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Delimiting a species’ geographic 
range using posterior sampling and 
computational geometry
Jonathan M. Keith   1, Daniel Spring2 & Tom Kompas3

Accurate delimitation of the geographic range of a species is important for control of biological 
invasions, conservation of threatened species, and understanding species range dynamics under 
environmental change. However, estimating range boundaries is challenging because monitoring 
methods are imperfect, the area that might contain individuals is often incompletely surveyed, and 
species may have patchy distributions. In these circumstances, large areas can be surveyed without 
finding individuals despite occupancy extending beyond surveyed areas, resulting in underestimation 
of range limits. We developed a delimitation method that can be applied with imperfect survey data 
and patchy distributions. The approach is to construct polygons indicative of the geographic range 
of a species. Each polygon is associated with a specific probability such that each interior point of the 
polygon has at least that posterior probability of being interior to the true boundary according to a 
Bayesian model. The method uses the posterior distribution of latent quantities derived from an agent-
based Bayesian model and calculates the posterior distribution of the range as a derived quantity 
from Markov chain Monte Carlo samples. An application of this method described here informed the 
Australian campaign to eradicate red imported fire ants (Solenopsis invicta).

Many of the questions arising in the management of threatened and invasive species require empirical estimation 
of geographic range limits and shifts in range limits over time. Delimiting surveys are routinely carried out as 
part of initial response to the discovery of an introduced species1–3 and to facilitate conservation efforts4,5, with 
management efforts focused within the delimited range. The effectiveness of programs to slow the spread of 
biological invasion depends upon accurate estimation of species range limits to avoid uncontrolled expansion of 
the invasion edge6,7. Accurate estimation of geographic range limits is also required for effective management of 
threatened species to ensure conservation efforts are applied to all locations where the species are present and to 
avoid costly actions being applied to unoccupied locations. The capacity to accurately estimate geographic range 
limits is also of central importance in understanding and predicting range shifts under environmental change to 
mitigate adverse impacts8.

Two related problems arise: design of efficient surveys and inference of boundaries. These problems are solved 
iteratively, in part because a species distribution evolves over time and in part because an inferred boundary 
informs subsequent monitoring efforts9,10. Here we focus on the inference problem, and present a new method 
that is applicable to a range of survey designs.

Yalcin and Leroux11 identify six methods for inferring a species’ range: observational study, grid-based map-
ping, convex hull, kriging, species distribution models and hybrid methods. They define an observational study 
somewhat idiosyncratically as a method that estimates a characteristic of a species range, such as the maximum 
elevation where a species can occur. Grid-based mapping and convex hull are methods for inferring a spatial dis-
tribution from a collection of point observations, and kriging is a method for interpolating spatial variables based 
on point observations and potentially also environmental covariates. Species distribution models estimate ranges 
based on correlations between species occurrence or abundance and environmental variables. Hybrid methods, 
as the name suggests, combine features of multiple types, for example pairing species distribution models with 
mechanistic modelling of spread processes.
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For our present purpose we propose an alternative classification comprising four types of method: utilization 
methods, which characterize a species’ use of spatial resources based on detected individuals; monitory methods, 
which use records of survey actions (including those that did not result in detections) to delimit range; correlative 
methods, which identify correlations between environmental variables and occupancy or abundance of a species, 
and use these to infer where individuals may be present even if not observed; and mechanistic methods, which 
explicitly model spatial population dynamics and/or detection processes to identify plausible range distributions. 
These distinctions are primarily conceptual – advanced methods incorporate features from all of these categories.

Utilization methods.  One approach to range modelling involves utilization distributions. These pro-
vide a probabilistic representation of the use of spatial resources by an individual or species, across its range. 
Fleming et al.12 identify two distinct types: range and occurrence distributions. The range distribution “addresses 
the long-term area requirements of an animal, assuming its movement behaviors do not significantly change” 
whereas the occurrence distribution addresses the question of where the animal was located during the observa-
tion period. These definitions are framed in terms of an individual animal, but one can rephrase them for species 
in a straightforward manner. Methods for estimating range distributions include minimum convex polygon13,14, 
kernel density estimation15, mechanistic home range analysis16, autocorrelated Gaussian density estimation17, and 
local convex hull18. Occurrence distributions can be estimated using the Brownian bridge density estimator19.

Utilization methods model the internal structure of a spatial distribution. Here we focus on delimitation, that 
is, determining the limit of a species’ range and quantifying uncertainty in that limit. This is a challenging infer-
ence problem, and one that utilization distributions and their associated methods are not ideally suited to address. 
A common practice is to find a contour of the utilization distribution that encloses 95% of the observations11, but 
this, by definition, underestimates the extent of the range. The amount by which it underestimates is not apparent, 
and varies from one dataset to another.

Another problem for utilization methods is that available observations may not adequately represent the spe-
cies’ range, for example due to a lack of sufficient monitoring resources, or imperfect detectability20. Consequently, 
even enclosing 100% of observations may exclude parts of the range where no observations were made. Prior to 
delimitation, it is typically not clear where monitoring is required. Moreover, there may be spatial variation in 
detection probability, due to environmental factors or to the use of multiple monitoring methods with different 
detection probabilities. To overcome this problem, it is necessary to model likely locations of undetected individ-
uals, taking into account spatial variations in detection probability.

It may be possible to repurpose the delimitation method we present below to construct utilization distribu-
tions. However, we stress that utilization distributions are intended to characterize the observed use of spatial 
resources; they are not designed to represent the likely locations of unobserved individuals.

