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Abstract: In the last decade, temporal dominance of sensations (TDS) methods have proven to be
potent approaches in the field of food sciences. Accordingly, thus far, methods for analyzing TDS
curves, which are the major outputs of TDS methods, have been developed. This study proposes
a method of bootstrap resampling for TDS tasks. The proposed method enables the production of
random TDS curves to estimate the uncertainties, that is, the 95% confidence interval and standard
error of the curves. Based on Monte Carlo simulation studies, the estimated uncertainties are
considered valid and match those estimated by approximated normal distributions with the number
of independent TDS tasks or samples being 50–100 or greater. The proposed resampling method
enables researchers to apply statistical analyses and machine-learning approaches that require a large
sample size of TDS curves.

Keywords: temporal dominance of sensations; confidence interval; standard error; Markov chain

1. Introduction

Over the last decade, temporal dominance of sensations (TDS) methods, in which
multiple types of temporally evolving subjective responses are recorded, have been proven
to be effective methods of sensory appraisal in the field of food sciences by many re-
searchers [1–3]. Furthermore, in some recent studies, TDS methods have been applied
to tasks involving visual, auditory, and haptic cues [4–7]. TDS methods are becoming a
standard of sensory appraisal, irrespective of the type of modality.

Typically, in the task of the TDS method, adjective descriptors (Except for adjective
descriptors, onomatopoeic words are used, for example [8]) listed on a computer screen are
sequentially selected by assessors. These descriptors correspond to the dominant sensations
felt while experiencing food stimuli. The dominant sensation is defined as “the sensation
that catches his/her attention” [9] or constitutes the intensity of or change in the sensory
profile [10]. In most data analysis methods, the period that each descriptor is selected as
dominant is calculated; in other words, this is the dominance duration [8,11–13]. These
periods are treated as variables, and principal component analysis or canonical variate
analysis are then applied to evaluate the differences among the food stimuli. Furthermore,
as the most typical analysis [9], by accumulating the results of independent TDS tasks,
a proportion that a certain descriptor is dominant in is computed at each instant. These
proportions are functions of continuous time and are displayed as “TDS curves.” These
TDS curves are visually inspected, and their key values, such as maximum values and
the time when the maximum values are observed, are calculated and compared using
multivariate analysis techniques among different food products [2,14,15].

In the standard data analysis method established by earlier studies, a set of TDS
curves are computed using the results of all the independent tasks. This method of curve
production prevents the use of many analytical methods requiring a large sample size.
For instance, if we are interested in the peak curve value of a certain descriptor, there is
no standard method to estimate how it fluctuates, meaning we cannot judge whether the
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peak value is different from a hypothesized value. Further, in general, machine-learning
techniques to predict or utilize TDS curves require a large set of TDS curves. To acquire
multiple sets of TDS curves, for example, TDS tasks need to be repeated by the same panels
for the same food stimuli [15]. These multiple sets of TDS curves are necessary to consider
the curves’ uncertainties for some statistical analyses, including hypothesis testing. Such
repetitions are acceptable for acquiring a few sets of TDS curves; however, more curve
sets are required for some analysis techniques. To circumvent this problem, bootstrap
resampling methods can be used [16–18]. In these resampling methods, as described in
Section 2.2, tasks are sampled with replacement from a set of independent TDS tasks,
and many sets of TDS curves are acquired. For instance, in [17], to apply the principal
motion analysis on TDS curves, dozens of TDS curve samples were produced by bootstrap
resampling to avoid overfitting. However, thus far, the validity of bootstrap resampling of
TDS curves has remained unclear.

Bootstrap resampling for TDS curves yields some benefits. First, it allows us to adopt
analytical methods that require many curve samples. Second, bootstrap resampling enables
the estimation of curve uncertainties. More specifically, we can test whether a curve value
at a certain instance is significantly greater than a hypothesized value. Further, a hypotheti-
cal test of curve values between two or multiple different descriptors can be conducted.
Nonetheless, Pineau et al. [2] suggested that the uncertainties of TDS curves can be esti-
mated based on approximated normal distributions because TDS curve values correspond
to proportions. Provided that the uncertainties estimated by bootstrap resampling and
normal distributions match, the validity of bootstrap resampling is supported.

