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Abstract. Experimental evidence suggests that the protein phosphatase calcineurin mediates the action of amyloid-� (A�)
oligomers, the most toxic amyloid species thought to drive initial cognitive decline in Alzheimer’s disease (AD). However, there
is currently no evidence that inhibition of calcineurin could prevent the onset of AD in humans. Here, we report for the first time
that individuals chronically treated with calcineurin inhibitors to prevent solid organ transplant rejection have a significantly
lower incidence of AD/dementia as compared to the general population. This result prompts further clinical development of
calcineurin inhibition as a viable treatment for AD.
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Alzheimer’s disease (AD) is the most common age-
associated neurodegenerative disorder for which there
is no resolving cure. Compelling evidence indicates
that small soluble oligomers of amyloid-� (A�) pro-
tein that precede senile plaque formation are the most
toxic A� species in the AD brain [1, 2], known to
selectively target synaptic integrity and function [2–6].
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Consequently, there is large consensus that prevent-
ing A� oligomer synaptotoxicity would be an effective
treatment strategy [5, 7, 8].

Calcineurin (CN) is an important phosphatase
modulating synaptic activity and memory formation
[9–11]. Excess CN activity disrupts synaptic archi-
tecture and impairs memory [10, 12, 13], but also its
complete suppression negatively affects memory [10].
This suggests that normalization and careful modula-
tion of CN activity is critical to allow proper memory
processing and cognition [12, 14]. Notably, we and
others have shown that CN mediates both the neuro-
toxic and cognitive effects of A� oligomers [15–24],
and elevated CN has been also shown in the CNS
of AD patients, suggesting a central role of CN in
AD onset and/or clinical progression [25–28]. Indeed,
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our previous studies in mouse models demonstrated
that an acute treatment with the CN inhibitor (CNI)
FK506/Tacrolimus (TAC) in Tg2576 mice (a well-
established model of AD) as well as in wt mice acutely
injected icv with A� oligomers restores memory func-
tion in these cognitively impaired animals [16, 19, 29].
We further showed that biochemical markers and elec-
trophysiological measurements of synaptic efficiency,
that are known to be disrupted by A� oligomers [2, 3, 5,
6, 30, 31], are restored following TAC treatment [29].
It is important to notice that the beneficial effects of
TAC were not due to immunosuppression but rather
to a direct inhibition of CN. In fact, another clin-
ically used immunosuppressant, Rapamycin, which
does not inhibit CN was ineffective in preventing
A�-induced behavioral, biochemical, and electrophys-
iological deficits under acute treatment conditions [29]
(however, see [32, 33] as reviewed in [34, 35] for CN-
independent, autophagy-driven effects of a chronic
Rapamycyn treatment on AD mouse models).

While these results strongly indicate that inhibition
of CN by TAC may protect neurons from the damag-
ing effects of A� oligomers, the question as to whether
such strategy may be effective in preventing the onset
and progression of AD in humans remains unresolved.
It is particularly challenging to preliminary test this
hypothesis directly on AD patients since the implemen-
tation of a de novo treatment with CNI is associated
with systemic immunosuppression and consequently
with increased risk of infections and malignancies.
An innovative alternative approach asking whether
CNI could be a promising treatment for preventing
(and possibly halting or reversing) AD in humans
may come from the post hoc analysis of patients who
received organ transplants. Organ transplant recipients
represent a cohort of patients mostly maintained on
CNI based chronic immunosuppression (using either
TAC or cyclosporine) where the hypothesis that CNI
reduces the prevalence of symptomatic AD can be
tested without adding unnecessary risk to the patients.
Patients receiving organ transplantation in any age
group, including ages (>65 years) that are at higher
risk of developing AD, are followed for many years
(usually until death) in transplant centers with all their
comorbidities carefully monitored and recorded by a
multidisciplinary team. Any manifestation of mem-
ory impairment or dementia is immediately noted and
monitored since it can limit compliance with treatment.
Furthermore, younger individuals in lower risk age for
AD, are kept for many years on CNI. These subjects
are expected to have long survival after transplantation
and the effect of long-term chronic CNI treatment on

Table 1
Rate and age distribution of calcineurin inhibitor-treated patients

with dementia

Age Number of Number of patients Percentage of patients
Groups Patients with dementia with dementia

<65 2057 2 0.09%
65–74 438 5 1.14%
75–84 135 1 0.7%
>85 14 0 0%
Total 2644 8 0.3%

the development of AD could be assessed through the
analysis of their follow-up medical records.