Monitory methods.  Monitory methods consider the history of survey actions undertaken during the man-
agement of a species, and combine detections, non-detections, and an assessment of detection probability to infer 
range limits, often by first constructing maps of probability of occupancy or expected abundance. For example, 
the method of Hauser et al.14 uses such records to construct a map of occupancy probabilities for an invasive plant 
species and prioritise subsequent survey actions.

Spatial variation in detection probability remains a problem for monitory methods, although in principle this 
spatial variation can be incorporated into the inference. An additional problem is that heat maps of probability of 
occupancy or expected abundance reflect both the geographic distribution of the species and uncertainty about 
the locations of undetected individuals. Consequently, a temporal sequence of such heat maps can create an illu-
sion of range expansion merely due to increasing uncertainty regarding the locations of undetected individuals7, 
potentially even when the range within which detections occur is contracting. Boundary curves or polygons can 
be constructed by finding isopleths of such heat maps, but for any chosen threshold value, the resulting isopleth 
likewise reflects both the extent of the species’ range and the precision with which the available data delimit that 
range.

Correlative methods.  Correlative methods, known as Species Distribution Models11,21 (SDMs) involve 
regressing species occurrence or abundance against climatic or other environmental covariates, and then using 
maps of these covariates to predict the likely spatial distribution of undetected individuals. These methods work 
well when species are in equilibrium with their environment. However, this is unlikely to be true in many cir-
cumstances of management interest, because pest control programs typically are applied when species ranges are 
expanding, and threatened species programs often are applied when ranges are contracting. Moreover, SDMs 
typically do not take into account non-environmental biotic factors such as the presence or absence of diseases 
and predators.

Ecological niche models22,23 are also relevant to correlative methods. These characterize the distribution of a 
species in environmental space (also known as ecological space), in which points correspond to the values of a 
(potentially large) number of environmental or ecological variables. In contrast, geographic space is comprised of 
two-dimensional spatial locations. Typically, points in geographic space can be mapped to unique points in envi-
ronmental space to assess whether they are suitable for a species, but this may be of little use if suitable habitats are 
unoccupied, as is often the case in invasion and conservation biology.

Mechanistic methods.  Another way to account for undetected individuals is to incorporate models of 
population dynamics into the inference procedure. In an invasive species context, the Bayesian approach devel-
oped by Mangel et al.10, estimates the probability of pest occupancy at different distances from the presumed 
invasion epicentre assuming the population expands smoothly, producing a bell-shaped spatial distribution. The 
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delimitation method developed by Leung et al.9 was designed for invasions in which the proportion of invaded 
sites declines relatively smoothly from epicentre to edge.

The accuracy of these methods, which involve allocating survey effort along transects centered on the esti-
mated invasion epicentre, is substantially reduced when individuals have a patchy distribution9. Boundary esti-
mation for an expanding population can be challenging when spread occurs as a result of stratified diffusion24, 
in which individuals make frequent short movements and occasional long distance “jumps”. This form of spread 
process typically creates an irregular pattern of occupancy comprised of clusters of individuals. Clusters typically 
are located at imperfectly predictable distances from each other due to inherent difficulties in estimating the 
distances and directions of long distance movements25. This form of species distribution, which also can arise 
from spatial heterogeneity in habitat availability, creates a heightened risk of underestimating range boundaries 
because individuals may exist beyond the surveyed area despite an absence of detections near its perimeter. For 
contracting populations such as threatened species, range determination is complicated by complex source-sink 
dynamics26,27 that produce substantial gaps in occupancy. More generally, challenges in estimating range limits 
can arise when there is a complex interplay between species reproduction, dispersal rates and habitat suitability.

An agent-based approach.  In previous work7, we developed an agent-based model to reconstruct a his-
tory of the Brisbane fire ant invasion, or more precisely to sample multiple plausible histories from a posterior 
distribution using a Markov chain Monte Carlo (MCMC) technique. This approach combined features of all 
of the above methods. The available data included: extensive records of individual nest detection points, as in 
utilization methods; records of search actions and estimates of detection probabilities by targeted search and by 
public reporting in urban and rural environments, as in monitory methods; environmental variables in the form 
of a habitat suitability map, as in correlative methods; and a detailed model of population dynamics, including a 
distribution of founding distances, reproductive rate and a complete phylogenetic tree for all detected and puta-
tive undetected nests, as in mechanistic methods. While it is not possible to infer the exact number, locations or 
lifespans of undetected individuals, our method does simulate multiple plausible invasion histories at that level of 
detail. We typically sample 10000 such histories to explore the space of plausible histories consistent with the data. 
For the reader’s convenience, we provide a more detailed summary of the data and model parameters in Appendix 
1. Full details of the model and the Markov chain Monte Carlo technique we used to sample from it are provided 
in Keith and Spring7, primarily in the Supplementary Information.

Our approach addressed many of the limitations identified above. In particular, it can be applied in circum-
stances where complex spatio-temporal dynamic processes create substantial gaps in occupied regions and irreg-
ular boundary shifts over time, using data obtained with imperfect and incomplete survey methods. However, 
one of our outputs involved processing the 10000 sampled histories to produce a time series of heat maps showing 
the expected areal abundance of fire ant nests. As we point out in our discussion of monitory methods above (and 
in our earlier paper), a time sequence of such heat maps can create an illusion of expansion due to increasing 
uncertainty regarding the location of undetected nests.