However, the validity of the bootstrap resampling method for TDS curves has yet to be
studied. As such, the present study proposes a bootstrap resampling method for estimating
the uncertainties of TDS curves, demonstrates the method’s validity, and calculates the
necessary sample size. In particular, our interest is how many samples are necessary to
accurately estimate the uncertainties of TDS curves and to create random TDS curves, of
which fluctuations represent the uncertainty of the population. As the most popular indices
of uncertainties, 95% confidence intervals and standard errors are computed using the
distribution of TDS curve values that are generated by resampled data. These uncertainties
are validated via comparison with the population produced via Monte Carlo simulation,
where Markov chain models that simulate TDS tasks [19–21] are used to produce a large
number of random samples. The present study is the first attempt to utilize Markov chain
models and Monte Carlo simulation to yield a large dataset of TDS curves.

2. Methods
2.1. TDS Method

Herein, the typical procedures of TDS tasks and computation of TDS curves are
introduced to help understand the remaining part of the paper. Regarding further details,
earlier publications [1–3,9] are referred to.

In TDS tasks, a graphical user interface is used as shown in Figure 1a. The assessor
pushes the start button at the moment of putting the food in his/her mouth. S/he then
pushes the button corresponding to the sensation that comes to mind. Different buttons
are sequentially pushed as the dominant sensations change. Once the button is pushed,
it remains selected until the next button is pushed. The stop button is pushed when the
food vanishes in the mouth or prominent sensations fade after swallowing the food. These
procedures comprise a single TDS task. As shown in Figure 1b, from a single task, that
is, the i-th task, binary functions of continuous time that take either 0 (unselected) or 1
(selected) are yielded for individual p descriptors:

bij(t) ∈ {0, 1} (j = 1, ..., p), (1)

where j is the index of descriptors.
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Figure 1. Temporal dominance task. (a) Graphical user interface. (b) Binary function of selected/non-
selected from a single TDS task. (c) Temporal dominance curves as the accumulation of binary
functions by descriptors. Partly adapted from [18].

This task is repeated by n assessors. TDS tasks do not necessarily require well-trained
or professional assessors [3,15,22]. Typically, only familiarization with the TDS tasks and
comprehension of the descriptors used in the tasks are required [9,23]. Based on the
results of n tasks, the proportion at which each descriptor is dominant at moment t is
computed. For this computation, typically, the period of each task is normalized such that
the time elapsed between pushing the start and stop buttons is equal to 1. The normalized
binary functions are accumulated for individual descriptors. As shown in Figure 1c, the
dominance proportions are computed by dividing the accumulated values by n.

dj(t′) =
n

∑
i=1

bij(t′)
n

, (2)

where t′ is the normalized time (t′ ∈ [0, 1]). The time function dj(t′) is the TDS curve for
descriptor j.

2.2. Bootstrap Resampling of TDS Tasks

Herein, the bootstrap resampling method for TDS tasks is introduced, which follows
a standard bootstrap resampling method [24]. Note that this method is very different from
bootstrap resampling methods for time-series data, such as block bootstrap [25,26]. It is
unique to the temporal dominance tasks and has been adopted in some earlier studies [16–18].
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The results of m independent temporal dominance tasks for the same food are collected.
We call this sample set P0. The set of TDS curves computed using all the samples in P0
is called C0. From P0, m tasks are randomly sampled with replacement and form a new
sample set P1. Note that some tasks in P1 may be the same. A set of TDS curves, C1, is
computed based on P1. This process of resampling is repeated q times, and q curve sets
C1, ..., Cq are acquired. The expected values of q curve sets match the values of curves in C0.

2.3. Monte Carlo Simulation of Temporal Dominance Tasks Based on Markov Chains

The combination of Monte Carlo simulation and Markov chains is used to simulate
a large number of TDS tasks. The Monte Carlo method is a simulation based on many
random samples, while Markov chains express the probabilistic transitions of dominant
sensations while eating food [19–21,27] and are used to simulate TDS tasks.

