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Abstract

Quantitative susceptibility mapping (QSM) is a magnetic resonance imaging technique that

quantifies the magnetic susceptibility distribution within biological tissues. QSM calculates

the underlying magnetic susceptibility by deconvolving the tissue magnetic field map with a

unit dipole kernel. However, this deconvolution problem is ill-posed. The morphology

enabled dipole inversion (MEDI) introduces total variation (TV) to regularize the susceptibil-

ity reconstruction. However, MEDI results still contain artifacts near tissue boundaries

because MEDI only imposes TV constraint on voxels inside smooth regions. We introduce a

Morphology-Adaptive TV (MATV) for improving TV-regularized QSM. The MATV method

first classifies imaging target into smooth and nonsmooth regions by thresholding magnitude

gradients. In the dipole inversion for QSM, the TV regularization weights are a monotonically

decreasing function of magnitude gradients. Thus, voxels inside smooth regions are

assigned with larger weights than those in nonsmooth regions. Using phantom and in vivo

datasets, we compared the performance of MATV with that of MEDI. MATV results had bet-

ter visual quality than MEDI results, especially near tissue boundaries. Preliminary brain

imaging results illustrated that MATV has potential to improve the reconstruction of regions

near tissue boundaries.

Introduction

Magnetic susceptibility is a fundamental physical property that describes the response of bio-

logical tissues to an applied magnetic field. The magnetic susceptibility inhomogeneity field

map may be measured from the magnetic resonance imaging (MRI) phase data [1]. In quanti-

tative susceptibility mapping (QSM), tissue magnetic susceptibility distribution is determined

by deconvolving the local tissue field map with a dipole kernel [1–5]. Given the zero values of

the dipole kernel along the magic angle in the k-space, the inversion of the local tissue field

PLOS ONE | https://doi.org/10.1371/journal.pone.0196922 May 8, 2018 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Guo L, Mei Y, Guan J, Tan X, Xu Y, Chen

W, et al. (2018) Morphology-adaptive total

variation for the reconstruction of quantitative

susceptibility map from the magnetic resonance

imaging phase. PLoS ONE 13(5): e0196922.

https://doi.org/10.1371/journal.pone.0196922

Editor: Dzung Pham, UNITED STATES

Received: July 20, 2017

Accepted: April 23, 2018

Published: May 8, 2018

Copyright: © 2018 Guo et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: In this study, two in

vivo brain datasets were used. The in vivo dataset 1

was downloaded from the Cornell University

website (http://weill.cornell.edu/mri/QSM/Online.

zip) and the in vivo dataset 2 was downloaded from

the QSM reconstruction challenge website (http://

qsm.neuroimaging.at).

Funding: This research was funded by the National

Natural Science Funds of China [61671228 and

61728107, http://www.nsfc.gov.cn/] and the

Guangdong Provincial Science & Technology

Program [2017B090912006, http://pro.gdstc.gov.

https://doi.org/10.1371/journal.pone.0196922
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0196922&domain=pdf&date_stamp=2018-05-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0196922&domain=pdf&date_stamp=2018-05-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0196922&domain=pdf&date_stamp=2018-05-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0196922&domain=pdf&date_stamp=2018-05-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0196922&domain=pdf&date_stamp=2018-05-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0196922&domain=pdf&date_stamp=2018-05-08
https://doi.org/10.1371/journal.pone.0196922
http://creativecommons.org/licenses/by/4.0/
http://weill.cornell.edu/mri/QSM/Online.zip
http://weill.cornell.edu/mri/QSM/Online.zip
http://qsm.neuroimaging.at
http://qsm.neuroimaging.at
http://www.nsfc.gov.cn/
http://pro.gdstc.gov.cn/egrantweb/


map to the tissue magnetic susceptibility distribution is an ill-conditioned problem that causes

streaking artifacts and amplifies noise in reconstructed susceptibility maps [6, 7].

To achieve accurate susceptibility reconstruction, one approach is to collect phase data at

multiple head orientations with respect to the main magnetic field and calculate susceptibility

maps by using methods such as the calculation of susceptibility through multiple orientation

sampling (COSMOS) [8] and the susceptibility tensor imaging (STI) [9]. Multiple orientation

sampling is not clinically feasible for QSM because it substantially prolongs scan time. More-

over, the repositioning of imaging subjects in a fixed magnet is restricted to a narrow range in

multiple orientation methods. Therefore, the reconstruction of susceptibility maps from single

orientation phase data is the primary approach in practice. The results obtained by COSMOS

or STI from multiple orientation phase data are the references for evaluating the performance

of single orientation methods.