Scope of this paper.  Our goal in this paper is to provide a method for inferring and visualizing a species’ 
range limits given posterior sampled point sets, in such a way that the contribution of uncertainty to the appar-
ent range is appropriately quantified. Each sampled point set includes known locations of detected individuals 
and putative locations of undetected individuals. In practice, we generate such point sets using our published 
agent-based method7. Next, we construct a polygon enclosing each point set, then identify map coordinates con-
tained in the interior of at least a proportion α of these polygons. We provide boundaries for multiple values of α 
to indicate the degree of uncertainty in the inferred range.

The polygons are selected from a polygon family, thus constraining the polygons to have properties deemed 
desirable for a specific application, such as convexity or connectedness. In our examples we use chi-shapes - simple 
polygons constructed using an algorithm of Duckham et al.28 - or modified chi-shapes (newly proposed here) to 
allow for multiple disjoint polygons, as described in the section on Inferring Polygons below. Alternative polygon 
families could be used, for example to allow polygons with holes. To illustrate the new method we estimated the 
boundary of an invasive species that is subject to an eradication program. The method can also be readily applied 
to estimate boundaries of native species that are contracting or shifting due to environmental change, harvesting 
pressure or demographic variability. The program we consider is aimed at eradicating a fire ant invasion in South 
East Queensland, Australia. We estimated the boundary of the invasion at the end of April 2015, to inform a deci-
sion on whether to continue program funding, based on historical data regarding where fire ants were detected 
and where efforts were made to remove them. We compared our most conservative estimate to the operational 
boundaries in use by the eradication program at that time. We found that the outer operational boundary at the 
end of April 2015 (that is, the outer limits of the region monitored by remote sensing) corresponded over most 
of its length to our most conservative inferred boundary. On this basis, we concluded that the invasion had been 
successfully delimited, subject to modest extensions being made to the operational boundary in a few identified 
locations.

Methods
The method takes as input multiple sets of points (that is, map locations) in a two-dimensional landscape, rep-
resenting the locations of both detected and undetected individuals. These points may represent habitations, 
or alternatively the notional centre of range for each individual. Note that undetected individuals do not have 
known locations, and even the number of undetected individuals is unknown. Plausible locations for undetected 
individuals must therefore be imputed via some algorithm. We assume that multiple alternative sets of points 
are available, each containing locations of all detected individuals, but differing in the number and locations of 
imputed undetected individuals.
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In principle, such sets of points do not have to be generated within a Bayesian framework: any algorithm capa-
ble of imputing missing data will suffice. However, the probabilistic interpretation that we give to the polygons 
constructed here assumes that the multiple sets of points have been sampled from a posterior distribution. In the 
examples presented below we use an MCMC algorithm that we developed7 to sample from a posterior distribu-
tion over plausible histories of a biological invasion.

Input to the method.  The input consists of the following items:

	 1.	 Point sets P1, P2, …, PN, where each Pi contains ni two-dimensional points.
	 2.	 A set Q of reference points distributed throughout the region of interest.
	 3.	 A value α, such that the polygon to be constructed will contain all reference points interior to at least a 

proportion α of the N polygons constructed for the N point sets (see Step 1 in the next section).
	 4.	 A family of polygons   and a map ℘ such that any set of points P maps to a unique polygon ℘ ∈P( )  . In 

this paper, all polygons are chi-shapes (defined below) or modified chi-shapes.

Each of the point sets P1, P2, …, PN includes a subset of observations common to them all, representing known 
locations of individuals. The point sets differ in the number and locations of undetected individuals, imputed by 
some appropriate method. Here we use the posterior sampling method of Keith and Spring7.

The set Q of reference points provides a convenient discretization of the geographic region of interest. In 
principle it can be any collection of points scattered throughout the region, but in this paper we use the centres 
of cells in a square tiling. In that case, the locations of all reference points can be determined by supplying map 
coordinates of one reference point (in some specified coordinate system aligned to the tiling) and the side length 
of the tiling.

The value α controls how confident we can be that the polygon we ultimately report contains the entire range 
of the species. We stress that neither α nor 1 − α should be interpreted as a proportion of the range of the species. 
Whatever value of α is used, the resulting polygon will contain all known locations of individuals, since these are 
common to all point sets, and thus contains the entire observed range of the species. But our goal is to construct a 
polygon that also contains all unobserved members of the species, and α reflects how conservative we want to be 
in constructing such a polygon.

Various options are available for the family of polygons  . One simple choice is the family of convex polygons, 
in which case ℘(P) would be the convex hull of a set of points P. However, convex polygons have the disadvantage 
of resulting in potentially substantial overestimation of the species boundary when actual boundaries are noncon-
vex. Nonconvex boundaries are likely in many circumstances, including where unsuitable habitat prevents areas 
being occupied and where long-distance movements cause the boundary to “bulge outwards” in the vicinity of 
satellite populations.

Chi-shapes28 are a family of simple polygons (‘simple’ in the geometric sense that sides intersect only at cor-
ners, and form a closed path). This family includes all convex polygons, but chi-shapes may also be non-convex. 
A chi-shape ℘(P) is constructed for a set of points P by starting with the Delaunay triangulation of P, then iden-
tifying all external edges that satisfy two criteria: (1) the edge is longer than a given length L; and (2) if the edge is 
removed, the external edges of the remaining triangles still form a simple polygon. Only the longest such edge is 
removed, necessarily creating two new external edges and one new external vertex. This process is iterated until 
no external edges satisfying these criteria remain (see Fig. 1).

