumorigenesis of corticotropin-secreting adenomas.
miR-26a is overexpressed in corticotroph adenomas, and one of
its direct targets is protein kinase Cd (PRKCD) (85). PRKCD
silencing is associated with increased EGFR expression,
indicating PRKCD as a possible molecular target for the
treatment of corticotroph adenomas (121, 122).
NON-SECRETING ADENOMAS

Non-secreting adenomas account for 20–35% of PAs originating
from different hormone-secreting cells. Many of these are
gonadotroph adenomas, and some show somatotroph,
corticotroph, thyrotroph, or lactotroph differentiation. In older
studies, the diagnosis of non-functional adenomas was mainly
based on the normal results of hormone secretion rather than the
results of immunohistochemical staining. However, with recently
updated pituitary tumor classifications, the diagnosis of non-
functional adenomas is made according to detailed pituitary cell
types. Because excessive hormone levels are not found in the
blood with non-secreting adenomas, they may not be detected
for years in patients, and are often diagnosed incidentally (92).
Although mostly benign, some invasive pituitary tumors require
adjuvant radiation after surgery, often resulting in pituitary
failure and a risk of recurrence. In an effort to aid in the
development of additional treatment methods, we herein
summarize the molecular signatures of non-secreting
adenomas (Table 1).

Genetic Variations in Null Cell Adenomas
C5orf66-AS1
C5orf66-AS1 encodes a lncRNA that is differentially expressed
between pituitary null cell adenoma tissues and normal pituitary
tissues, as well as between invasive and non-invasive tumors
(123). Co-expression analysis in RNA sequencing data revealed
that PAQR7 [a membrane progesterone receptor that may
mediate a reduction in gonadotropin-releasing hormone in the
progesterone negative feedback action in a progesterone receptor
(A/B)-independent way (124)] was the gene that was most
correlated with C5orf66-AS1, and several predicted trans-acting
target genes, including SCGB3A1 (encoding secretoglobin family
3A member 1), were also highly correlated with C5orf66-AS1
Frontiers in Endocrinology | www.frontiersin.org 10
(123). These results indicate that C5orf66-AS1 suppresses the
development and invasion of pituitary null cell adenomas (123).

Interleukin 6 Receptor (IL-6R)/Janus Kinase 2
(JAK2)/STAT3/Matrix Metallopeptidase 9
Integrative proteomics and transcriptomics have revealed the
activation of IL6R, JAK2, and STAT3, and the overexpression of
IL-6R, JAK2, STAT3, p-STAT3, and MMP9, in invasive pituitary
null cell adenomas (125). Therefore, activation of the IL-6R–
JAK2–STAT3–MMP9 signaling pathway is correlated with the
invasiveness of pituitary null cell adenomas.

Genetic Variations in Silent Somatotroph Adenomas
Somatostatin Receptor 2 and Dopamine Receptor2
There is a negative correlation between SSTR2 and tumor size in
silent somatotroph adenomas. Additionally, levels of DRD2
expression are reportedly similar between silent and
functioning somatotroph adenomas, suggesting a possible basis
for the treatment of these tumors with SSAs and dopamine (126).

Genetic Variations in Non-Secreting Tumors Without
Classification
Phosphatidylinositol 3-Kinases
PI3K is an important regulator of cell growth, transformation,
adhesion, apoptosis, survival, and movement. The catalytic
subunit encoding the PIK3CA gene is located on chromosome
3q26.3 and is often found to be deficient in cancer (127). Somatic
mutations have been detected in 8 out of 91 (9%) of invasive
pituitary tumors versus 0 out of 262 (0%) non-invasive tumors
(128). In addition to mutations of PI3K, mutations ofMEN1, AIP
(129), and CDH23 (69) have also been detected in non-secreting
adenomas. In this section, we summarize the gene mutations in
cell cycle regulators, phosphokinase, the cAMP signaling
pathway, and cadherin that are associated with the occurrence
of non-secreting adenomas.

DNA Methylation
The p16 protein, encoded by the tumor suppressor gene
CDKN2A, is located on chromosome 9p21. CDKN2A has been
found to exhibit deletions, point mutations, or methylation
inactivation in a variety of tumors. Methylation of the CpG
island of CDKN2A was detected in 32/46 (70%) non-secreting
adenomas, in contrast to 2/21 (9.5%) somatotroph adenomas
and 0/15 histologically normal postmortem pituitaries (130).
Methylation of CDKN2A corresponds to a loss of p16
expression on immunohistochemical analysis (130). When p16
is silenced, retinoblastoma protein (encoded by RB1) becomes
phosphorylated, which enables cell cycle progression via the
activation of E2F transcription factors (80). These observations
indicate that the CDKN2A-related pathway is a potential target
for non-secreting adenoma cell proliferation.

