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ABSTRACT
Tagetes erecta L. is an important commercial and medicinal plant. In this study, we reported the com-
plete chloroplast genome sequence of T. erecta. The genome has a circular structure of 152,076 bp con-
taining a large single-copy region (LSC) of 83,914bp, a small copy region (SSC) of 18,064bp, and two
inverted repeats (IR) of 25,049bp by each. It harbors 111 unique genes, including 79 protein-coding
genes, 4 ribosomal RNA genes, and 28 transfer RNA genes. A total of 41 microsatellite, 20 tandem, and
37 interspersed repeats were detected in the genome. The phylogenomic analysis shows that T. erecta
is a single phylogenetic cluster. The complete chloroplast genome of T. erecta lays the foundation for
the phylogenetic, evolutionary, and conservation studies of the genus Tagetes. Furthermore, the inter-
genic region of atpB-rbcL was variable among the species T. erecta. This suggests that this region might
be a mutation hotspot and will be useful for phylogenetic study and the development of molecular
markers. At last, we systematically identified the RNA editing sites in the chloroplast genome of T.
erecta based on the transcriptome downloaded from the SRA database. This study identified the char-
acteristics of the T. erecta chloroplast genome, SNPs, and RNA editing sites, which will facilitate species
identification and phylogenetic analysis within T. erecta.
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Introduction

Tagetes erecta L. belongs to the genus Tagetes of the family
Asteraceae, as an annual ornamental plant and traditional
Mexican medicine, is native to Mexico and South America. The
genus Tagetes has 122 species (https://www.ipni.org/). Tagetes
erecta is most well-known as an important commercial plant
utilized mostly for the decorative purpose (Vasudevan et al.
1997; Ai et al. 2016; Ai et al. 2017) whose flower color can
range from white to dark orange. Plants belonging to this
genus have important medicinal value. Several studies have
suggested that T. erecta has the potential to treat ailments,
such as diabetes mellitus (Mudumbi et al. 2019). In particular,
the flowers have been used to cure eye diseases, colds, con-
junctivitis, coughs, ulcers, bleeding piles, and to purify the
blood (Hemali and Sumitra 2014). Besides, Tagetes minuta L. is
used as a medicinal tea in South America (Soule 1993).
Illustration of the taxonomy classification and the development
of efficient species discrimination markers of Tagetes species
are fundamental for the development of medicinal products.

Many species of Tagetes were identified and reclassified
based on morphological characteristics (Turner 1988;
Schiavinato and Bartoli 2018). Unfortunately, many of the
taxonomic classifications remain unresolved. For instance,
studies have reinstated Tagetes pauciloba as a distinct spe-
cies, which was previously treated as a synonymy of Tagetes
filifolia (Schiavinato and Bartoli 2018). Morphological identifi-
cation has significant limitations due to its strong depend-
ence on the professional level and experience.

The DNA barcoding method can make up for the shortcom-
ings of traditional methods because it is not affected by the
environment, morphological, and sampling organs. The previ-
ous study has analyzed the phylogenetic relationship within
the Tageteae based on the nuclear ribosomal ITS and chloro-
plast ndhF gene sequences, respectively (Loockerman et al.
2003). However, the trees from the two molecular makers were
not completely congruent. The complete chloroplast genome
sequence has more genetic information than the molecular
marker sequence; it is widely used in angiosperm phylogenetic
studies (Li et al. 2019). Consequently, the chloroplast genome
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sequence of T. erecta will promote the phylogenetic study and
marker development of the tribe Tageteae.

Although the chloroplast genome sequence of T. erecta
becomes publicly available, the intraspecific diversity of T. erecta
is unknown. Different T. erecta lines might have various profiles
of chemical compounds, and thus various biological activities.
The medicinal products derived from different lines of T. erecta
might have multiple efficacy and safety profiles. As a result,
understanding the intraspecific diversity of T. erecta will be crit-
ical to ensure the consistent efficacy and safety profiles of the
corresponding medicinal products. Furthermore, RNA-seq
experiments have been performed with the leaf and flower tis-
sues of T. erecta, which provided us an opportunity to character-
ization the RNA-editing events in the chloroplast of T. erecta.