In this paper, all polygons are either chi-shapes or modified chi-shapes in which we relax criterion (2). We 
proceed as in the preceding paragraph, except that we replace criterion (2) with the requirement: (2′) if the edge 
is removed, along with any other external edges in the same triangle, the remaining triangles still include all ver-
tices (see Fig. 2). The properties of this algorithm should be analysed in future work; here we merely note that by 
removing the other external edges in the same triangle, it becomes possible to form disjoint polygons.

Numerous other polygon families are available, for example, the families of polygons produced by LoCoH18 or 
by parametric kernel density estimation29. We do not claim that chi-shapes or modified chi-shapes are preferable 
to these alternatives; a comparison is a potential direction for future research.

Inferring boundaries.  Our proposed method consists of the following steps:

	 1.	 Construct a polygon ℘ = ℘ ∈P( )i i  for each point set Pi.
	 2.	 For each reference point, count the number of point sets for which the polygons constructed in Step 1 

contain that reference point in their interior or on their edge.
	 3.	 Identify the set of reference points ⊂αQ Q for which the counts determined in Step 2 exceed a proportion 

α of the total number of point sets N.
	 4.	 Construct a polygon ℘ = ℘ ∈αQ( )  using the reference points identified in Step 3.

If a high resolution is desired, the number of reference points may be large. In that case, Step 4 can be compu-
tationally intensive. The computational efficiency of Step 4 can be improved if the reference points are centres of 
cells in a square tiling, as in all our examples below. In that case, we can first identify boundary reference points. 
A reference point in a square tiling is said to be on the boundary if any of the four reference points immediately 
above, below, to the left or to the right of the point is contained in fewer than a proportion α of the polygons 
constructed in Step 2. Step 4 then consists of constructing a polygon only for these boundary reference points. 
If the polygons are chi-shapes or modified chi-shapes, and the length L used in their construction is sufficiently 
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large relative to the spacing between reference points, the polygon will be the same as if all of the reference points 
identified at Step 3 had been used.

Using the centres of a square tiling as reference points also facilitates an alternative visualization. The counts 
obtained at Step 2 (or alternatively the proportions obtained by dividing these counts by N) form a data matrix 
that can be visualized using a heat map. This heat map is of interest in its own right, and we present an example 
below (Fig. 3). One can also replace Steps 3 and 4 above with an algorithm for tracing an isopleth of the heat map, 
that is, the level set corresponding to the level α. However, in that case the resulting polygon may not belong to 
the desired polygon family  .

The proposed method can be interpreted as averaging classifiers built from multiple point sets. That is, one can 
interpret the polygons built at Step 1 as classifying space into infested regions (interior) and non-infested regions 
(exterior), with the above-mentioned heat map being essentially an average of these classifiers. In this respect, 

A B

C D

Figure 1.  Duckham’s Algorithm for constructing chi-shapes. (A) A point set. (B) The corresponding Delaunay 
triangulation. The external edges form the polygonal boundary of the convex hull of the point set. (C) The chi-
shape obtained by removing the longest external edge of B, thus creating two new external edges and one new 
external vertex. The external edges of C now form a polygon that is no longer convex, but remains simple. (D) 
The chi-shape obtained by removing the longest external edge of C. The longest external edge of D cannot now 
be removed because the external edges of the remaining triangles would not form a simple polygon. Note the 
longest external edge of D can be removed according to our modified criterion (2′).

A B

C D

Figure 2.  Constructing modified chi-shapes. (A) A point set. (B) The corresponding Delaunay triangulation. 
(C) The chi-shape obtained by removing the longest external edge of (B). The remaining triangles include all 
vertices. (D) The chi-shape obtained by iteratively removing the longest external edge, along with any other 
external edges in the same triangle, until two disjoint components are formed.
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our method resembles range bagging30. The resemblance is somewhat superficial however, as range bagging is pri-
marily a computational technique for building classifiers in high-dimensional environmental space by averaging 
over classifiers in one or two dimensions. Moreover, range-bagging generates multiple point sets via sub-sampling 
observations rather than by imputing locations to undetected individuals.

For the analysis presented below, we experiment with square tilings having spacings of 50 m and 100 m. We 
also experiment with setting the minimum length of edges to be removed in the construction of chi-shapes and 
modified chi-shapes to be L = 5 km, 10 km and 20 km.

Results
Simulation study.  To test the capacity of the method to infer the geographic range of a species, and in par-
ticular to quantify the likely locations of undetected individuals, we used a simulated data set that we had previ-
ously generated to mimic a biological invasion and eradication program7. The simulation involved constructing 
an entire detailed history of a hypothetical invasion, starting with an initial introduction, recording individual 
founding events, including time of founding and location of all individuals, and also simulating management 
efforts to identify which individuals were detected and thus available for inference, and which nests were killed by 
treatment. Further details of the simulated invasion and our reconstruction of it are provided in Keith and Spring7 
and are summarised in Appendix 2 below for the reader’s convenience. Here the relevant points are the following:

	 1)	 We sampled 10000 plausible histories of the invasion from a posterior distribution. From each of these we 
extracted the known (for detected nests) and imputed (for undetected nests) locations of all individuals 
alive during the second last month of the modeled period. We chose the second last month so that the im-
puted locations of undetected individuals would be informed by detections made in the final month. This 
produced 10000 point sets.