Compared with multiple orientation techniques, single orientation QSM has the advantage

of reduced scan time but suffers from streaking artifacts and noise amplification due to the ill-

posedness of the inversion problem. To mitigate artifacts and noise, various QSM methods

have been developed to address dipole inversion from single orientation sampling [10–25].

Among Bayesian regularization approaches, morphology enabled dipole inversion (MEDI)

[11, 12, 26] combine total variation (TV) and morphological information in magnitude to reg-

ularize the susceptibility reconstruction. However, the susceptibility maps generated by MEDI

may still contain artifacts near tissue edges because it imposes no constraints in these regions.

Here, we introduce a Morphology-Adaptive TV (MATV) regularization method for single

orientation QSM to improve the susceptibility reconstruction in regions with tissue edges. The

MATV method enforces the TV penalty on the whole susceptibility map and the TV penalty

weights are a monotonically decreasing function of magnitude gradient maps. Small regulari-

zation weights are added to nonsmooth regions and large regularization weights are added to

smooth regions. Gadolinium phantom and in vivo experiments were performed to evaluate

the performance of MATV.

Methods

Relation between magnetic susceptibility and field

The tissue magnetic susceptibility χ is a measure for the amount of magnetization induced in

tissue that is exposed to the main magnetic field of an MRI scanner. Convolving χ with the z-

component of the dipole kernel yields the local tissue magnetic field, φ, the change in magnetic

susceptibility relative to the main magnetic field. In r-space, the susceptibility distribution is

defined by the linear relation below:

φðrÞ ¼ dðrÞ � wðrÞ ð1Þ

where r is the spatial (r-space) location, d rð Þ ¼ 1

4p

3cos2y� 1

r3

� �
r 6¼ 0ð Þ is the dipole kernel in r-

space, θ is the azimuthal angle in spherical coordinate, and � is the convolution.

Given a tissue field map, the susceptibility distribution can be obtained by solving Eq (1) in

the least-squares sense as follows:

w ¼ argmin
w
kFHDFw � φk2

2
ð2Þ

Here, χ and φ are the vector forms of the susceptibility distribution and the local field in the r-

space, respectively, F is the diagonal matrix form of the Fourier transform operator, D kð Þ ¼

1

3
�

k2
z

k2

� �
k 6¼ 0ð Þ is the diagonal matrix form of the dipole kernel in k-space, k is the k-space
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vector, and kz is the z-component of k. The magnitude image can be introduced into Eq (2) to

penalize noise variation in the field measurement using a weighted least-squares approach as

shown below [10]:

w ¼ argmin
w
kWmðF

HDFw � φÞk2

2
ð3Þ

where m is the MRI magnitude image, Wm is a weighting matrix with entries that are propor-

tional to image magnitude.

Given the zero eigenvalues of the matrix FHDF, the minimization problem in Eq (3) does

not possess a unique solution. Hence, prior information is exploited to derive a unique estima-

tion of the susceptibility map.

Solution with MATV

MATV imposes TV regularization on both smooth and nonsmooth regions in the susceptibil-

ity map, with different regularization weights in the two regions. The reconstruction of the

quantitative susceptibility map via the MATV approach can be formulated as follows:

w ¼ argmin
w
kWmðF

HDFw � φÞk2

2
þ lkWrmrwk1 ð4Þ

where λ is the regularization parameter that balances the trade-off between the fidelity term

and the MATV regularization term,r is the three-dimensional (3D) forward differencing

operator[27], Wrm is the weighting diagonal matrix obtained from the gradient maps of the

magnitude image and assigns different weights to the x, y, and z-components ofrχ, and

krχk1 is the L1 norm of the gradient, i.e., TV.

Eq (4) provides a Morphology-Adaptive TV regularization for QSM inversion. In MATV,

the TV regularization weights on voxels near edges are determined on the basis of local

morphology information calculated from magnitude gradient maps. To avoid the over-

smoothness of edges, MATV imposes a continuous edge weighting matrix inversely propor-

tional to magnitude gradient on voxels near edges. Specifically, the weighting matrix Wrm of

voxels near edges are assigned to sinðp
2

C
jrmjÞ, where the threshold c is determined in the same

way as in MEDI such that approximately 30% of the voxels in the gradient maps of magnitude

image are considered as boundary regions. In all, the weighting matrix is formulated as:

Wrm ¼

1; jrmj < c

sinð
p

2

C
jrmj

Þ; else

8
<

:
. Here, similar to MEDI, the TV weights on voxels inside

smooth regions (|rm| <c) are set to 1. The TV weights on voxels near edges (|rm|� c) are

set to values that are determined by magnitude gradients.