Material and methods

Plant material, DNA extraction, and sequencing

The fresh leaves were collected from the Central China Medicinal
Botanical Garden, EnShi, China (Geospatial coordinates:
N30.177764, E109.743937). Genomic DNA was extracted with
plant genomic DNA kit (Tiangen Biotech, China) and sequenced
using the Hiseq 2500 platform (Illumina, San Diego, CA).

Genome assembly and annotation

The chloroplast genome was assembled from the raw
sequence data by using NOVOPlasty (v.2.7.2) with the seed
sequence of rbcL from Arabidopsis thaliana (Dierckxsens et al.
2017). The correctness of the assembly was validated by
mapping all raw reads to the assembly using Bowtie 2
(v.2.0.1) (Langmead et al. 2009) under the default settings.
The annotation of the chloroplast genome was conducted
initially using CpGAVAS2 (Shi et al. 2019) and then edited
using Apollo (Misra and Harris 2006). The genome sequence
and annotations have been deposited in the GenBank with
accession number MN309813.

Characteristics and repeat analysis

The codon usage and repeat analysis were analyzed using
CpGAVAS2. The microsatellite sequence was analyzed with
MISA software (Beier et al. 2017). The cutoff for the numbers of
units for mono-, di-, tri-, tetra-, Penta-, and hexanucleotides
were 10, 6, 5, 5, 5, and 5, respectively. The tandem repeats
were analyzed by using TRF software (Benson 1999) with the
size of repeat unit � 7. The interspersed repeats were analyzed
with VMATCH software (Kurtz et al. 2001). Both GC contents
and codon usage were calculated using the program Cusp
from EMBOSS (v6.3.1) (Langmead et al. 2009).

Phylogenetic analysis

The chloroplast genome sequence of T. erecta was compared
against the sequences in the PlasDB database (http://www.

herbalgenomics.org/plasdb). The whole chloroplast genome
sequences of T. erecta and other 10 closely related species
were used for phylogenetic analysis. The plastome gene
sequences of 10 species were retrieved using the
“DownloadCOG” module in PLasDB (http://www.herbalgenom-
ics.org/plasdb). A total of 43 coding sequences (atpA, atpB,
atpE, atpH, ndhA, ndhC, ndhD, ndhE, ndhG, ndhH, ndhJ, ndhK,
petA, petG, petL, psaA, psaB, psaC, psaI, psaJ, psbA, psbB, psbC,
psbD, psbF, psbH, psbI, psbJ, psbK, psbM, psbN, psbT, psbZ, rbcL,
rpl20, rpl22, rps11, rps18, rps19, rps2, rps4, rps7, rps8) present in
all of the 11 species were obtained. For the phylogenetic ana-
lysis, these protein sequences were aligned using the
CLUSTALW2 (v2.0.12) program. The IQ-TREE2 (http://www.
iqtree.org/) (Minh et al. 2020) was used to infer the evolution-
ary history, using the model of TVMþ I. The bootstrap analysis
was performed with 1000 replicates using UFBoot, Ultrafast
Bootstrap Approximation (Minh et al. 2013).

Snp discovery in T. erecta chloroplast genome

During this study, another study published the chloroplast
genome of T. erecta (NC_045211.1). To discover SNP between
the two sequences of T. erecta chloroplast genome, we
marked the sequence of NC_045211.1 as a reference and
assembled them with the seqman module from DNASTAR
Lasergene (v9). The SNP pipeline of seqman was used to
identify SNPs with the default parameter.

Identification of RNA editing sites in T. erecta
chloroplast genome

The RNA-Seq data from the flower and leaf (SRR6667676,
SRR6667681) of T. erecta were downloaded from the
GenBank SRA database (http://www.be-md.ncbi.nlm.nih.gov/
sra). The cleaned reads from the two tissues were mapped to
the chloroplast genome by bowtie2 (version 2.2.1) with mis-
match ¼ 7. RNA editing sites were called by REDItools
(Picardi et al. 2015) with the following cutoffs: coverage �5,
frequency � 0.1, and p-value � 0.05.

