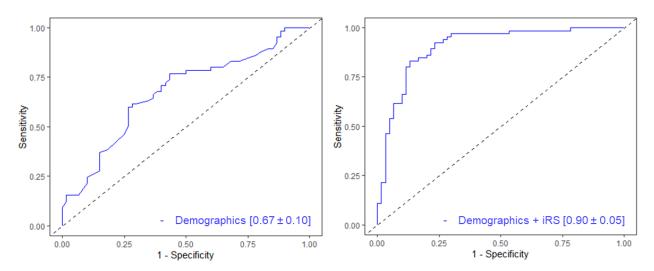
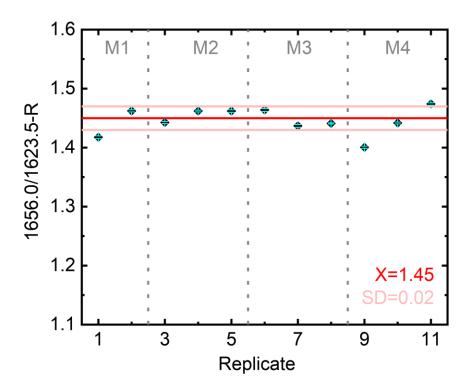

Appendix

Alpha-synuclein misfolding as fluid biomarker for Parkinson's disease measured with the iRS platform

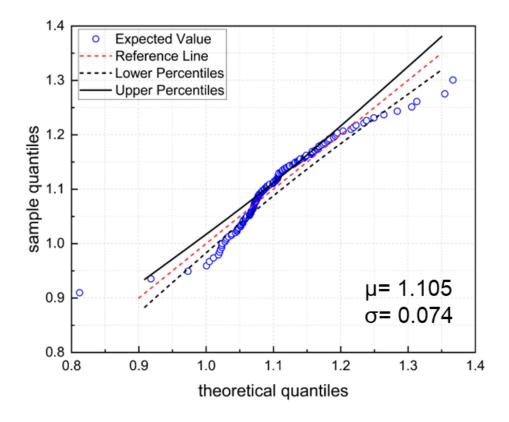
Martin Schuler^{1,2}, Grischa Gerwert^{1,2}, Marvin Mann^{1,2}, Nathalie Woitzik^{1,2}, Lennart Langenhoff^{1,2}, Diana Hubert^{1,2}, Deniz Duman^{1,2}, Adrian Höveler^{1,2}, Sandy Galkowski^{1,2}, Jonas Simon^{1,2}, Robin Denz³, Sandrina Weber⁴, Eun-Hae Kwon⁵, Robin Wanka^{1,2}, Carsten Kötting^{1,2}, Jörn Güldenhaupt^{1,2}, Léon Beyer^{1,2}, Lars Tönges⁵, Brit Mollenhauer^{4,6-7}, Klaus Gerwert^{1,2}

- (1) Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
- (2) Department of Biophysics, Ruhr-University Bochum, Bochum, Germany
- (3) Department of Medical Informatics, Biometry and Epidemiology, Ruhr-University Bochum, Germany
- (4) University Medical Center Göttingen, Department of Neurology, Göttingen, Germany
- (5) Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
- (6) Paracelsus-Elena-Klinik, Kassel, Germany (Klinikstraße 16, 34128 Kassel, Germany)
- (7) Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany.


Appendix	Description	Page
Figure		
S1	Indirect ELISA for EC ₅₀ -value	2
	determination of native and labeled	
	capture antibody	
S2	Logistic regression models for the	3
	combined dataset.	
S3	Reproducibility measures with a pooled	4
	control CSF sample measured on the	
	αSyn capture antibody surface	
S4	Dataset distribution and conformity to	5
	normal distribution by normal Q-Q-Plot of	
	1656.0/1623.5-Ratios	


Appendix Figure S1: Indirect ELISA for EC₅₀-value determination of native and labeled capture antibody according to given protocol (EV Materials). EC₅₀-values were determined from blank corrected absorbance difference at 450 - 620nm using a 4-parameter logistic fit model on normalized data. Values demonstrate the fit results of the native and labeled antibody towards αSyn-M (Stressmarq Bioscience INC. SPR-321) and αSyn-PFF (Stressmarq Bioscience INC. SPR-322), as used in the ThT and ATR-FTIR experiments. EC₅₀ values from the 4-parameter logistic fit model are 0.20 ± 0.002 nM and 0.22 ± 0.007 nM for native antibody, while labeled antibody shows EC₅₀ values of 0.27 ± 0.010 nM and 0.27 ± 0.025 nM.

Characteristic	Demographics			Demographics + iRS		
	OR1	95% CI ¹	p-value	OR ¹	95% CI ¹	p-value
Age	1.020	0.988, 1.055	0.2	1.027	0.986, 1.076	0.2
Gender						
m	_	_		_	_	
W	0.264	0.119, 0.564	7.5.10-4	0.298	0.105, 0.817	0.020
readout10				0.030	0.006, 0.101	5.6·10 ⁻⁷


¹OR = Odds Ratio, CI = Confidence Interval

Appendix Figure S2: Logistic regression models for the combined dataset. The first model, "Demographics" accounts for age and sex only, while the second model "Demographics + iRS," also accounts for the iRS assay read-out. The clinical diagnosis is always used as the dependent variable. Calculated models with characteristics in the upper table were utilized to calculate ROC-AUC curves for both models. The demographics-only model showed an AUC of 0.67 ± 0.10 (p-value $7.5 \cdot 10^{-4}$), while with additional iRS read-out, the AUC increased to 0.90 ± 0.05 (p-value $5.6 \cdot 10^{-7}$). The shown p-values were calculated using a standard Wald test.

Appendix Figure S3: Reproducibility measures with a pooled control CSF sample measured on the α Syn capture antibody surface. The eleven replicates were measured in four measurements (M1-M4). Routine spectra processing (WV and baseline correction, averaging spectra and reference channel subtraction, Fourier self-deconvolution (FSD), and smoothing) was performed. Each replicate is depicted with an error bar (cyan) obtained from applying a smoothing variation by the in-house MATLAB script for data analysis. The mean 1656.0/1623.5-ratio of all measurements was \bar{X} =1.45 with a standard deviation of SD=0.02.

Appendix Figure S4: Dataset distribution and conformity to normal distribution by normal Q-Q-Plot of 1656.0/1623.5-Ratios. The mean of the normal distribution is μ =1.105 with a standard deviation of σ =0.074 for the normal distribution. Lower and upper percentiles (black line and dashed black line) mark 95 %-confidence bands, while the red dashed line shows the reference line. Since a considerable amount of data points of the combined data set (n=134) are not located within the confidence borders, the dataset is not normally distributed. Thus, non-parametric models were applied to test the significance of group separations.