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ABSTRACT
Pathogenic bacteria resistant to most antibiotics, including the methicillin-resistant Staphylococcus aureus
(MRSA) represent a serious medical problem. The search for new antiinfectives, possessing a diverse mech-
anism of action compared to the clinically used antibiotics, has become an attractive research field. S. aur-
eus DNA encodes a b-class carbonic anhydrase, SauBCA. It is a druggable target that can be inhibited by
certain aromatic and heterocyclic sulphonamides. Here we investigated inorganic anions and some other
small molecules for their inhibition of SauBCA. The halides, nitrite, nitrate, bicarbonate, carbonate, bisul-
phite, sulphate, stannate, and N,N-diethyldithiocarbamate were submillimolar SauBCA inhibitors with KIs in
the range of 0.26� 0.91mM. The most effective inhibitors were sulfamide, sulfamate, phenylboronic acid,
and phenylarsonic acid with KIs of 7� 43mM. Several interesting inhibitors detected here may be consid-
ered lead compounds for the development of even more effective derivatives, which should be investi-
gated for their bacteriostatic effects.
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1. Introduction

Staphylococcus aureus is a Gram-positive bacterium that infects
nearly all host tissues in many mammalian species, including
humans and livestock, causing severe morbidity and mortality1. It
belongs to the sadly famous ESKAPE group of bacterial pathogens
(Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumo-
niae, Acinetobacter baumannii, Pseudomonas aeruginosa,
Enterobacter spp.) that are resistant to many clinically used antibi-
otics including methicillin and vancomycin2. As a consequence,
the treatment of such infection remains particularly challenging if
not impossible in severe cases1,2. Thus, there is an urgent need
for new classes of antibiotics which can either inhibit the growth
of these pathogens and subsequently kill them, or of compounds
which can restore the sensitivity of resistant bacteria to the vari-
ous classes of clinically used agents3–5. The inhibitors of the wide-
spread metalloenzyme, carbonic anhydrase (CA, EC 4.2.1.1), were
recently shown to be effective in inhibiting the growth (possess-
ing a significant bactericidal activity) of some drug-resistant patho-
gens, such as vancomycin-resistant Enterococci5 and Neisseria
gonorrhoeae6.

In fact, CAs are present in most microorganisms including bac-
teria and are encoded by at least four genetic families (although
new ones may still exist to be reported), which are the a-, b-, c-,
and i-CAs4,7,8. In some bacteria, such as Escherichia coli, the CAs
are essential for the survival of the organism8. For others, such as
Helicobacter pylori4, the CAs assure the acclimation of the bacter-
ium in the specific niches (gastric and duodenal mucosa) in which
it thrives, whereas for others, such as Vibrio cholerae, these
enzymes participate in the secretion of bicarbonate which is a

virulence factor of this pathogen7. In the last decade, many repre-
sentatives of these enzymes, belonging to all four classes present
in bacteria, were cloned and characterised both biochemically and
structurally in the search for inhibitors. This can eventually lead to
the development of new antibacterial agents. Among the various
species which have been characterised in this way are E. coli, H.
pylori, Mycobacterium tuberculosis, Vibrio cholerae, Pseudomonas
aeruginosa, Porphyromonas gingivalis, Streptococcus spp.,
Staphylococcus aureus, etc.4,7–15. Although the scientific commu-
nity was rather sceptical for a long time that bacterial CA inhib-
ition may lead to significant growth inhibition of pathogenic
bacteria, Flaherty’s group recently published the long-awaited5,6

proof-of-concept that inhibition of bacterial CAs may lead to anti-
biotics with novel mechanisms of action. They showed that the
sulphonamide CA inhibitor (CAI) acetazolamide and some of its
derivatives, as well as dorzolamide, outperformed the current
drug of choice, linezolid, both in vitro and in vivo, for inhibiting
the growth of vancomycin-resistant enterococci (VRE)5 and N. gon-
orrhoeae6. Furthermore, other groups have demonstrated that
CAIs may exhibit reduced potential for the development of drug
resistance, as in the case of H. pylori and ethoxzolamide as CAI.
Mutations were observed in several bacterial genes, including the
bacterial a-CA gene, but the pathogen remained susceptible to
the drug at clinically relevant concentrations9.

Recently, we cloned and characterised a b-CA of S. aureus
(SauBCA), an enzyme that possesses a high catalytic activity for
the physiologic CO2 hydration reaction to bicarbonate and pro-
tons, with the following kinetic parameters: kcat of 1.46� 105 s�1

and a kcat/KM of 2.56� 107 s–1M�1. This enzymatic function was
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inhibited by various sulphonamide derivatives, which represent
one of the main classes of inhibitors of these enzymes16. In this
study, we continue the exploration of the inhibitors of SauBCA,
reporting its inhibition profile with anions and other small mole-
cules known to inhibit CAs.

