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Abstract

Background: The modulation of inflammatory processes is a necessary step, mostly orchestrated by regulatory T (Treg) cells
and suppressive Dendritic Cells (DCs), to prevent the development of deleterious responses and autoimmune diseases.
Therapies that focused on adoptive transfer of Treg cells or their expansion in vivo achieved great success in controlling
inflammation in several experimental models. Chloroquine (CQ), an anti-malarial drug, was shown to reduce inflammation,
although the mechanisms are still obscure. In this context, we aimed to access whether chloroquine treatment alters the
frequency of Treg cells and DCs in normal mice. In addition, the effects of the prophylactic and therapeutic treatment with
CQ on Experimental Autoimmune Encephalomyelitis (EAE), an experimental model for human Multiple Sclerosis, was
investigated as well.

Methodology/Principal Findings: EAE was induced in C57BL/6 mice by immunization with myelin oligodendrocyte
glycoprotein (MOGss_ss) peptide. C57BL/6 mice were intraperitoneally treated with chloroquine. Results show that the CQ
treatment provoked an increase in Treg cells frequency as well as a decrease in DCs. We next evaluated whether
prophylactic CQ administration is capable of reducing the clinical and histopathological signs of EAE. Our results
demonstrated that CQ-treated mice developed mild EAE compared to controls that was associated with lower infiltration of
inflammatory cells in the central nervous system CNS) and increased frequency of Treg cells. Also, proliferation of MOG3s_ss-
reactive T cells was significantly inhibited by chloroquine treatment. Similar results were observed when chloroquine was
administrated after disease onset.

Conclusion: We show for the first time that CQ treatment promotes the expansion of Treg cells, corroborating previous
reports indicating that chloroquine has immunomodulatory properties. Our results also show that CQ treatment suppress
the inflammation in the CNS of EAE-inflicted mice, both in prophylactic and therapeutic approaches. We hypothesized that
the increased number of regulatory T cells induced by the CQ treatment is involved in the reduction of the clinical signs of
EAE.
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Introduction natural arising regulatory T (Treg) cells act inhibiting the
activation of self-reactive lymphocytes through cell contact,
secretion of anti-inflammatory cytokines and modulation of
professional antigen presenting cells, like dendritic cells (DCs)
[3,7,8]. It was previously shown that a reduction in number and
function of Treg cells is associated with autoimmune diseases [9—

The modulation of the immune system 1s a necessary process to
prevent the development of deleterious immune response and
autoimmune diseases. Several mechanisms were developed to
restrain exacerbated activation of the immune system against self-

antigens which includes the central and peripheral tolerance [1-3]. 11], and failure to express the nuclear transcriptional factor Foxp3

results in human X-linked IPEX (Immunodysregulation Poly-
endocrinopathy and Enteropathy) and mouse scurfy, both severe
poly-autoimmune disease syndromes [12,13].

Thymocytes, the lymphocytes inside the thymus, are “tamed” to
recognize auto-antigens and respond to non-self-antigens within
the thymic environment, in a network of soluble molecules, cell-
cell and cell-extracellular matrix interactions [4-6]. In periphery,
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Adoptive transfer of Treg cells has proven to be a useful tool
to reduce inflammatory diseases, such as human graft versus
host disease [14], experimental diabetes [15], experimental
autoimmune hepatitis [16], experimental arthritis [17] and
experimental autoimmune encephalomyelitis [18]. Therefore,
therapies that promote the expansion of regulatory T cells are
desirable in order to reduce the overall chronic inflammation
observed in most autoimmune diseases. Chloroquine (CQ), an
anti-malarial drug, has proven to exert some anti-inflammatory
effects through the down-regulation of Tumor Necrose Factor-
alpha (TNF-o) production and signaling in macrophages
[19,20], as well as the cytokine pattern production [21]. Yet,
the administration of chloroquine prevented the onset of graft-
versus-host disease in a mouse model [22]. Treatment with
chloroquine together with other immunosuppressive drugs
resulted in amelioration of the clinical manifestations in
rheumatoid arthritis patients [23]. It is not clear the precise
mechanism triggered by chloroquine, but several evidences
suggest that chloroquine acts as a weak base by both pH-
dependent and —independent mechanisms [24-26].