The proposed MATV method differs from MEDI in the following aspect. The TV weight in

MEDI can be considered as a hard thresholding function of magnitude gradient. The proposed

MATV method determines the weight of TV as a monotonically decreasing function of local gra-

dient in the magnitude images, i.e., the TV weight in MATV is a soft thresholding function of

magnitude gradient. In regions near tissue boundaries, MEDI imposes no TV constraint while

MATV can still enforce TV constraint but with a reduced degree than that in smooth regions.

Datasets for evaluation

In this study, gadolinium phantom and in vivo datasets were used to assess the performance of

MATV. The associated imaging parameters are briefly described below.

Gadolinium phantom. The phantom dataset was downloaded from the Cornell Univer-

sity website (http://weill.cornell.edu/mri/QSM/Online.zip). An agarose (2%) gel phantom that
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contained five balloons filled with gadolinium solution (Magnevist, Berlex Labrotories,

Wayne, NJ) was prepared. The expected susceptibility values of 0.05, 0.1, 0.2, 0.4, and 0.8 part

per million (ppm) were assigned to the five gadolinium balloons. MRI imaging was conducted

on a 3 Tesla (T) scanner (GE, Waukesha, WI) with a multiecho gradient echo (GRE) sequence.

The scan parameters were as follows: flip angle (FA) = 15˚, multiple echo times (TEs) = 5, 8.4,

11.8, 15.2, 18.6, 22, 25.4, 28.8 ms, repetition time (TR) = 70 ms, bandwidth (BW) = 480 Hz/

pixel, matrix size = 130×130×116, and isotropic resolution = 1×1×1 mm3. 12 different orienta-

tions with rotational angles that varied from 40˚ to 140˚ relative to the main field were

acquired.

In vivo data. In this study, two in vivo brain datasets were used. The in vivo dataset 1 was

downloaded from the Cornell University website (http://weill.cornell.edu/mri/QSM/Online.

zip) and the in vivo dataset 2 was downloaded from the QSM reconstruction challenge website

(http://qsm.neuroimaging.at) [28].

The in vivo dataset 1 of a healthy volunteer was also used in previously published study

[29]. This dataset was imaged on a 3 T scanner (HDx, GE, Waukesha, WI) with multiecho

GRE sequence. The imaging parameters were as follows: FA = 15˚, TEs = 5, 10, 15, 20, 25, 30,

35, 40, 45, 50 ms, TR = 55 ms, BW = 260 Hz/pixel, matrix size = 256×256×146, voxel

size = 0.9375×0.9375×1 mm3, and R = 2. Five different orientations with rotational angles var-

ied from 15˚ to 35˚ relative to the main field were acquired.

The in vivo dataset 2 of a healthy volunteer was also used in previously published study

[30]. This 3D-GRE dataset was scanned on a 3 T system (Siemens Tim Trio) with wave con-

trolled aliasing in parallel imaging (Wave-CAIPI) sequence. The imaging parameters included

[30]: FA = 14˚, TE = 25 ms, TR = 35 ms, BW = 100 Hz/pixel, matrix size = 240×240×168, iso-

tropic resolution = 1.1×1.1×1.1 mm3, and parallel imaging acceleration factor R = 15. 12 head

orientations with maximum rotational angles = 25.4˚ relative to the main static field were

acquired.

Implementation and evaluation

For the phantom and in vivo brain 1, the field map and COSMOS reference map are down-

loaded from the MEDI package (http://weill.cornell.edu/mri/QSM/Online.zip). The detailed

processing steps are as follows: the field map was computed from the multiecho GRE datasets

using a nonlinear fitting approach followed by a magnitude image guided phase unwrapping

method [31], where the magnitude image was calculated by taking the square root of the sum

of the squares of all the GRE echoes. The background field was removed by the projection

onto dipole field algorithm (PDF) [32]. The COSMOS reference data was also preprocessed

with the same pipeline. The coregistration required by COSMOS was accomplished using

FMRIB’s Linear Image Registration Tool (FLIRT) [33] with the first orientation used as the

reference. For the in vivo brain 2, the field map and COSMOS reference map are downloaded

from the QSM reconstruction challenge website (http://qsm.neuroimaging.at). The detailed

processing steps are as follows: the Laplacian unwrapping method [34] was used for phase

unwrapping and the Laplacian Boundary Value (LBV) method [35] was used for background

field removal. The reference susceptibility map of COSMOS was chosen as reference for in

vivo brain 2 and computed with the same preprocessing pipeline. The coregistration required

by COSMOS was accomplished using FLIRT with the neutral orientation (coincide with the

main magnetic field) used as the reference scan orientation.