2. Materials and methods

2.1. Chemistry

Anions and small molecules were commercially available reagents
of the highest available purity from Sigma-Aldrich (Milan, Italy).
Purity of tested compounds was higher than 99%.

2.2. Enzymology

SauBCA was a recombinant enzyme obtained in-house as
described earlier15.

2.3. CA activity and inhibition measurements

An Applied Photophysics stopped-flow instrument was used for
assaying the CA catalysed CO2 hydration activity17. Phenol red at
a concentration of 0.2mM was used as a pH indicator (working at
the absorbance maximum of 557 nm) with 10mM Hepes (pH 7.4)
as a buffer, and in the presence of 10mM NaClO4 for maintaining
constant ionic strength. The initial rates of the CA-catalysed CO2

hydration reaction were followed for a period of 10� 100 s. The
CO2 concentrations ranged from 1.7 to 17mM for the determin-
ation of the kinetic parameters and inhibition constants. For each
inhibitor, at least six traces of the initial 5� 10% of the reaction
were used for determining the initial velocity. The uncatalyzed
rates were determined in the same manner and subtracted from
the total observed rates. Stock solutions of inhibitors (10� 20mM)
were prepared in distilled-deionized water and dilutions up to
0.01mM were done thereafter with the assay buffer. Inhibitor and
enzyme solutions were preincubated together for 15min at room
temperature prior to assay in order to allow for the formation of
the enzyme-inhibitor complex. The inhibition constants were
obtained by non-linear least-squares methods using PRISM 3 and
the Cheng–Prusoff equation, whereas the kinetic parameters for
the uninhibited enzymes were obtained from Lineweaver-Burk
plots, as reported earlier18–20. The results represent the mean from
at least three different determinations (data not shown). The
SauBCA concentration in the assay system was 9.7 nM.

3. Results and discussion

Inorganic anions represent a well-characterised class of CAIs21.
Our study included anions known to have a high affinity in solu-
tion for complexing metals, such as halides and especially pseudo-
halides (cyanide, cyanate, thiocyanate, azide, etc.), as well as those
which do not easily form complexes with transition metal ions
(e.g. sulphate, selenate, tellurate, tetraborate, etc.). Both groups of
anions have been shown to possess inhibitory action against all
classes of CAs investigated so far, from prokaryotes to eukar-
yotes21–23. Furthermore, small molecules such as sulfamide, sul-
phamic acid, phenylboronic, and phenylarsonic acid also possess
such properties24. In this study, we investigated a panel of such
anions and small molecules for the inhibition of SauBCA (Table 1).
The inhibition data of the abundant human (h) isoforms hCA I
and II as well as those of another bacterial CA, NgCA from N. gon-
orrhoeae25 are also shown in Table 1 for comparison.

The following observations can be delineated from the data
presented in Table 1 regarding the inhibition of SauBCA with
anions and small molecules:

i. anions with a rather low propensity for complexating metal
ions, such as perchlorate and hexafluorophosphate, and tri-
flate, did not inhibit SauBCA significantly with concentrations
up to 100mM in the assay system. This is also the case for
their interaction with hCA I and II, as well as many other CAs
belonging to all known classes. For this reason, we used per-
chlorate at 10mM concentration for maintaining constant
ionic strength in the stopped-flow assays, as mentioned in
Materials and methods. Other anions, such as pyrodiphos-
phate, divanadate, perruthenate, perrhenate, peroxydisulfate
and iminidisulfonate, were also in this category of non-inhib-
iting anions. It should be noted, however, that some of them
act as rather efficient anion inhibitors of other enzymes than
SauBCA, as shown in Table 1.

ii. The following anions showed weak inhibitory action against
SauBCA: thiocyanate, hydrogensulfide, tellurate, and trithio-
carbonate, with inhibition constants in the range of
11.4–42mM (Table 1). Except for tellurate, which is not a
high-affinity ligand for metal ions, the other three anions
mentioned here are either very good coordinating agents for

Table 1. Inhibition constants (KIs) of anion inhibitors against hCA I, II and the
bacterial enzymes NgCA and SauBCA, measured by a stopped-flow CO2 hydra-
tion assay17.

Anionb

KI (mM)a

hCA I hCA II NgCA SauBCA

F– >300 >300 8.3 0.48
Cl– 6 200 4.8 0.69
Br– 4 63 4.0 0.26
I– 0.3 26 9.6 0.72
CNO– 0.0007 0.03 0.43 3.7
SCN– 0.2 1.6 0.92 28.6
CN– 0.0005 0.02 1.0 4.1
N3

– 0.0012 1.51 2.1 7.4
NO2

– 8.4 63 0.59 0.56
NO3

– 7 35 0.85 0.41
HCO3

– 12 85 1.3 0.42
CO3

2– 15 73 2.9 0.76
HSO3

– 18 89 0.66 0.90
SO4

2– 63 >200 0.83 0.91
HS– 0.0006 0.04 0.55 19.3
NH2SO2NH2 0.31 1.13 0.058 0.009
NH2SO3H 0.021 0.39 0.024 0.043
PhAsO3H2 31.7 49 0.74 0.007
PhB(OH)2 58.6 23 0.15 0.008
ClO4