Experimental Autoimmune Encephalomyelitis (EAE) is the
most studied experimental model for Multiple Sclerosis, which is
originated after immunization of susceptible mice with myelin-
associated proteins in an inflammatory context. Activated T cells
migrate into the Central Nervous System (CNS) and initiate a
robust inflammatory response [27-29]. Thus far, the treatment for
MS is based on high cost medicine and more recently on the
administration of monoclonal antibodies [30—-32]. So, the search
for adjunctive therapies is of great value in the field of
autoimmunity treatment, especially those that increase the
frequency or function of regulatory T cells. In this sense,
chloroquine is a cheap and well-tolerated drug, with some
described effects on inflammatory conditions. However, the
mechanisms used by chloroquine and whether regulatory T' cells
are involved in the immunomodulation as well as whether this
drug can reduce the clinical signs of EAE, remain obscure.

In this context, we aimed to investigate if the administration of
chloroquine alters the frequency of regulatory T cells and dendritic
cells in the periphery of the immune system and if the treatment
with CQ could ameliorate the clinical signs of EAE. We found that
CQ treatment provoked an increase in the frequency of Treg cells
and reduced DCs numbers in the spleen. When CQ was
administrated both prophylactic and therapeutically mice devel-
oped mild clinical score of EAE and this was accompanied by a
reduced infiltration of inflammatory cells to the CNS. An increase
in Treg cells number and in secretion of immunomodulatory
cytokines was observed as well. The data obtained here strongly
suggest that chloroquine may become a useful adjunct in the
treatment of multiple sclerosis.

Materials and Methods

Mice

Six-to-eight week-old female C57BL/6 mice from the Multi-
disciplinary Center for Biological Research, University of
Campinas, were used in this study. Mice were kept in specific-
pathogen free conditions, in a controlled temperature and photope-
riod environment, with free access to autoclaved food and water
throughout the experiment. All protocols involving laboratory
animals were approved and performed in accordance with the
guidelines of the State University of Campinas Committee on the
Use and Care of Animals (Comissdo de Etica no Uso de Animais

CEUA, # 2687-1).
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Chloroquine Treatment

Groups of mice (n=7) were created aiming the test for ideal,
non-toxic chloroquine (Chloroquine diphosphate salt, Sigma-
Aldrich, Brazil) concentration. The concentrations tested were 3,
5 and 10 mgkg ', The 100 mg/kg dose was found to be lethal.
Animals of each group received chloroquine via ip. (200 uL/
mice) for five consecutive days. Control mice were injected with
diluent solution (Phosphate-Buffered Saline 0,02 M pH 7,2).
Three days after the last dose, mice were killed and splenic cells
were collected and assayed for cellular population analysis in the
presence of concanavalin-A (2,5 ug/mL). Mice survival and spleen
cellularity were evaluated as well.

EAE Induction, Evaluation and Chloroquine Treatment

EAE was induced and evaluated in mice according to a previous
published paper [33]. Briefly, each mouse was injected with
100 ug MOGs5 55 MEVGWYRSPFSRVVHLYRNGK, Rhea-
Biotec, Brazil) emulsified with Complete Freunds Adjuvant (CFA,
Sigma-Aldrich, USA). 200 ng Pertussis toxin (Ptx, Sigma-Aldrich,
USA) was administrated via 1.p. at 0 and 48 h after MOGs35 55
inoculation. Weight changes and clinical signs were followed and
graded daily according to a score method, where 0: no sign, 1:
flaccid tail, 2: hind limbs weakness, 3: hind limbs paralysis, 4: hind
paralysis and fore limbs weakness, 5: full paralysis/dead. An
intermediate non-toxic concentration (5 mg/kg/day) of chloro-
quine was used for EAE treatment (five consecutive days, via 1.p.).
For prophylactic approach, EAE was induced three days after the
last dose of CQ (5 mgkg "), and for therapeutic approach, mice
received the CQ treatment after the onset of EAE (day 10" after
immunization with neuro-antigens). Fourteen (prophylactic ap-
proach) and thirty (therapeutically approach) days after antigen
challenge mice were killed spinal cords were removed and snap
frozen; 12 um thin slices were made in cryostat and stained with
haematoxylin and eosin (H&E).