	 2)	 Because the data is simulated, we also know the true history of the invasion, including the precise location 
and lifespan of all detected and undetected individuals. From this we extracted the true locations of all 
individuals alive during the second last month of the modeled period.

Figure 4 shows inferred boundaries for 1 − α = 0.5, 0.75, 0.975, 0.99 and 0.999 (innermost to outermost). Note 
that here and in the rest of the paper we specify values of 1 − α, rather than α, purely for the aesthetic reason that 
the area enclosed increases as 1 − α increases.

Figure 4 also shows the true locations of all individuals that were alive in the second last month of the period 
modeled, and the locations of detections that occurred during that month. Note that all of the detections are 
inside the 0.5 boundary. Indeed, they must be contained in the boundary inferred for any value of α, since they 
are contained in all 10000 point sets.

Case study: fire ants in brisbane.  The method presented here was developed for the National Fire Ant 
Eradication Program (NFAEP) to eradicate the Red Imported Fire Ant (RIFA) from the vicinity of Brisbane, 
Australia. As the history of this eradication program underscores the importance of accurately delimiting an 
invasion, we provide the following summary.

During the early years of the NFAEP, control efforts were focused primarily on known infestations and nearby 
areas, with relatively little surveillance around those areas. This strategy can be slow in achieving delimitation 
when infestations exist well beyond the boundary of the managed area. Infestations that were accurately delim-
ited in the early years of the program, such as the Fisherman’s Island infestation, were successfully eradicated31, 
while infestations that were not accurately delimited have continued to spread. In June 2007, RIFA colonies 
were detected at Amberley in Brisbane’s southwest, outside the operational area at that time. It was subsequently 

Figure 3.  An example of a heatmap indicating the number of point sets (out of 10000) for which the 
corresponding chi-shape contains each reference point. Reference points are at the centres of cells of side length 
100 m in a square tiling. There are 1000000 reference points covering a 100 km by 100 km region. The values 
shown in this heat map were used to construct the polygons in the December 2014 subplot of Fig. 7.

https://doi.org/10.1038/s41598-019-45318-5


7Scientific Reports |          (2019) 9:8938  | https://doi.org/10.1038/s41598-019-45318-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

determined that an invasion had been spreading undetected from a point in or near Amberley for an extended 
period. This realization was a major setback for the eradication program, which had been operating with apparent 
success since 2001. In previous modeling7, we estimated that eradication was close to being achieved by 2004, but 
that the population subsequently recovered, in large part due to delimitation failure. Our results indicated that 
Amberley was not the only delimitation failure – there were undetected areas of spread in the eastern part of the 
invasion at around the same time, and these contributed to the recovery after 2004.

Due to continuing spread of the Australian fire ant invasion, the eradication program’s funding and methods 
were reviewed. It was decided that continued funding of the program beyond June 2013 would depend partly 
on the invasion being successfully delimited by 30 June 2015. To increase confidence that delimitation had been 
achieved, the NFAEP surveyed a large area near the invasion’s estimated boundary in 2013 and 2014. To under-
take this task, low cost monitoring methods involving remote sensing and citizen monitoring were applied. These 
methods have substantially lower detection probabilities than conventional surveillance methods, including 
ground surveillance with trained personnel, but enable large areas to be rapidly surveyed at affordable cost. This 
reliance on a surveillance method with detection probability substantially less than 1 highlights the importance 
of accounting for this source of observational error in estimating the invasion’s boundary.

At the time this analysis was performed, we had data on detections and interventions to the end of May 2015. 
We decided to assess whether the invasion had successfully been delimited by the end of April 2015, so that the 
inference would be informed by one month of subsequent detections. We first inferred a complete history of the 
invasion using a Bayesian agent-based model previously developed for reconstructing the Brisbane RIFA inva-
sion7 and summarized in Appendix 1.

The remote sensing efficacy (ie. probability of a nest being detected by aerial survey) and the founding rate (ie. 
average number of nests founded per nest per month) were held fixed rather than inferred, but we investigated 
the impact of alternative fixed values on inferred boundaries. We therefore performed five separate MCMC runs 
with:

	 1.	 Remote sensing efficacy 0.2, founding rate 0.25 nests founded per nest per month.
	 2.	 Remote sensing efficacy 0.3, founding rate 0.25 nests founded per nest per month.
	 3.	 Remote sensing efficacy 0.4, founding rate 0.25 nests founded per nest per month.
	 4.	 Remote sensing efficacy 0.3, founding rate 0.15 nests founded per nest per month.
	 5.	 Remote sensing efficacy 0.3, founding rate 0.35 nests founded per nest per month.

The values of remote sensing efficacy and founding rate selected for these runs reflect ranges of plausible val-
ues for these parameters, according to advice received from Biosecurity Queensland.

Each run was continued until at least 40000 MCMC reconstructed histories were produced, with the first 
20000 discarded as burn-in. Convergence was assessed visually using time-series plots of log-likelihood. For each 
of the reconstructed histories, we extracted the map coordinates of nests living at the end of April 2015. Thus each 
of our inferred boundaries was based on at least 20000 point sets.