Maternally Expressed 3
MEG3 is a maternally expressed imprinted lncRNA that is
transcribed from multiple transcriptional variants with
different splicing patterns, all of which are lncRNAs. Several
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studies have shown that MEG3-encoded lncRNA is a tumor
suppressor that interacts with p53 and regulates expression of the
p53 gene (TP53) (79, 131). In NF-PAs, MEG3 was found to be
hypermethylated in both the 5’ region of the first exon and
approximately 1.6–2.1 kb upstream of the first exon, leading to
the silencing of gene expression (79). Hypermethylation in the
regulated area of MEG3 is an important mechanism that likely
leads to the loss of MEG3 expression in clinical NF-PAs.

Ectodermal-Neural Cortex 1
Methylated ENC1 has been found in tumor samples, and
decreased levels were detected compared with normal pituitary
glands (132). Notably, ENC1 expression levels are reportedly
lower in invasive null cell adenomas than in non-invasive
adenomas (133, 134).

Inhibitor of Growth Family Member 2
ING2 is a member of the growth inhibitor family, and participates in
regulating the activity of histone acetyltransferase and histone
deacetylase complexes, and plays a role in DNA repair and
apoptosis. Methylation sequencing of NF-PAs revealed the
presence of ING2 DNA methylation in NF-PAs, and the
methylation and expression levels were correlated with tumor
recurrence. Furthermore, clinical data have indicated that ING2 is
an independent prognostic marker of NF-PAs (135).

Family with Sequence Similarity 90 Member A1
FAM90A1 is a primate-specific gene that is associated with ING2.
FAM90A1 is also hypermethylated in NF-PAs, and the
methylation level is significantly correlated with patient
prognosis (135). FAM90A1 methylation likely plays a role in
NF-PA tumorigenesis and is a potential marker of PA.

Common Methylations with Somatotroph Adenomas
Similar to somatotroph adenomas, NF-PAs also exhibit
hypermethylation in the CpG island of the GADD45g gene. In
addition, the methylation of CDKN2A,MEG3, and RASSF1A has
also been detected in NF-PAs. Most methylated genes are
involved in the cell cycle and DNA damage repair. However,
novel abnormally methylated genes, such as ING2 and
FAM90A1, have also been detected, and their specific
regulatory mechanisms remain unknown.
LACTOTROPH ADENOMAS

Lactotroph adenomas are the most common secretory tumors,
accounting for 60% of all PAs. Microprolactinomas are usually
stable and slow growing, and continued growth after diagnosis
occurs in less than 15% of cases (2). Lactotroph adenomas are
ideally managed with dopamine agonists (136). Dopamine agonists
can reduce prolactin levels and shrink tumors; however, they have
side effects, and 15% of patients are not sensitive to these drugs (2).
Additional targets are therefore needed to improve lactotroph
adenoma treatment. Here, we summarize the molecular variations
that occur in lactotroph adenomas.
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HMGA1 and HMGA2
HMGA proteins comprise a family of transcriptional regulating
factors that are highly expressed during embryogenesis and play
an important role in tumorigenesis in various tissues, including
the pituitary gland. HMGA2 has been shown to be rearranged
and amplified in lactotroph adenomas, and transgenic mice with
Hmga2 overexpression develop PAs with prolactin and GH
secretion (137). The primary mechanism by which HMGA2
mutations lead to PAs involves an increase in E2F1 activity
(138). It has also been reported that MIA is one of the most
commonly downregulated genes in lactotroph adenomas, and this
may serve as a downstreammechanism ofHMGA2 (137, 139). The
HMGA2 protein can bind to the DNA elements of pituitary-
specific positive transcription factor 1 (PIT-1) and cause a PIT-1
reaction, thus positively regulating the production of the PIT-1
promoter. It is therefore speculated that HMGA2 leads to the
proliferation of PIT-1-expressing cells or the abnormal
proliferation of GH- and prolactin-secreting embryonic cells
(137, 140). In addition, the downregulation of miRNAs may be
related to the accumulation of HMGA2, which might lead to the
proliferation of pituitary cells. In one study, the expression of miR-
let-7 was reported to be decreased in 23 of 55 (42%) lactotroph
adenomas, and was negatively correlated with the expression of
HMGA2 (141). The overexpression of HMGA2 protein is also
positively correlated with pituitary tumor phenotype, and
overexpression of Hmga2 in transgenic mice results in the
development of PA (142). Therefore, HMGA2 is a specific
oncogene for pituitary transformation. However, according to the
current evidence that has been collected on genes in the HMGA
family, only HMGA2 has a direct causal role in human pituitary
tumorigenesis because it is amplified or rearranged in human
lactotroph adenomas. It has been reported that HMGA1 and
HMGA2 nuclear expression levels are significantly higher in
invasive adenomas than in non-invasive adenomas (143, 144).