Isolation of Treg Cells (CD4"CD25") and Transfer
Experiments

Naive C57BL/6 mice were treated with chloroquine as
described above and three days after the last dose spleen cells
were collected and CD47CD25" cells were isolated by magnetic
beads following manufacturers recommendations (CD4"CD25*
Regulatory T Cell Isolation Kit; Miltenyi Biotec., USA). 5x10°
Treg cells per mouse were adoptively transferred (via i.v.) to EAE
mice at the onset of disease (10 days after immunization). As
control, EAE mice received equal numbers of CD4"CD25 cells
at the same time point. EAE induction and evaluation was
performed as described above.

Lymphoproliferative Response and Cytokine Dosage
Splenic cells were aseptically collected from mice after 10 and
30 days of antigen challenge for prophylactic and therapeutic
approaches, respectively, and after 16 days for Treg cells transfer
experiments. Single cell suspensions were stained with Carboxy-
fluorescein succinimidyl ester (CFSE, Sigma-Aldrich, USA)
following the manufacturers instructions. Cells (5 x10°/well) were
diluted in RPMI 1640 media supplemented with Fetal Calf Serum
(FCS;10% vol/vol), guaramicine (50 ug/mL), 2-Mercaptoethanol
(2 mM) and myelin oligodendrocyte glycoprotein peptide
(MOGs35_55,20 ug/mL), plated in flat-bottom plates and incubated
at 5% COy and 37°C for 96 h. After the incubation period, cells
were stained with PercPCy5-conjugated anti-CD3 antibodies and
fixed in 1% paraformaldehyde prior to flow cytometer analysis.
CFSE"“CD3" cells were considered proliferating T cells. Culture
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Figure 1. Chloroquine administration alters the frequency of regulatory T (Treg) cells and dendritic cells (DCs), but not the
proliferative capability of T cells. Briefly, mice were treated with chloroquine via i.p. for five consecutive days. Three days after the last dose mice
were killed and splenic cells were analyzed by flow cytometry. Increased numbers of Treg cells (A) and reduced frequency of DCs (B) was found in
mice treated with chloroquine when compared to the control group. In addition, splenic T cells proliferative response was not altered in the presence
of concanavalin-A (C). Subpopulations of leukocytes showed slight changes when compared to control subjects (D). Results are representative of

three independent experiments.
doi:10.1371/journal.pone.0065913.g001

supernatants were collected and assayed for cytokines (IL-4, IL-6,
IL-10, IL-17, IFN-y and TNF-o) secretion using the Cytometric
Bead Array (CBA, BD Biosciences, USA) according to manufac-
turers instructions.

Analysis of Cellular Infiltration in the CNS

Fourteen days after EAE induction (in the prophylactic
approach) and thirty days after EAE induction (in the therapeutic
approach), mice were anesthetized, perfused with ice cold PBS and
half of the spinal cords and brains were removed and stored at
—80°C until use for RT-PCR assays; the remaining tissue was
prepared for the enrichment of infiltrating leukocytes according to
a previously described methodology and analyzed by flow
cytometry [34].

Flow Cytometry

Fluorochrome-conjugated monoclonal antibodies were used to
stain leukocytes. Cells were surface stained with anti-CD4/PE-
Cy7, anti-CD8/APC, anti-CD3/PercPCy5, CDI11c/APC,
CDI11b/PE, F4-80/APC, TLR-2/PE, TLR-4/PE. For intracel-
lular staining, cells were fixed/permeabilized (fixation/permeabi-
lization buffers) according to manufacturers recommendations,
later monoclonal anti-Foxp3/APC, IL-10/PE, IFN-y/PE and IL-
17/APC were added to cells. Isotype controls were used as well.
All antibodies were purchased from eBioscience (USA). Prepara-
tions were acquired with a Gallios flow cytometer (Becman
Cloulter, USA) and data analyzed using FlowJo 7.6 (Tree Star Inc.,
USA).