Figure 5 (left) illustrates the 0.5 (inner group) and 0.999 (outer group) boundaries for the three runs with 
assumed remote sensing efficacy 0.3, and founding rates 0.15, 0.25 and 0.35 nests per nest per month. As expected, 
the inferred geographic extent increases with the founding rate. However, the difference is negligible for the 0.5 
boundaries, and not large even for the 0.999 boundaries. We will therefore ignore the influence of founding rate 

Figure 4.  Inferred boundaries of the simulated invasion in the second last month of the modelled period. The 
five boundaries correspond to 1 − α = 0.5, 0.75, 0.975, 0.99 and 0.999 (innermost to outermost). True locations 
of all individuals alive in the second last month are shown as grey circles, and the locations of detections that 
occurred during that month are shown as black crosses.
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and use the middle founding rate of 0.25 nests per nest per month (that is, 3 nests per nest per year) in the anal-
yses that follow.

Figure 5 (right) shows the 0.5 (inner group) and 0.999 (outer group) boundaries for the three runs with 
assumed founding rate of 0.25 nests per nest per month, and remote sensing efficacies of 0.2, 0.3 and 0.4. As 
expected, the inferred geographic extent increases as the assumed remote sensing efficacy decreases, but again 
the difference is negligible, and we will use the middle remote sensing efficacy of 0.3 in the remaining analysis. It 
should be noted that finding that the value we assume for remote sensing efficacy has little effect on the inference 
is completely different to saying the success of the program does not depend on the actual value. This is because 
the inference is informed by multiple data types, so that the past can be accurately reconstructed even without a 
precise estimate of remote sensing efficacy. Nevertheless, the eventual success of the program may depend cru-
cially on rapid detection of relatively rare long-distance dispersal events by remote sensing.

Figure 6 presents our main result – inferred 0.5, 0.75, 0.975, 0.99 and 0.999 boundaries at the end of April 
2015 assuming a founding rate of 0.25 nests per nest per month and remote sensing efficacy of 0.3. This figure also 
shows the operational boundaries in place at that time. These included a region designated the remote sensing 
scope, and low- and high-risk restricted areas. The remote sensing scope is a region that is monitored by airborne 
cameras. However, only a small part of this area is searched in any one month. The restricted areas have various 
management strategies in place to limit human-assisted movement of RIFA and to eradicate existing infestations.

Delimitation in time-series.  One reason for proposing the delimitation method presented here was dis-
satisfaction with using our earlier abundance heat map7 to delimit boundaries, given its tendency to exaggerate 
apparent spatial extent due to uncertainty regarding the location of undetected individuals. This effect is most 
apparent when visualizing changes in boundaries over time, since uncertainty about the location of undetected 
nests tends to increase towards the end of the data collection period. Figure 7 shows the 0.5 (inner) and 0.999 
(outer) inferred boundaries in December 2000–2014, using chi-shapes with L = 10 km and a square tiling with 
cells of 100 m by 100 m. Also shown are all detections that occurred January–December of each year (some of 
which are outside the December boundaries, due to clearing the pest from those areas earlier in the year).

We propose that the series of 0.5 polygons gives the best visual representation of temporal change in boundary 
location, since these polygons are somewhat analogous to medians, and thus less affected by increasing uncer-
tainty. On the other hand, if one wants to identify a region that contains the entire infestation with high probabil-
ity, we recommend the 0.999 polygon. The gap between these two polygons gives an indication of the degree of 
uncertainty in boundary location, and spatial variation in that uncertainty. Note this gap is wider in the December 
2014 plot than at earlier times, but otherwise fairly constant.

The December 2000 subplot illustrates one of the advantages of our approach: it shows the inferred extent of 
the infestation prior to the first detections in 2001. This is possible because our sampling algorithm7 imputes plau-
sible histories, including time of founding, for all nests. Similarly, the infestation centred on Amberley is visible in 
the west in December 2004 and 2005, even though no detections occurred there in those years.

To investigate the effect of changing the spacing between reference points, we also produced results using 50 m 
by 50 m cells. The results (not shown) were visually indistinguishable from Fig. 7. We concluded that our method 
is not much affected by cell size, at least when the side length of cells is small compared to the parameter L.

Modified chi-shapes.  Figure 8 shows similar results using modified chi-shapes, with all other settings the 
same. The advantage is that inferred boundaries can separate into disjoint polygons. This occurred for some of the 

Figure 5.  (Left) Inferred 50% (inner group) and 99.9% (outer group) boundaries at the end of April 2015. 
Results are shown for founding rates of 0.15 (dotted), 0.25 (dashed) and 0.35 (solid) nests per nest per month. 
All results are for a remote sensing efficacy of 0.3. (Right) Inferred 50% (inner group) and 99.9% (outer group) 
boundaries at the end of April 2015. Results are shown for remote sensing efficacies of 0.4 (dotted), 0.3 (dashed) 
and 0.2 (solid) nests per nest per month. All results are for a founding rate of 0.25 nests per nest per month.
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0.5 polygons, but none of the 0.999 polygons. In particular, one can see that there were two disjoint infestations in 
2000, consistent with two separate introductions. The Amberley infestation can also be seen spreading separately 
from the main infestation between 2003 and 2006.

To investigate the effect of varying the parameter L used in the construction of chi-shapes and modified 
chi-shapes, we repeated the analysis with L = 5 km and L = 20 km (Figs 9 and 10). The shape of the 0.5 polygons 
is substantially affected by the choice of L: with L = 5 km these polygons fragment into multiple disjoint compo-
nents, whereas with L = 20 km only a single connected polygon is produced. The 0.999 polygons are much less 
affected by this parameter: all 0.999 polygons remained connected for all three values of L, although they do 
become increasingly “rough” as L decreases.