In the present study, two cases are simulated. In Cases 1 and 2, four and six descriptors
are used, respectively. As shown in Figure 2, descriptors are expressed as states, and the
initial state at t′ = 0 is determined by the initial distribution of (D1, D2, D3, D4) = (0.5,
0.25, 0.25, 0) for Case 1 and (D1, D2, D3, D4, D5, D6) = (1/6, 1/3, 1/3, 1/6, 0, 0) for Case 2.
Here, Di (i ∈ {1, 2, 3, 4} for Case 1 and i ∈ {1, 2, 3, 4, 5, 6} for Case 2) indicates descriptor
i. For example, in Case 1, D1 is selected at the probability of 0.5 at t′ = 0. The state at
t′ = ∆t after one transition is probabilistically determined by the transition probabilities in
Tables 1 and 2. For simplification, each task is assumed to consist of 20 transitions; that is,
∆t = 1/20. The state-transition table varies according to t′. The entire period is split into
three phases: initial (t′ = 0–6/20), middle (t′ = 7/20–13/20), and last (t′ = 14/20–1.0). The
transition probabilities in the tables were arbitrarily determined by the author. For example,
when D1 is selected at t′ = 0, D1 is likely to be kept selected at t′ = ∆t at the probability
of 0.5, according to Table 1. D2 is also likely to be selected after D1 at the probability of
0.3. By continuing this process along the timeline, the temporal evolution of descriptors is
acquired. Consequently, the process to sequentially select descriptors referring to dominant
sensations is simulated.

Table 1. Tables of transition probabilities for Case 1 involving four descriptors. Di indicates descriptor
i. Initial, middle, and last phases range t′ = 0–6/20, t′ = 7/20–13/20, and t′ = 14/20–1, respectively.

Initial Destination
Phase D1 D2 D3 D4

D1 0.5 0.3 0.2 0

From D2 0.1 0.5 0.3 0.1
D3 0.1 0.2 0.5 0.2
D4 0 0 0.4 0.6

Middle Destination
Phase D1 D2 D3 D4

D1 0.4 0.3 0.2 0.1

From D2 0.1 0.4 0.3 0.2
D3 0.1 0.1 0.6 0.2
D4 0.1 0.1 0.2 0.6

Last Destination
Phase D1 D2 D3 D4

D1 0.2 0.2 0.3 0.3

From D2 0.1 0.3 0.3 0.3
D3 0.1 0.2 0.3 0.4
D4 0.1 0 0.2 0.7
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Figure 2. Markov chain model for Case 1 involving four descriptors. D1–D4 indicate descriptors 1–4.
pab indicates the probability of transitioning to Db from Da.

Table 2. Transition tables for Case 2 involving six descriptors.

Initial Destination
Phase D1 D2 D3 D4 D5 D6

D1 0.4 0.3 0.2 0.1 0 0
D2 0.1 0.4 0.2 0.2 0.1 0

From D3 0.1 0.2 0.4 0.2 0 0.1
D4 0 0.1 0.4 0.3 0.1 0.1
D5 0 0 0.3 0.2 0.3 0.2
D6 0 0 0.2 0.2 0.3 0.3

Middle Destination
Phase D1 D2 D3 D4 D5 D6

D1 0.3 0.3 0.2 0.1 0.1 0
D2 0.0 0.3 0.3 0.2 0.1 0.1

From D3 0.1 0.1 0.4 0.3 0.1 0
D4 0 0.1 0.2 0.4 0.2 0.1
D5 0 0 0.1 0.2 0.3 0.4
D6 0 0 0.1 0.2 0.3 0.4

Last Destination
Phase D1 D2 D3 D4 D5 D6

D1 0.1 0.2 0.3 0.3 0.1 0
D2 0.1 0.3 0.3 0.3 0 0

From D3 0.1 0.2 0.3 0.4 0.1 0
D4 0.1 0 0.2 0.5 0.2 0
D5 0 0 0 0.1 0.6 0.3
D6 0 0 0.1 0.1 0.3 0.5

Following the abovementioned methods, for both Cases 1 and 2, the results of n tasks
are produced and treated as the population. Figure 3 shows the TDS curves computed by
all the tasks in the population when n = 10000.
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Figure 3. Temporal dominance curves, that is, dominance proportions, computed from the populations of which n = 10,000.
(a) Case 1 with four descriptors. (b) Case 2 with six descriptors.