RT-PCR Assays

Frozen tissues were used for RNA extraction using Trizol
(Invitrogen, USA) and ¢cDNA synthesis according to the manu-
facturers recommendations (Applied Biosystems, USA). Expres-
sion of IL-10 (Mm00439614_m1l), IL-17 (Mm00439618_m]l),
IFNg (MmO01168134_ml), FOXP3 (Mm00475162_ml) and
RAR-related orphan receptor C (RORc) (Mm01261022_m1)
were analyzed in comparison to GAPDH (Mm99999915_¢l,
housekeeping gene) levels. RT-PCR reactions were performed
using Tagman reagents according to manufacturers recommen-
dations (Applied Biosystems, USA).

Statistical Analysis

Clinical score comparisons between control and experimental
groups were done by Two-Way ANOVA and post-tested with
Bonferroni. Other analyses among two and three (or more) groups
were carried out with Students t test and One-Way ANOVA,
respectively. Results are expressed as mean * standard error
mean (SEM) and p<<0,05 value were defined as significant.

Results

Increased Frequency of Regulatory T cells and Reduced
Percentage of Dendritic Cells after Chloroquine
Treatment

Naive mice were treated with CGQ at different dosages for five
consecutive days and the cellular subsets were evaluated three days
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after the last dose of drug administration. Along with reduction in
the total splenic cells number at higher doses (data not shown), our
data showed that CQ treatment increased the numbers of
regulatory T cells whereas the frequency of dendritic cells was
reduced (Figure 1A and 1B, respectively). In order to evaluate
whether CQ treatment promoted functional alterations in T cells,
splenic lymphocytes from CQ treated-mice were cultured in the
presence of concanavalin-A (Con-A) for 72 h. As depicted in
figure 1C, the CQ treatment did not alter the proliferation
capacity of T cells. Other subpopulations of leukocytes were also
analyzed but only a slight change in the frequency of these cells
was noticed compared to the control group (Figure 1D).

Chloroquine Treatment Reduces the Clinical Evolution
and Infiltration of the CNS in EAE Mice

An increase in regulatory T cells pool is associated with mild
inflammation, whereas reduced dendritic cell numbers may impair
proper antigen presentation to T cells, thus dampening adaptive
immune response. In this context, the next goal was to determine
whether prophylactic CQ) administration was capable of modu-
lating the course and severity of EAE. Hence, mice were subjected
to CQ treatment (5 mg/kg/day) for five consecutive days, and
three days after the last dose EAE was induced (Figure 2A) and the
development of the disease accompanied daily.

Mice that received CQ prior to EAE induction showed a
significant reduction in weight loss compared with PBS-treated
animals. Accordingly, the treatment was also capable to delay
disease severity course (Figures 2B and 2C). As leukocytes
infiltration in the CNS is directly associated with the severity of
disease, we aimed to investigate whether the CQ treatment had
altered brain inflammation. PBS- and CQ-treated EAE mice were
killed and spinal cords were removed and stained with H/E.
Corroborating results mentioned above, CQ treated-mice pre-
sented lower leukocytes infiltration in the CNS (Figure 2D).
Opverall, CQ administration was able to ameliorate the clinical
course of EAE, most probably, because of the reduced cellular
infiltration in the CNS.

We next examined the profile of leukocytes that infiltrated the
CNS of CQ treated-EAE mice. For that purpose brains and spinal
cords were collected, minced and cellular suspensions were
prepared and analyzed as described in M&M section. Our results
show that lymphocytes managed to overcome the blood-brain
barrier and infiltrated the CNS of EAE mice, both of PBS- and
CQ-treated groups. However, the number of infiltrating lympho-
cytes was significant reduced in CQ treated-mice compared to the
control subjects (Figure 3A). Interestingly, the pattern of infiltrat-
ing cells in CQ-treated group was quite different from control
EAE group. CQ treated-mice showed significant reduction in
interleukin (IL)-17A- and interferon-gamma (IFN-v)-producing
cells and a significant increase of IL-10-producing cells in the CNS
(Figure 3B). Also, the relative gene expression analyses have
showed decreased pattern for I1-17 and IFN-y and up-regulated
pattern for IL-10 (Figure 3C, 3D and 3E, respectively).