Changing the parameter L has a less dramatic effect on the 0.5 polygons when chi-shapes are used instead of 
our modified chi-shapes, because chi-shapes are constrained to be simple polygons.

For management actions that rely on containing the infestation with high probability, such as setting the limits 
of aerial searches, the 0.999 polygons will be of more interest than the 0.5 polygons. In that case, the appropriate 
choice of L is a less pressing concern. However, efficient allocation of resources within the boundary may be better 
guided using an abundance or occupancy heat map, given the sensitivity of the 0.5 polygons to the choice of L.

Figure 6.  (Top) Inferred 50%, 75%, 97.5%, 99% and 99.9% boundaries at the end of April 2015. Remote sensing 
detection probability was set to 0.3 and founding rate was set to 0.25 nests per nest per month. (Bottom) Low-
risk restricted areas (in yellow), high-risk restricted areas (pink) and remote sensing scope (purple). Also shown 
in both maps are crosses marking previous detection points as at 8 July 2015, colour coded by time of detection, 
with the most recent detections in red and the oldest in pale brown. (Figure created with the assistance of Bob 
Bell of Biosecurity Queensland using ArcMap 10: www.esri.com).
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Comparison to utilization methods.  The method for estimating range limits described in this paper 
is unique in basing the inference on multiple sets of imputed coordinates representing locations of undetected 
individuals. It thus addresses a fundamentally different problem than utilization approaches. Both approaches 
identify spatial distributions, but those produced by utilization approaches represent a species’ observed use of 

Dec 2000 Dec 2001 Dec 2002

Dec 2003 Dec 2004 Dec 2005

Dec 2006 Dec 2007 Dec 2008

Dec 2009 Dec 2010 Dec 2011

Dec 2012 Dec 2013 Dec 2014

Figure 8.  The same point sets used to construct the chi-shapes in Fig. 7 were used here to construct modified 
chi-shapes. As in Fig. 7, 100 m by 100 m cells are used in the square tiling, and the minimum length of removed 
edges was L = 10 km. The only difference is that criterion (2′) was used instead of criterion (2) to decide whether 
an edge could be removed. (See main text for explanations of these criteria).

Dec 2000 Dec 2001 Dec 2002

Dec 2003 Dec 2004 Dec 2005

Dec 2006 Dec 2007 Dec 2008

Dec 2009 Dec 2010 Dec 2011

Dec 2012 Dec 2013 Dec 2014

Figure 7.  The 15 sub-plots represent the geographic extent of the Brisbane fire ant invasion in December 2000–
2014. Chi-shapes enclose reference points contained in at least 5000 (inner polygon) and 9990 (outer polygon) 
of the 10000 chi-shapes for individual point sets. Reference points are centres of 100 m by 100 m cells in a square 
tiling. Nests detected throughout the year are shown as small points. The minimum length of edges removed in 
the construction of chi-shapes was L = 10 km.
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spatial resources, whereas those produced by the new method represent posterior uncertainty in the location 
of range limits, accounting for undetected individuals. Nevertheless, it is interesting to compare our results to 
utilization approaches.

We constructed polygons using detections made in each of the years 2001–2014, using two approaches: con-
vex hull (Fig. 11) and the r-LoCoH method32 with r = 10 km (Fig. 12). The parameter r is the maximum distance 
of neighbors used to construct a local convex hull around each detection.

Note that we used only detections, not imputed locations of undetected nests, in this analysis, to highlight the 
advantage of using posterior sampling to impute locations of undetected nests. As noted above, it would also be 
possible to use LoCoH polygons in place of chi-shapes at Steps 1 and 4 of our algorithm, but we have not explored 
this possibility.

Dec 2000 Dec 2001 Dec 2002

Dec 2003 Dec 2004 Dec 2005

Dec 2006 Dec 2007 Dec 2008

Dec 2009 Dec 2010 Dec 2011

Dec 2012 Dec 2013 Dec 2014

Figure 9.  The algorithm used to construct Fig. 8 was repeated with L = 5 km. All other data and parameters 
were the same.

Dec 2000 Dec 2001 Dec 2002

Dec 2003 Dec 2004 Dec 2005

Dec 2006 Dec 2007 Dec 2008

Dec 2009 Dec 2010 Dec 2011

Dec 2012 Dec 2013 Dec 2014

Figure 10.  The algorithm used to construct Figs 8 and 9 was repeated with L = 20 km. All other data and 
parameters were the same.
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2006 2007 2008
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Figure 11.  The 15 sub-plots represent the geographic extent of the Brisbane fire ant invasion in 2000–2014. 
Note each sub-plot represents an entire year, not the month of December as in Figs 7–10. Polygons are convex 
hulls for all nests detected in the corresponding year. Detected nests are shown as small points.