With this goal in mind, according to approved
IRB protocols we retrospectively studied a popula-
tion of 2,644 patients who received a total of 3,167
organ transplants at our institution. These transplant
recipients were maintained on chronic CNI immuno-
suppressive therapy to prevent allograft rejection.
Patients were then stratified for age at the time of
transplant into the following groups: <65; 65–74;
75–84; >85 years of age. The gender and ethnic-
ity demographic of this patient cohort is shown
in Supplementary Table 1. The number of patients
with CNI-based immunosuppression was evaluated
at age of first transplant, age at the time of analy-
sis (August 2013) or at time of death (if deceased).
All cognitive impairments indicated in the physician
note were marked as positive hit for dementia while
acute/transient conditions diagnosed as secondary to
infection or drug toxicity and subsequently resolved
with proper treatment were excluded. From this anal-
ysis patients in different age groups were transplanted
respectively at <65 (95.3%); 65–74 (4.1%); 75–84
(0.3%); >85 (0.03%). At time of data collection, 22.2%
of patients (n = 587) were collectively >65 years of
age. Of these patients, 438 (16.5%) were 65–74 years
old; 135 (5.1%) were 75–84 years old, and 14 (0.5%)
were >85 years old. We observed evidence of demen-
tia in 2 subjects (2/2,057; 0.09%) in the cohort <65
years old, while in the cohort >65 years of age, we
identified 6 demented patients (6/587; 1.02%). Total
patients were 60% males and 40% females, with 6
males and 2 females demented. When analyzed by age
group, 5 patients with dementia were in the 65–74 years
old group (5/438; 1.14%); 1 was in the 75–84 years old
group (1/135; 0.7%); and none in the >85 years old
group (0/14). This data is summarized in Table 1. Of
note, 4 of these demented patients (1 in the <65 and 3 in
the 64–74 age groups) had no mention of dementia in
follow-up visits years later (average 5.25 years; range
from 1 to 7 years after initial diagnosis) while they



G. Taglialatela et al. / Calcineurin Inhibition Reduces AD Incidence 331

Fig. 1. Prevalence of clinically diagnosed dementia (including
Alzheimer’s disease) in the general population as compared to
transplanted patients treated with immunosuppressive calcineurin
inhibitors (CNI). Patients were grouped according to age at time of
last follow up medical examination or death. Table underneath figure
shows actual numbers in the transplanted patient cohort studied for
the present report. ∗∗∗p < 0.0001 as compared to age-matched group
in the general population (χ2 test).

were receiving CNI. All other demented patients were
described to have only mild dementia and one patient
diagnosed at 81 years of age with mild dementia had
been on CNI for 19 years prior to it.

The number of patients with a diagnosis of demen-
tia obtained from medical records in our patient cohort
was then compared to national data obtained from
the 2014 Alzheimer’s Association Facts and Figures
dataset on age group-matched patients to compare the
prevalence of AD (Fig. 1). These data clearly show
that the prevalence of dementia and AD in our patient
cohort is significantly lower (in fact, almost absent) as
compared to national data from the general population
(p < 0.0001 for each age group except <65 that was
not significant; Chi-Square test). Despite the encour-
aging findings observed in the >85 years old these were
potentially limited by the small number of patients
available in that group. Since our institution mostly
serves patients from the State of Texas, we further com-
pared our >65 years cohort with the prevalence of AD
in the general population of Texas (Alzheimer Associ-
ation Facts and Figures 2014) obtaining similar results
(1.02% versus 10.13%, respectively; p < 0.0001; Chi-
Square Test). Collectively, these results suggest that
inhibition of CN prevented the occurrence of dementia
in chronically treated patients.

While this patient population is encouraged to
adhere to diet/exercise regimens and are instructed
not to use recreational drugs, alcohol, or tobacco that

could also favor neuronal function, the compliance
rate is limited and unlikely to explain the findings
observed here. On the other hand, several diseases
leading to kidney transplantation (by far the most com-
mon solid organ transplant in our patient population;
>80%) such as diabetes and hypertension are also well-
established risk factors to develop dementia and AD
[36–39]. For example diabetes and hypertension are the
leading causes (over 70%) of end-stage-renal-disease
leading to kidney transplant [40, 41]. Moreover, other
risk factors for end-stage-renal-disease are obesity
and advanced age (American Kidney Foundation)
that are also well-recognized risk factors for AD
[42–46]. Consequently, one should expect our trans-
plant patient population (that includes a majority of
kidney transplant patients) to be skewed toward high
risk of developing dementia rather than being protected
from it, as suggested by our data. This considera-
tion further supports the predicted protective effect of
CNI treatment in this population. Lastly, over several
decades CNIs have been the common denominator of
our immunosuppressive protocols in association with
other medications (steroids, mycophenolate mofetil,
rapamycin, etc.). Since we did not observe differences
in protection over any particular time period covering
our patient database, it is unlikely that the observed
beneficial effects may be due to drugs different than
CNIs.

In conclusion, our findings confirm for the first
time in humans the data obtained from animal models
and supports our hypothesis that CNI has a protective
effect on the development (and possibly progression
and even reversal) of AD. This result holds true even
when the patient cohort is stratified according to age,
indicating that the beneficial effects of CNI treatment
is not affected by increasing age. Furthermore, our
transplanted patient cohort should be at risk of AD
(mostly kidney transplant patients with strong risk fac-
tors for AD), making our results even more suggestive
of a remarkable protective effect of CNI treatment.
Whether CNIs may be effective in clinically diagnosed
MCI or early AD subjects remains to be determined.
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