– >200 >200 >100 >100
SnO3

2– 0.57 0.83 1.7 0.32
SeO4

2– 118 112 0.87 4.8
TeO4

2– 0.66 0.92 0.76 42.0
OsO5

2– 0.92 0.95 2.3 6.0
P2O7

2– 25.8 48 4.9 >100
V2O7

2– 0.54 0.57 2.8 >100
B4O7

2– 0.64 0.95 0.65 8.7
ReO4

– 0.11 0.75 0.96 >100
RuO4

– 0.101 0.69 1.9 >100
S2O8

2– 0.107 0.084 0.79 >100
SeCN– 0.085 0.086 0.66 5.5
NH(SO3)2

2– 0.31 0.76 0.25 >100
FSO3

– 0.79 0.46 0.61 8.9
CS3

2– 0.0087 0.0088 0.088 11.4
EtNCS2

– 0.00079 0.0031 0.0051 0.64
PF6

– >100 >100 >100 >100
CF3SO3

– >100 >100 5.7 >100
aMean from three different assays, measured by a stopped-flow technique
(errors were in the range of ± 5–10% of the reported values); bAs sodium salts,
except sulphamide and phenylboronic acid.
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transition metal ions (thiocyanate, hydrogensulfide, and tri-
thiocarbonate) or quite effective CAIs (see the trithiocarbon-
ate data for hCA I, II and NgCA in Table 1). Additionally, in
some cases, the X-ray crystal structure of their complexes
with hCA II is also available26,27. Thus, these low inhibition
constants against SauBCA deserve a better investigation in
order to understand the structural features of this enzyme
active site, which for the moment has not been crystallised.

iii. Effective, millimolar inhibition was observed for the following
anions: cyanate, cyanide, azide, selenate, perosmate, tetrabo-
rate, selenocyanate, and fluorosulfonate, with KIs in the range
of 3.7–8.9mM. It should be noted that some of these anions
(e.g. cyanide, cyanate) are extremely potent, micromolar hCA
I inhibitors, whereas their activity against hCA II and NgCA
are usually in the millimolar or submillimolar range.

iv. The halides, nitrite, nitrate, bicarbonate, carbonate, bisulphite,
sulphate, stannate, and N,N-diethyldithiocarbamate were
even more effective as SauBCA inhibitors with KIs in the
range of 0.26–0.91mM (Table 1). Among the halides, brom-
ide was the most effective inhibitor, whereas the isosteric/
isoelectronic nitrate and bicarbonate had very similar inhibi-
tory behaviour. Sulphate, which is an extremely weak hCA I
and II inhibitor, is on the other hand much more effective as
an inhibitor of bacterial CAs. In fact, many such bacterial
enzymes have been purified in the presence of extremely
high concentrations of sulphate and showed no catalytic
activity due to inhibition by the anion present in the buffer
or the assay system14.

v. The most effective inhibitors detected in the current study
were sulfamide, sulfamate, phenylboronic acid, and phenylar-
sonic acid, which showed KIs in the range of 7–43 mM. In
fact, these compounds are known to inhibit many CAs of dif-
ferent classes, and X-ray crystal structures have even been
reported for some of the enzyme-inhibitor complexes12,28.

4. Conclusions

SauBCA is a high activity b-CA present in the genome of the bac-
terial pathogen S. aureus, known for its extensive drug resistance
to classical antibiotics. We investigated here its inhibition with a
series of inorganic and organic anions. Perchlorate, hexafluoro-
phosphate, triflate, pyrodiphosphate, divanadate, perruthenate,
perrhenate, peroxydisulfate, and iminidisulfonate did not show
any significant inhibitory action against this enzyme with concen-
trations up to 100mM in the assay system. Thiocyanate, hydro-
gensulfide, tellurate, and trithiocarbonate were weak inhibitors
with KIs in the range of 11.4� 42mM, whereas cyanate, cyanide,
azide, selenate, perosmate, tetraborate, selenocyanate, and fluoro-
sulfonate showed KIs in the range of 3.7� 8.9mM. The halides,
nitrite, nitrate, bicarbonate, carbonate, bisulphite, sulphate, stan-
nate, and N,N-diethyldithiocarbamate were more effective as
SauBCA inhibitors with KIs in the range of 0.26� 0.91mM, but the
most effective inhibitors were sulfamide, sulfamate, phenylboronic
acid, and phenylarsonic acid, which showed KIs in the range of
7� 43 mM. Several inhibitors detected here may be considered as
lead compounds for the development of even more effective
derivatives, which should thereafter be investigated for their bac-
teriostatic effects.
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