2.4. Estimation of 95 % Confidence Intervals and Standard Errors

As mentioned above, as representative indices of uncertainties, 95% confidence inter-
vals and standard errors are adopted. First, these values are estimated using resampled
TDS curves. Second, these values are estimated using approximated normal distributions.
The values estimated by the two approaches are then compared.

As in Figure 4, m tasks are randomly sampled from the population, including 10,000
tasks: n = 10,000. Hence, m is the sample size and is 15, 30, 50, 75, 100, 150, 200, 250, 300,
350, 400, 450, or 500. Based on m samples, the bootstrap resampling procedure is repeated
1000 times (q = 1000), and 1000 sets of TDS curves are computed (C1, . . . , C1000). At each
instant t′, for each descriptor, the 95% confidence interval is estimated as the range between
the 25th largest curve value and 25th smallest curve value among the 1000 curve values.
Then, it is checked whether the dominance proportion value in the population is included
in this range. These procedures are repeated 1000 times, and the proportion for which
the population value was included in the estimated range is calculated. Note that this
proportion is expected to be close to 0.95.

Population P (size n = 10,000)

�

�

Population curves C

Normalized time

Random sampling without replacement

Sample set �� (size m)

1 2 3 4 m�

Sample curves C0
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Figure 4. Method of simulation. Individual circles indicate independent TDS tasks.
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Similar processes are conducted for standard errors. The range between the 159th
largest and 159th smallest values is used as the estimated standard error. The proportion at
which the population value is included in the estimated range of standard error is expected
to be close to 0.682.

The values of TDS curves are thought to be subject to normal distributions, because
the values are proportions [2]. The uncertainties can then be computed using normal
distributions. When the curve value for descriptor i at time t′ is denoted by di(t′), the 95%
confidence interval of di(t′) is estimated by

di(t′)± 1.96

√
di(t′)(1− di(t′))

m
. (3)

Similarly, the standard error is estimated by

di(t′)±
√

di(t′)(1− di(t′))
m

. (4)

3. Results

Figure 5 shows the examples of sample TDS curves and confidence intervals that were
estimated by resampling. The three figures show those simulated when the sample sizes
are m = 50, 100, and 200, respectively. Following the principles of statistical estimation, a
greater sample size leads to smaller confidence intervals. Although they are not shown,
this trend is the same for the standard errors.
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Figure 5. Examples of temporal dominance curves and 95% confidence intervals for Cases 1 (a) and 2 (b). For visual clarity,
only Descriptors 1 and 4 are shown.

Figure 6 shows the inclusion probabilities that the dominance proportions of the
population are included in the estimated confidence intervals and standard errors at each
discrete moment t′ for different m values. Note that the uncertainties were computed by
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the two methods. One was based on resampling, and the other was based on normal
distributions following (3) and (4). When m was relatively small, the inclusion probabilities
were smaller than the expected values, that is, 0.95 and 0.682 for confidence intervals
and standard errors, respectively. The confidence intervals and standard errors were
underestimated with small m values. Note that it is empirically known that uncertainties
based on approximated normal distributions are inaccurate when mp < 5 or m(1− p) < 5,
where p is the sample proportion, suggesting that estimated uncertainties are not reliable
for small sample sizes. As in the figures, when m was large, the uncertainties estimated by
resampling and normal distributions were close to each other.

Comparing Case 1 (four descriptors) and Case 2 (six descriptors), the inclusion proba-
bilities of Case 1 seem larger than those of Case 2 when m = 15 and 30. The present study
does not further investigate this point. Note that the differences between the two cases
include the number of descriptors and profiles of TDS curves. Hence, the root causes of the
differences in the inclusion probabilities between the two cases remain unclear.
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Figure 6. Probabilities that the dominance proportions in the population are included in the estimated uncertainties, that
is, confidence intervals and standard errors. (a) Case 1. (b) Case 2. The uncertainties are computed using resampling and
normal distributions. Probabilities are computed at m = 15, 30, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, and 500.