For comparison, the downloaded MEDI code was implemented with the use of forward dif-

ference in the calculation of gradient. The regularization parameters of MEDI were set to the

same values as in previous published papers [29, 36]. The regularization parameters for MATV
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in the phantom and brain were individually determined through visual inspection and the

quantitative metrics, i.e., RMSE, SSIM, HFEN, and regression slope. The regularization param-

eters in MATV were selected as follows: λ = 0.0017 in the gadolinium phantom, λ = 0.0007 in

brain 1 and 2.

The accuracy of susceptibility reconstruction was assessed by calculating the relative mean

square error (RMSE) 100kχrecon − χrefk2/kχrefk2 between the estimated susceptibility χrecon and

the reference susceptibility χref. Besides RMSE, high frequency error norm (HFEN) [37], and

structure similarity index (SSIM) [38] with respect to the reference susceptibility map were

also employed to evaluate the performance of MATV. For the phantom dataset, the linear

regression analysis of MATV and MEDI with respect to COSMOS was performed. The slope

and coefficient of determination (R2) from the regression analysis of MEDI are consistent with

the one reported previous paper[29].

All the computations were performed using MATLAB programming environment (Math-

Works, Natick, MA). The MATLAB codes were implemented on a computer with 3.20 GHz

CPU and 8 GB RAM. The MATLAB code of the proposed MATV algorithm can be down-

loaded from https://ww2.mathworks.cn/matlabcentral/fileexchange/67079-the-matlab-code-

for-matv-algorithm.

Results

Gadolinium phantom

Fig 1 shows the QSM results for the gadolinium phantom using MEDI and MATV, as well as

the COSMOS. The susceptibility maps generated by MEDI contained obvious artifacts near

edges. By contrast, MATV provided results with reduced artifacts near edges and increased

homogeneous appearance in smooth regions. The absolute error maps of MATV and MEDI

for the phantom dataset are shown in Fig 2. It can be seen that MATV yielded lower recon-

struction error than MEDI near edges. Fig 3 exhibits the linear regression results of MEDI and

MATV with respect to the COSMOS-generated susceptibility maps. It can be seen that MEDI

and MATV provided susceptibility maps with comparable accuracy.

In vivo human

The comparative results of MEDI and MATV using the healthy brain 1 dataset are presented

in Fig 4, with the COSMOS results as references. The enlarged images show that the MEDI-

generated susceptibility maps contain more artifacts near regions with tissue boundaries than

those of MATV. The absolute error maps of MATV and MEDI for the in vivo brain 1 dataset

are shown in Fig 5. It can be seen from the enlarged views that MATV yielded lower recon-

struction error near edges than MEDI.

The COSMOS reference, MEDI, and MATV reconstructions for the healthy brain 2 dataset

are shown in Fig 6. MEDI reconstructions exhibited substantial artifacts in regions with tissue

edges (as shown in the enlarged views) compared with the reference COSMOS, and the arti-

facts were markedly reduced with MATV. Moreover, MEDI results appeared to be noisy inside

smooth regions, but the noise was suppressed with MATV. The absolute error maps of MATV

and MEDI for the in vivo 2 dataset are shown in Fig 7. It can be observed from the enlarged

views that MATV yielded lower reconstruction error near boundaries than MEDI.

Table 1 summarizes the quantitative measures of RMSE, HFEN, and SSIM. The proposed

MATV method produced lower RMSE and HFEN than MEDI for the phantom and the

healthy human brain datasets.

Quantitative susceptibility map with morphology-adaptive total variation
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Discussion

In this work, we developed a Morphology-Adaptive TV (MATV) regularization method for

the reconstruction of tissue magnetic susceptibility map from single orientation MRI phase

data. Compared with MEDI, the proposed MATV method demonstrated improved recon-

struction quality near tissue edges in phantom and in vivo brain datasets.

Like MEDI, the current MATV method obtains prior information from magnitude image.

One potential limitation of MATV is that the boundaries in magnitude image may be in-

consistent with those in susceptibility map, and this inconsistency will cause errors in the

Fig 1. QSM reconstructions for the phantom dataset. First row: sagittal, coronal, and transverse views of susceptibility maps

reconstructed by COSMOS. Second row: sagittal, coronal, and transverse views of susceptibility maps reconstructed by MEDI.