Prolactin Receptor
The deletion of the PRLR-encoding gene leads to aggressive
pituitary tumors in mice, while homozygous deletion mutants of
PRLR in patients with hyperprolactinemia and agalactia do not
lead to pituitary tumors (145). In contrast, a gain-of-function
mutation was found in 9 of 46 patients with lactotroph
adenomas, representing a potential novel mechanism for
lactotroph adenoma tumorigenesis. In addition, three other
rare variants and two low-frequency variants found in this
cohort may represent benign changes (146). However, further
investigations are needed to confirm the underlying mechanisms.
THYROTROPH ADENOMAS

Thyrotroph adenomas are the least common type of PAs,
accounting for approximately 1% of all adenomas. Thyrotroph
adenomas lead to elevated or inappropriately suppressed
thyrotropin levels, with normal or elevated thyroid hormone
levels. Sapkota et al. confirmed six DNA variants as candidate
driver mutations; two of these mutations were identified in genes
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with an established role in malignant tumorigenesis (SMOX and
SYTL3), while four had unknown roles (ZSCAN23, ASTN2,
R3HDM2, and CWH43) (147). Similarly, a single nucleotide
polymorphism array analysis revealed frequent chromosomal
regions of copy number gains, including recurrent gains at the
loci harboring four of these six genes. In addition, Ando et al.
reported a somatic mutation in the ligand-binding domain of
thyroid hormone receptor beta (TRbeta) that causes a His to Tyr
substitution at codon 435 of TRbeta1, corresponding to codon
450 of TRbeta2 (148). Unlike other PAs, thyrotroph adenomas
are rarely associated with genetic syndromes or common
somatic mutations.
ALL TYPES

Gain or loss of chromosome. A non‐random gain in pituitary
tumors has been reported in chromosomes 5, 8, 12, and X (149,
150). Gains of chromosomes 8 and 12 were found in prolactinomas
and non-secreting adenomas, whereas a combined loss of
chromosomes 5 and 8 was observed in corticotroph and
somatotroph adenomas. In addition, recurrent structural
rearrangements affecting chromosomes 1, 3, and 12 have also
been identified in prolactinomas, which appear to be the only PA
subtype with a defined trend of tumor‐specific chromosomal
changes (149). In another whole-exome sequencing investigation,
75% of the highly disrupted group were functional adenomas or
atypical null cell adenomas, whereas 87% of the less-disrupted
group were non-functional adenomas (151). The disrupted
samples were characterized by expression changes associated with
poor outcomes in other cancers. Furthermore, arm-level losses of
chromosomes 1, 2, 11, and 18 were significantly recurrent (151).
These data indicate that sporadic PAs have distinct copy-number
profiles that are associated with hormonal and histological subtypes
and influence gene expression.

Transcription factors. Cell lineages of the pituitary are dependent
on the expression of the pituitary transcription factors PIT1, TPIT,
and SF1 that, in concert with ERa and GATA2/3, regulate cellular
differentiation and hormone secretion (152). Recently, these
transcription factors (PIT1 for GH, prolactin, and TSH lineages;
SF1 for gonadotroph lineages; and TPIT for ACTH lineages) have
been added to the classification (152, 153).

DNA methylation. Frequently methylated genes (i.e., CDKN2A,
GADD45y, FGFR2, CASP8, and PTAG) demonstrate methylation in
over 50% of PAs;moderatelymethylated genes (i.e.,TSP-1,RASSF1A,
RB1, p73, MGMT, and CDH1) demonstrate methylation in 20–50%
of PAs; and infrequently methylated genes (i.e., p14,DAPK1, TIMP3,
p21, and p27) aremethylated in less than 20% of PAs (79, 154). These
variable rates of methylation may reflect a variety of factors.
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Implications for therapy. In a subset of pituitary tumors that are
refractory to routine therapy, both MGMT promoter
hypermethylation in aggressive PAs and pituitary carcinomas and
low protein expression have been implicated. Hypermethylation of
MGMT indicates a better response to treatment with temozolomide
(TMZ) in some aggressive PAs (155). In one study, combination
treatment with TMZ and pyrimethamine (PYR) produced
synergistic antitumor activity both in vivo and in vitro. Moreover,
TMZ/PYR treatment induced cell cycle arrest, increased DNA
damage, and upregulated the expression of cathepsin B, BAX,
cleaved PARP, and phosphorylated histone H2AX; it also elevated
caspase 3/7, 8, and 9 activities. Therefore, PYR may enhance the
efficacy of TMZ by triggering both cathepsin B- and caspase-
dependent apoptotic pathways. A combination of PYR and TMZ
may thus provide a novel regimen for invasive PAs that are
refractory to standard therapy and TMZ alone (156).
CONCLUSION

We reviewed older and more recent discoveries of molecular
variations in somatotroph adenomas, corticotroph adenomas,
lactotroph adenomas, non-secreting adenomas, and thyrotroph
adenomas. Summarizing the genetic and epigenetic markers of
different types of PAs and elucidating their comprehensive
molecular mechanisms will be helpful to identify the
physiological pathways of PAs. These findings will provide a
better understanding of the occurrence of PAs and lead to the
development of novel therapeutic treatments.
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