4. Discussion

Two types of uncertainties, standard error and 95% confidence interval, of TDS curve
values were repeatedly estimated through a combination of Monte Carlo simulation and
bootstrap resampling. Approximately 68.2% of the estimated standard errors included
the population values. Similarly, 95% of the estimated confidence intervals included
the population values. These results indicate that resampling of TDS tasks is valid for
estimating uncertainties with large sample sizes m. Thus, the resampling produces random
TDS curves centering around the sample curves. In terms of the acceptable m values, based
on Figure 6, when m ≥ 100, the uncertainties were fairly estimated. However, practically,
the sample size of 100 is unlikely for most settings of sensory appraisal. Most of the previous
studies on temporal dominance methods do not satisfy this sample size. Considering this
situation, the present study proposes an acceptable value range of m = 50–100 while noting
that the uncertainty indices tend to be underestimated with small m values.

As mentioned above, bootstrap resampling is beneficial for analysis techniques requir-
ing many TDS curves. Because of the bootstrap method, temporal dominance methods
and a variety of statistical and machine-learning techniques will be closely tied. Typi-
cally, the concern of overfitting can be circumvented by using resampled curves. Another
suggestion of the present study is that hypothesis testing of dominance proportions or



Foods 2021, 10, 2472 9 of 12

values of TDS curves can be conducted via approximated normal distributions. A standard
parametric method for proportions is available when the sample size is large. For example,
a dominance proportion at t′ for a certain brand of food can be statistically compared
with that for another brand. Further, a dominance proportion at t′ is tested with regard to
whether it is significantly greater than zero or the chance level. Note that these hypothesis
tests using approximated normal distributions should involve a sample size above 50–100,
although such restrictions on the sample size were not mentioned in the original study by
Pineau et al. [2] nor in the international standards [9].

Some limitations of this study should be mentioned. First, the acceptable m values
may depend on populations, but only two types of population models were investigated
in this study. Particularly, when the TDS curves of the population include small values
of nearly zero, it is difficult to accurately estimate uncertainties. However, such small
values below the chance level are typically regarded as trivial and ignored for analyses [2].
Second, this study is limited to the TDS method, where only one descriptor can be selected
at each moment, and the dominance proportions can be computed. As a variation of the
TDS method, the temporal check-all-that-apply (TCATA) method [28,29] is also popular,
as multiple descriptors can be selected simultaneously. Although TDS and TCATA meth-
ods [30,31] are often compared, the curves yielded by the TCATA method do not indicate
dominance proportions. Moreover, thus far, mathematical models that can be used for a
Monte Carlo simulation of the TCATA method have not been determined, whereas Markov
chains are used for TDS methods [19–21].

5. Conclusions

The TDS method is a time-series sensory appraisal method that has been increasingly
used in the field of food science. In general, a set of dominance-proportion curves is com-
puted based on all the samples, whereas some statistical and machine-learning techniques
require several or many sets of curves. Furthermore, it is thought that the uncertainties of
dominance proportions are computed using approximated normal distributions; however,
their validity is yet to be investigated. Hence, thus far, the estimation of uncertainties has
rarely been utilized. Resampling is expected to resolve these issues, and this study proposes
a resampling method for TDS curves. Through Monte Carlo simulation, the 95% confidence
intervals and standard errors could be adequately estimated when the sample sizes were
greater than 50–100. Furthermore, these uncertainties were close to those estimated using
approximated normal distributions. Note that these results are based on the simulation
study, and mathematical generalization remains unstudied. The resampling method for
TDS curves can be used to expand the analyses of TDS tasks. In the future, resampling
methods for a modified version of the TDS method, such as the TCATA method, need to be
established, and successful analysis methods using the bootstrap resampling method are
expected. For example, machine-learning methods using TDS curves to distinguish food
products or judge food preferences are expected applications.
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