As Treg cells number were increased in normal mice upon CQ
treatment and an augmented frequency of this population is
correlated with suppression of EAE, we aimed to assess the
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incidence of Treg cells in spleen and the Foxp3 gene expression in
the spinal cords of EAE mice fourteen days after induction of the
disease. Corroborating our results, the expression of Foxp3 was
found significantly augmented in CQ treated-mice (Figure 3F). In
the periphery of the immune system, it was observed that EAE
mice that received CQ had increased Treg cell numbers compared
with the PBS treated-group (Figure 3G). These data indicate that
the reduction in EAE severity observed in CQ-treated mice
correlates with the increase in Treg cells number both in the CNS
and the periphery.

Administration of Chloroquine Suppresses the Ag-
specific Proliferation and Changes the Cytokine
Production Pattern

Considering that an increase in Treg and IL-10-producing cells
may correlate with the reduced clinical signs of EAE, and that the

PLOS ONE | www.plosone.org

antigen-specific cellular immune response is the cause of the
disease in mice, we next evaluated whether peripheral encepha-
litogenic lymphocytes from CQ treated-mice proliferate in the
presence of MOGss 55. For that purpose, splenic leukocytes
derived from mice after ten days of immunization with neuro-
antigen were collected and put in culture in the presence of
MOGg35_55 for 96 h. Our data show that lymphocytes from CQ-
treated mice proliferated significantly less than cells from PBS—
treated group (Figure 4A). In the culture supernatants there was
also a significant reduction in IL-17 levels, whereas the concen-
tration of IL-10, IL-6, IFN-y, and 1L.-4 were found significantly up
regulated from CQ-treated mice cells compared to PBS-treated
ones. No difference could be observed in the levels of tumor
necrosis factor-alpha (TNF-0)) between cultures of both groups
(Figure 5B).
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Chloroquine Treatment may also be Used after the Onset

of EAE with Similar Results

Although CQ prophylactic approach was able to reduce the
clinical evolution of EAE, the results might differ when the drug is
administrated after disease onset, which corresponds to a more
realistic picture for disease treatment. In order to solve this issue,
mice were immunized with MOGs; 55 and 10 days later, after the
onset of EAE, CQ treatment was initiated (Figure 5A). Results
showed that CQ-treated EAE mice presented a reduction in the
weight loss and amelioration of the clinical course of the disease
(Figure 5B and 5C, respectively).

EAE develops after the migration of inflammatory cells to the
CNS, where they produce pro-inflammatory cytokines and secrete
a myriad of enzymes and soluble factors damaging the nervous
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system. As the treatment started after disease onset, we next
evaluated whether the cellular infiltration in the spinal cords of
mice was altered. Thirty days after EAE induction spinal cords
were collected and analyzed for the presence of leukocytes. We
found that CQ treatment provoked a slight reduction in the
infiltration of cells to the spinal cords compared with the PBS-
treated group (Figure 5D). Although CQ treatment was not able to
reduce leukocytes infiltration in the CNS, a significant up-
regulation of Foxp3 cells in the spinal cords was observed. The
expression of IFN-y was found significantly down-regulated in the
treated group as well.

The expression of IL-17 and Thl7 related transcriptional
factor RAR-related orphan receptor C (RORc) was not
statistically ~different between the two groups (Figure 5E).