Results

General features of the chloroplast genome

The chloroplast genome of T. erecta is 152,076 bp in size with
a large single-copy region (LSC) of 83,914 bp, a small copy
region (SSC) of 18,064 bp and two inverted repeats (IRs) of
25,049 bp by each (Figure 1). There are 111 unique genes
predicted in the chloroplast genome, including 79 protein-
coding genes, 4 ribosomal RNA (rRNA) genes, and 28 transfer
RNA (tRNA) genes (Table S1). Among these genes, 9 genes
(rps16, rpoC1, atpF, petB, petD, rpl16, rpl2, ndhB, ndhA) con-
tain only one intron, 2 genes (ycf3, clpP) contain two introns,
and 6 tRNA genes (trnK-UUU, trnS-CGA, trnL-UAA, trnC-ACA,
trnE-UUC, trnA-UGC) contain one intron (Table S2). The length
of the protein-coding sequence (CDS) in the chloroplast
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genome of T. erecta is 71951 bp, representing 47.31% of the
total genome length. In contrast, the length of the rRNA
genes is 9050 bp, representing 5.95% of the total genome
length, and the length of the tRNA genes is 2648 bp, repre-
senting 1.74% genome length.

The GC content analysis showed that the overall GC con-
tent is 37.38%, whereas that for the tRNA genes is 53.11%,
that for the rRNA genes is 54.69%, and that for the protein-
coding regions is 37.82%. We analyze the GC contents for
the first, second, and third codon positions with the protein-

coding regions. The GC contents of the third codon position
are 29.85%, showed a higher AT representation. The GC con-
tents of the three regions are ranked as IRs, LSC, and SSC,
respectively. Moreover, a total of 24,321 codons were identi-
fied in the chloroplast genome of T. erecta. These include 64
unique codons for 20 amino acids and three termination
codons. Among these codons, 2597 codons encode leucine,
and 270 codes encode cysteine, respectively, representing
the most and least abundant amino acids coded in the T.
erecta chloroplast genome (Table S3).

Figure 1. The chloroplast genome of T. erecta created by using CPGAVAS2. The map contains four rings. From the center going outward, the first circle shows the
scattered forward and reverse repeats connected with red and green arcs. The next circle shows the tandem repeats marked with short bars. The third circle shows
the microsatellite sequences identified. The fourth circle shows the gene structure on the plastome. The genes were colored based on their functional categories,
which are shown at the left corner.
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Repeat analysis

Repeat sequences play an important role in genome evolu-
tion, such as insertion, deletion, rearrangement of large DNA
segments, and can affect the length of the genome as well
as the order of the genes (Tangphatsornruang et al. 2010).
Here, we analyzed three kinds of repeat sequences (microsat-
ellite repeats, tandem repeats, and interspersed repeats) in
the chloroplast genome. For the microsatellite repeats, 41
(40 A/T and 1 AT/AT) were identified (Table S4). Only one
compound microsatellite was identified, which is defined as
two individual microsatellite repeats disrupted by less than
100 bases. Fewer microsatellites were found in the protein-
coding regions than in the non-coding regions. The locations
were further classified as intergenic spacers (IGS), exon, and
intron. And numbers of microsatellites falling into these
regions are 26, 10, and 5, respectively.

For the tandem repeats, 20 repeats were found in the
chloroplast genome of T. erecta, meeting the two conditions
that the length of the repeat unit is more than 30 bp and the
similarity among the repeat unit sequences is more than 90%
(Table S5). Most repeats have only two repeat units. And the
lengths of repeat units range from 15 bp to 32 bp. For inter-
spersed repeats, 17 palindromic repeats and 20 direct repeats
were identified (Table S6). The most extended interspersed
repeat unit is 49 bp long, and the two repeat units are
located in the intron of the ycf3 gene and the intron of the
ndhA gene, respectively. Whether or not this long tandem
repeat played any role in the evolution of the chloroplast
genome will be an interesting subject for future study.

Phylogenetic analysis

To examine the phylogenetic position of T. erecta, we ana-
lyzed the phylogeny between T. erecta and other 10 closely
related species by IQ-TREE2 based on the protein-coding
sequences shared in all the eleven chloroplast genomes
(Figure 2). In the PlasDB database, the 10 species closest to
the T. erecta were selected for phylogenetic analysis which
includes Guizotia abyssinica, Mikania micrantha, Galinsoga
quadriradiata, Eclipta prostrata, Sphagneticola calendulacea,
Eclipta alba, Ambrosia artemisiifolia, Parthenium argentatum,
Helianthus hirsutus, and Helianthus strumosus, all of which
belong to the family Asteraceae, subfamily Asteroideae.
Eclipta alba was selected as the outgroup. The phylogenetic
analysis showed T. erecta was a single phylogenetic cluster.
This is consistent with what is expected because no chloro-
plast genome sequences belonging to the other species of
Tagetes are available.