Third row: sagittal, coronal, and transverse views of susceptibility maps reconstructed by MATV.

https://doi.org/10.1371/journal.pone.0196922.g001
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Fig 2. Absolute error maps for the phantom dataset. The susceptibility maps determined by COSMOS were regarded as

references. First row: sagittal, coronal, and transverse views of absolute error maps of MEDI. Second row: sagittal, coronal, and

transverse views of absolute error maps of MATV.

https://doi.org/10.1371/journal.pone.0196922.g002

Fig 3. The linear regression analysis of MEDI and MATV for the phantom dataset. The susceptibility map determined by

COSMOS was regarded as the reference.

https://doi.org/10.1371/journal.pone.0196922.g003
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reconstructed susceptibility maps. For example, putamen and white matter have weak contrast

on the magnitude image, but strong contrast on QSM. Voxels in putamen and white matter

will be penalized with strong TV constraints in MATV. As a result, the reconstructed suscepti-

bility maps in putamen and white matter will be oversmoothed. To mitigate this problem,

Fig 4. QSM reconstructions for the in vivo brain 1 dataset. First row: sagittal, coronal, and transverse views of susceptibility maps

reconstructed by COSMOS. Second row: sagittal, coronal, and transverse views of susceptibility maps reconstructed by MEDI. Third

row: sagittal, coronal, and transverse views of susceptibility maps reconstructed by MATV. The yellow box provides a zoomed-in

view of each image.

https://doi.org/10.1371/journal.pone.0196922.g004

Fig 5. Absolute error maps for the in vivo brain 1 dataset. The susceptibility maps determined by COSMOS were regarded as the

references. First row: sagittal, coronal, and transverse views of absolute error maps of MEDI. Second row: sagittal, coronal, and transverse

views of absolute error maps of MATV. The yellow box provides a zoomed-in view of each error map.

https://doi.org/10.1371/journal.pone.0196922.g005
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prior information from phase data or the reconstructed susceptibility maps themselves can be

exploited [39, 40].

It is well known that it is a difficult task to optimize the regularization parameter in most

inversion methods. Improper choice of parameter introduces either over-smoothness or

Fig 6. QSM reconstructions for the in vivo brain 2 dataset. First row: sagittal, coronal, and transverse views of reference

susceptibility maps calculated by COSMOS. Second row: sagittal, coronal, and transverse views of susceptibility maps reconstructed

by MEDI. Third row: sagittal, coronal, and transverse views of susceptibility maps reconstructed by MATV. The enlarged views

indicate the regions where MATV outperformed MEDI.

https://doi.org/10.1371/journal.pone.0196922.g006

Fig 7. Absolute error maps for the in vivo brain 2 dataset. The susceptibility maps determined by COSMOS were regarded as the

references. First row: sagittal, coronal, and transverse views of absolute error maps obtained by MEDI. Second row: sagittal, coronal, and

transverse views of absolute error maps obtained by MATV. The enlarged views indicate the regions where MATV outperformed

MEDI.

https://doi.org/10.1371/journal.pone.0196922.g007
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streaking artifacts. In MATV, the regularization parameters were selected based on visual

inspection and the quantitative metrics, i.e., RMSE, SSIM, HFEN, and regression slope. We

firstly determined the range of regularization parameters by visual inspection. Then, we nar-

rowed the range of parameters based on regression slope metric. Finally, the regularization

parameters were selected based on other quantitative metrics, i.e., RMSE, SSIM, and HFEN.

We tried the L-curve [16, 41] method to automatically select the regularization parameter at

the point with the shortest distance to the origin. However, the parameters selected by the L-

curve method produced lower regression slope values and more oversmooth susceptibility

maps than those by the manual method. Other automatic parameter selection algorithms such

as generalized cross validation [42] and Monte Carlo Stein’s unbiased risk estimate [43] could

be further investigated.

In conclusion, a MATV method for reconstructing susceptibility maps from the MRI phase

was proposed. MATV imposed a TV constraint on the whole susceptibility map, and the regu-

larization weights were a monotonically decreasing function of MRI magnitude gradients.

Thus, smaller regularization degree was imposed on voxels in nonsmooth regions than those

voxels in smooth regions. Phantom and in vivo imaging results demonstrated that MATV

improves the reconstruction of susceptibility maps near tissue boundaries, and the image qual-

ity inside smooth regions may be improved as well.
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