June 2013 | Volume 8 | Issue 6 | 65913



Chloroquine Supresses EAE

A EAE CQ+EAE

66,1%

MLk B L B L B L B A L B L e L ML LS L M L ML) L B L M L B L

B L 18 3 Medium
600- 150-
—t— . Bl MOG35.45
i ' .
400 : 100 i
. 1 - 1
£ I g ——
2 |= == 2 - |
200 i 50+ i
i i
I 1
] ]
I I
0 ! 0 !
IFN-y IL-4
150~ 40- 2
* | ——— |
i 30 '
1004 : :
E i T z !
50 ! a— i
! 10+ :
! i
1} 1
0 0 1
IL-6 TNF-a
300- 2 300-
e ———
| i
200- ! 200 i
24 1 g KT
& 1 £ = 1
b4 T 2 i
100{ — i 100- E
i i
i i
0 ! 0 !
EAE CQ+EAE EAE CQ+EAE

PLOS ONE | www.plosone.org 7 June 2013 | Volume 8 | Issue 6 | 65913



Chloroquine Supresses EAE

Figure 4. Chloroquine treatment reduces the Ag-specific proliferation of T cells in the spleen and the cytokine production profile.
After 14 days of immunization with MOGss_ss peptide, mice were killed and CFSE-stained splenocytes were cultivated in the presence of MOGss_s5 for
96 h. (A) The proliferation was calculated in the CFSE™®"CD3" cells. Figures presented are representative of three independent experiments. (B) At the
end of the culture period the supernatants were collected and assayed for the detection of cytokines using cytometric beads assay. Results are

expressed as mean = SEM for at least five animals. p<<0,05 (¥).
doi:10.1371/journal.pone.0065913.g004

Accordingly, the profile of inflammatory cells in the CNS was
altered as the frequency of IL-10-producing cells was augment-
ed while the frequency of IFN-y- and IL-17-producing cells was
reduced in the CQ-treated group (Figure 5F). There was also
reduction in MOGg; 55 -specific proliferation of splenocytes
from CQ-treated mice compared to control group and IL-17,
IL-6, IFN-y secretion. In contrast, IL-10 and IL-4 production

was augmented when cells were cultured in the presence of

MOGs3s5 55 peptide (Figure 5G).

Transfer of Chloroquine-elicited Regulatory T cells
Reduces EAE

As we have observed that CQ in homeostatic conditions is able
to promote an increase in Treg cells, we decided to investigate
whether Treg cells elicited by CQ treatment played a role in the
modulation of EAE severity. Then naive C57BL/6 mice were
treated with CQ for five consecutive days (5 mg/kg/day) and their
isolated CD47CD25" (Treg) cells were transferred into EAE mice
at the disease onset (day 10 after MOGss 55 inoculation)
(Figure 6A). Results showed that transfer of Treg cells reduced

the clinical course of EAE (Figure 6B) compared to
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CD4"CD25 recipient EAE mice (Figure 6B). There was also
reduction in the leukocytes infiltration in the CNS (Figure 6C). We
next characterized the cytokine profile of the infiltrating cells. Mice
that received Treg cells at EAE onset had lower frequency of IL-
17- and IFN-y-producing cells in the CNS compared to the
control group. The frequency of IL-10 producing cells remained
unchanged (Figure 6C).

The MOGs35 55-specific cellular response in the periphery was
evaluated as well. It was observed that splenic cells from EAE mice
that received CD25*-transferred cells proliferated significantly less
than cells from CD25  -transferred-EAE mice (Figure 6D). We
aimed to assess whether the pattern of cytokine production in the
presence of MOGs35 55 peptide was altered. Our data showed that
there was no statistical difference in the production of IL-17 and
TNTF-a between the two groups. However, levels of IFN-y and IL-
6 were reduced while an increase in IL-10 and IL-4 secretion was
observed in cell cultures from CD25% transferred- mice when
compared to control group (Figure 6D).

war o [ Medium
—— Il MOG3;5

TNFa

: EAE EAE+CQ

Figure 5. Chloroquine administration after the onset of EAE reduces the clinical signs of the disease. (A) CQ was administrated ten days
after immunization with MOGss_ss. (B) and (C) Animals were accompanied for weight changes and clinical score. (D) The spinal cords were removed
at day 30 and 10 um slices were stained with HE for detection of infiltrating cells in the CNS. Figures are representative of at least six mice. Bar:
500 um. (E) Gene expression of IL-17, IFNy, Foxp3 and RORc in the CNS was evaluated. (F) The infiltrating cells in the CNS were collected and stained
for flow cytometric characterization of IL-10, IL-17 and IFN-y production. (G) Spleen cells from EAE mice, CQ- and PBS-treated mice, were removed and
CFSE-stained cells were cultivated (5x10°/well) in the presence of MOGss_ss peptide (20 ug/mL) for 96 h. The dye decay and cytokine production
were measured by flow cytometry. Results are representative of three independent experiments and are expressed as mean * SEM for at least five
animals. * p<<0.05.