Snp identification from the chloroplast genome

To discover SNPs from the chloroplast genome, we compared
the two chloroplast genome of T. erecta and identified 139
SNPs, as shown in Table S7. Among them, 136 SNPs located
in the intergenic region between the atpB and rbcL gene,
and three SNPs located in the rbcL gene. The intergenic
region between atpB and rbcL gene is hypervariable. The
molecular markers based on the intergenic region between

the atpB and rbcL gene might be effective in distinguishing
T. erecta under the species taxa level.

Identification of RNA editing sites in T. erecta
chloroplast genome

Plant organelle RNA editing is a post-transcriptional change
in the nucleotide composition of an RNA (Freyer et al. 1997).
To obtain the picture of RNA-editing in the chloroplast gen-
ome of T. erecta, we have investigated the occurrence of
editing sites based on the transcriptome data of flower and
leaf using REDItools. All RNA editing sites found in each tis-
sue were shown in Table S8. There are nine RNA editing sites
found across two tissues of flower and leaf. Two and nine
unique RNA editing sites were found in flower and leaf tis-
sues. The majority of editing events in the chloroplast gen-
ome of T. erecta are C-to-U transitions. The percentages of C-
to-U edited sites were 90.9% and 88.9% in flower and leaf tis-
sues, respectively. In the flower tissue, there were 10 RNA
editing sites on the coding sequence of 8 genes, including
atpI, psbZ, rps14, rbcL, accD, rpoA, and rpl23 ndhB. Only one
RNA editing site was found in the intergenic region. In the
leaf tissue, there were 15 RNA editing sites in the coding
sequence of 11 genes, including rps2, psbZ, rps14, ndhJ, rbcL,
accD, petL, petB, rpoA, rpl23 and ndhB. Three RNA editing
sites were found in the intergenic regions.

Discussion

In this study, we sequenced and analyzed the complete
chloroplast genome of T. erecta. Taking together with publicly
available data, we carried out an intraspecific genetic variation
study. Our phylogenetic study suggested that T. erecta was a
single phylogenetic cluster. This is consistent with the classifi-
cation based on the morphological characters. The data here
are rather limited in its usefulness to resolve any problems in
the taxonomic classification of Tagetes due to the limited sam-
pling. This results from the difficulty in collecting the samples
and carried out the reliable classification of these species.
Nevertheless, those would be the focus of future research.

Comparing two T. erecta chloroplast genome sequences
identified a total of 139 SNPs, which corresponds to an average
of 0.9 SNP per kb sequences. Few studies have reported the
nucleotide diversity among plastome sequences. For example,
in one study, plastome sequences from four Panax ginseng
lines were compared. The plastome sequences of three lines
were identical, and the fourth one had a 1-bp insertion at base
5472 (Zhao et al. 2014). As a result, the level of nucleotide
diversity in the genus Tagetes is higher than those in the gen-
era Panax. One interesting aspect is that these SNPs are
enriched in a particular locus. 136 of 139 SNPs (97.84%) were
found in the intergenic regions between atpB and rbcL. The
enrichment of nucleotide diversity in a particular region has
not been reported before. Understand the underlying mechan-
ism will be an interesting subject for future studies.
Nevertheless, this region can be exploited for the development
of high-resolution markers for intraspecific discrimination.
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Mapping of the RNA-seq data to the references identified
a total of 20 RNA-editing sites. In flowering plants, 30–40
such alterations are usually found in plastids (Takenaka et al.
2013). As a result, the occurrence of RNA-editing sites in
T. erecta plastid is lower than in other species. The underlying
mechanism will be an interesting subject for future studies.

In conclusion, the identification and characterization of the
complete chloroplast genome sequence of T. erecta will help
us identify Tagetes species with higher resolution and under-
stand the relationship of related Tagetes species and to dissect
the evolutionary history of Tagetes species. With the chloro-
plast genome of T. erecta available, sequencing and assembly
of additional chloroplast genomes from varieties of T. erecta
and other Tagetes species will become straightforward.
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