2000 2001 2002

2003 2004 2005

2006 2007 2008

2009 2010 2011

2012 2013 2014

Figure 12.  The 15 sub-plots represent the same observations as Fig. 11, but with polygons constructed using 
the r-LoCoH method instead of convex hull.
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The first subplots of Figs 11 and 12 are blank because there were no detections in 2000, which in itself high-
lights an advantage of posterior sampling of unknown locations and founding times: inferences can be made 
about species distribution at times prior to the first detection. In the subplots for later years, polygons constructed 
using only detections do not identify several large infested regions inferred using our method. For example, com-
pare the western infestations shown in the 2004 and 2005 sub-plots of Fig. 7 to the corresponding sub-plots in 
Figs 11 and 12. These regions are not apparent using either convex hull or r-LoCoH, mainly because large infested 
areas went undetected in those years. Our inference for those years is informed by detections made prior to 2004 
and subsequent to 2005, and by models of unobserved spread. The convex hull approach also demonstrates the 
opposite problem – the convexity of the polygons forces inclusion of large regions that are clearly not infested. For 
example, compare subplots for the years 2006–2009: a large concave region is apparent in the south in Fig. 7, but 
not in Fig. 11. Also note that the polygons shown in Figs 11 and 12 enclose all detections from the corresponding 
year; had we used only the detections made in December of each year, these polygons would have been much 
smaller and would have failed to enclose large infested regions. Thus the temporal resolution possible with our 
method is much higher.

Another advantage of our method is that by constructing polygons for multiple values of α, one can visualize 
the uncertainty regarding boundary location, and spatial variation in that uncertainty. While it would also be pos-
sible to construct multiple polygons enclosing different proportions of the detections, these would reflect relative 
utilization of regions internal to the boundary, not uncertainty regarding the boundary location.

Discussion
The method presented here constructs simple connected polygons representing the boundary of a species’ 
geographic range. The simulation results shown in Fig. 4 demonstrate that boundaries constructed using the 
proposed method do indeed reflect the location of actual nests, including undetected nests. Note that the detec-
tions made in the month for which these boundaries were constructed do not provide a good indication of the 
actual range of the species: if only these detections were used to infer the boundary the range would be severely 
underestimated. Also note that by constructing boundaries for different values of α, a realistic indication of the 
uncertainty in the location of the boundary can be obtained. Most living individuals are contained within the 
0.5 boundary, and all but one of the undetected individuals are contained within the 0.975 boundary, with the 
remaining individual between the 0.99 and 0.999 boundaries.

The meaning of the value 1 − α requires some clarification. Strictly speaking, for each reference point con-
tained within the 1 − α boundary, α is the proportion of point sets for which the corresponding polygon contains 
that reference point. If the point sets are sampled from a posterior distribution, and the shape of the species’ range 
is well approximated by a member of the polygon family, the 1 − α boundary can be interpreted as containing all 
points with a posterior probability at least α of being within the geographic range of the species.

Importantly, the polygons constructed by this method are not required to be convex, giving the method 
greater generality and flexibility than previously applied convex polygon methods14. Figure 6 illustrates that 
boundaries of real species distributions can be concave, and would not be well approximated if the polygon were 
constrained to be convex. This is most noticeable along the northern boundary, where use of a convex polygon 
would unnecessarily include a large geographical area within the inferred range. This demonstrates the risk of 
overestimating the boundary when convex polygon methods are used. Species often have nonconvex distribu-
tions resulting from spatial variation in habitat suitability and long-distance dispersal events that create outlier 
populations in remote locations.

For the fire ant data, we found that the extent of the invasion was likely to be within operational boundaries 
at the end of April 2015, with the outer edge of the area remotely sensed corresponding over most of its length to 
the outer edge of the 0.999 inferred boundary. On this basis, we concluded that the invasion had been accurately 
delimited by the end of April 2015, subject to small extensions to operational boundaries in the southeast, far west 
and north of the Brisbane River, near the coast. Founding events rarely occur across large bodies of water. This 
behaviour is not incorporated into our model, so our methods may overestimate expansion north of the river. 
While this does not guarantee that eradication will ultimately be achieved, or that delimitation failure will not 
recur at some time in the future, establishing that the invasion has been delimited is an essential prerequisite to 
the ultimate success of the program.

The approach developed here is well suited to practical applications for assisting managers of biological inva-
sions and threatened species. Invasion management effectiveness can benefit from the capacity to regularly update 
estimates of the invasion boundary whenever new information is obtained during the course of an eradication 
or containment program. Such information is vital to determine whether management efforts are succeeding in 
contracting the invasion or slowing its spread. Regular updating of range limits also is required to assess whether 
threatened species populations that are subject to management are expanding or not contracting.

Our method of constructing polygons is not limited to posterior samples obtained using MCMC. For example, 
it could alternatively be used with posterior samples obtained using Approximate Bayesian Computation (ABC – 
see the seminal paper of Beaumont et al.33 for a description). Our method requires multiple alternative point sets 
representing plausible locations of individual entities, but these need not even be generated via posterior sampling 
if alternative means of imputing missing locations are devised.

Although in this paper we have focused on the computational geometry aspects of the method, the usefulness 
of the resulting polygons depends crucially on the posterior sampled point sets, which we generated using our 
earlier agent-based Bayesian approach7. The agent based approach draws together components of utilization, 
monitory, correlative and mechanistic approaches, and takes into account the species’ life cycle, environmental 
variables and human interventions. It is a highly flexible approach that can potentially be modified for a wide 
variety of species, and could also incorporate genetic information, thus refining estimates of population dynamic 
processes and increasing the accuracy of estimated range limits.
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The wide range of potential application of our approach will allow it to make substantial contributions to the 
problems posed by biological invasions and conservation of threatened species.

An R package pts2polys implementing the method described herein is available from CRAN. Currently this 
package uses chi-shapes, but not the modified chi-shapes we introduced above. C code implementing the method 
for modified chi-shapes is available from https://github.com/jonathanmkeith/posterior_polygons/releases/tag/v1.0.

Data Availability
Data and code used in this paper are available on request to the corresponding author.
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