doi:10.1371/journal.pone.0065913.g005
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Figure 6. Transfer of CQ-elicited Treg cells reduces the severity of ongoing EAE. (A) Naive C57BL/6 mice were treated with chloroquine
(5 mg/kg/day) for five consecutive days. Three days after the last dose of the treatment, splenic CD4*CD25" cells were isolated using magnetic beads
and cells (5x10° cells per mouse) were transferred into mice with ongoing EAE (10 days after immunization). As controls, mice received the same
number of CD4"CD25™ cells. (B) The clinical course of the disease was evaluated routinely. (C) The brains and spinal cords were collected and the
enriched infiltrating cells were counted. The frequency of IL-17-, IL-10- and IFN-y-producing cells was analyzed by flow cytometry as well. (D) The
spleens were collected and CFSE-stained cells were cultivated in the presence of MOGss_ss peptide for 96 h. Dye decay and cytokine production were
analyzed by flow cytometry. Results are expressed as mean = SEM for at least five animals. p<<0,05 (*), p<<0,01 (**) and p<<001 (**¥).

doi:10.1371/journal.pone.0065913.g006

Discussion

Autoimmune diseases develop in deregulated immune systems
that fail to control chronic inflammation. Although the events that
trigger disease development are unknown, multiple sclerosis is an
immune mediated syndrome with characteristics of acute and
chronic inflammation [35,36]. Therapies that focus on reestab-
lishing homeostasis and immunomodulation are of great value.
Regulatory T cells play an important role in the control of
inflammation and suppression of auto-reactive cells [3,8,37]. In
this context, we found that chloroquine administration provokes
an increase in Treg cells frequency in the spleen of normal mice.
When administrated, both prophylactic and therapeutically, CQ
modulated the course of EAE, an animal model for multiple
sclerosis. The transfer of CQ-elicited Treg cells into mice with
ongoing EAE promoted a reduction in disease severity as well.

Chloroquine, an anti-malarial agent, was shown to have anti-
inflammatory properties. The administration of the drug resulted
in impaired iron metabolism and TNF-o production by macro-
phages [20,38], as well as altered cytokine secretion profile
[19,39,40]. It was also shown that chloroquine affects T cell
priming to minor MHC complexes and may be used to modulate
graft-versus-host disease (GVHD) [41]. The mechanisms underlying
these effects are not fully understood, but may involve the changes
in pH of several intracellular organelles. CQ) is a weak base that
has tropism for acidic organelles, such as lisossomes [42]. Although
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it was already shown that CQ raises NK'T cell pool [22], to our
knowledge, this 1s the first study to show that chloroquine
treatment leads to an increase in regulatory T cell numbers in
the periphery as well as a decrease in DC’s.

Therapies that lead to induction of regulatory T cells have
provided interesting results in the amelioration of EAE. The
ingestion of the lactic acid producing bacteria Pediococcus acidilactict
led to expansion of Treg cells in the mesenteric lymph nodes of
mice resulting in decreased specific cellular response and
consequently in EAE score [43]. Oral administration of
MOGss5 55 also resulted in reduced EAE severity through the
stimulation of antigen-specific Treg cells [44]. Therefore, we
aimed to access whether prior expansion of Treg cells, due to
chloroquine administration, could suppress the development of
EAE. Mice treated with CQ developed a mild form of the disease,
and Treg cells population was found augmented both in spleen
and in the CNS. Although these Treg cells emerged before
MOGs35 55 -immunization, the MOGsgs 55 -specific cellular
proliferation was reduced, suggesting that the Treg-mediated
immune-suppression is antigen-unspecific. Similarly, Ovalbumin-
specific regulatory T cells were able to reduce the anti-Type 1I
Collagen responses, promoting reduced clinical signs of collagen-
induced arthritis in a by-stander fashion [45,46]. In cultures of
spleen cells in the presence of MOGg3; 55 peptide we observed a
change in the pattern of cytokine secretion. The increased IFN-v,
IL-4 and IL-6 production indicates that CQ) treatment altered the
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T cell subsets responsive to the neuro-antigen. These cytokines
may be involved in the deviation of the immune response towards
neuro-antigens i viwo after CQ) administration.

Thl and Th17 cells are important for EAE development. Both
cells act synergistically to induce the lesions in the CNS [47,48],
although IFN-y-producing cells seems to suppress exacerbated
disease [49,50]. Neutralization of IL-17 by antibodies leads to mild
disease severity [51]. Thus, suppressing inflammatory cytokines
may result in down-modulation of EAE. The treatment with
chloroquine also changed the pattern of cytokine secretion of the
infiltrating cells in the CNS; the reduction in the IFN-y and IL-17-
producing cells was correlated with mild disease. It was previously
published that administration of MOG antigen, by the oral route,
resulted in a change of the inflammatory cells in the CNS, and this
promoted low disease severity [34]. The same pattern of
suppression was recently observed when DNA vaccine was
administrated together with Tacrolimus [52]. Also, MOG-DNA
vaccination promoted expansion of regulatory T cells in the
periphery and Foxp3 expression in the spinal cords of EAE mice,
as well as augmented the expression of neuroprotective genes in
the CNS [53].

It is of recent concern that regulatory T cells may turn into
effector inflammatory cells. It was found that natural arising and
periphery induced Treg cells may become Thl and Thl7 cells
in vivo and in vitro [54-57]. The events that lead to this conversion
are based on the stimulation of the mTOR cascade, which induces
the differentiation of Thl and Thl17 cells in inflammatory and
lymphopenic conditions [56]. We did not observe this effect in the
treatment of ongoing EAE. In fact, our results show that
regulatory T cells raised by the CQ treatment were not converted
into effector T cells, even at the 30" day after disease onset, as
seen by the augmentation of Foxp3 expression and the reduction
in IFN-y production. So, the treatment with chloroquine of
established EAE resulted in reduction of EAL suggesting that a
long-lasting immunomodulation can be achieved with this
therapy. When CQ-elicited Treg cells are transferred to mice
with ongoing EAE, the disease severity was reduced. The cellular
response towards neuro-antigens in the periphery was contained
and the pattern secretion of cytokines was altered as well. Transfer
of CQ-Treg cells also reduced the infiltration of cell into the CNS,
although the frequency of IL-10-producing cells was unaltered,
which is distinct from the data observed with CQ treatment. The
reduced dendritic cells number after CQ therapy may favor the
higher suppression profile of CQ) treatment over CQ-Treg cells
transfer experiments. These data indicate that the amelioration of
EAE after CQ treatment is a result of Treg-dependent and -
independent mechanisms.

Other anti-malarial drugs are being tested in experimental
models of inflammation. Recently, it was published that
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artimisinin derivative, dihydroartemisinin (DHA), promoted sup-
pression on EAE course [58]. The effects observed were
dependent on Treg stimulation in the periphery. The authors
showed that the mammalian target of rapamycin (mTOR)
signaling cascade was attenuated in T cells [58], which also
inhibits Thl and Thl7 differentiation [56]. The hypothesis that
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targets the mTOR pathway in cancer cells inducing cell death
[59]. We do not discard the possibility that chloroquine may
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treatment period in this study was brief. So, other studies must be
conducted to assess the efficacy of this treatment in human
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The results presented herein indicate that chloroquine reduces
the clinical course of EAE. We propose that this effect is due to the
expansion of regulatory T cells in the spleen, which reduces the
specific cellular response in the periphery. CQ may also affect
other T cell subtypes that contribute to the reduced EAE severity.
Interestingly, Treg cells also migrate to the CNS to reduce local
inflammation and promote protection of the nervous system.
Taken together, our data suggest that chloroquine may be a
potential drug to be used as an adjunctive therapy in the treatment
of multiple sclerosis.
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