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Abstract

Chronic obstructive pulmonary disease (COPD) and inflammatory bowel diseases (IBD) are 

chronic inflammatory diseases of mucosal tissues that affect the respiratory and gastrointestinal 

tracts, respectively. They share many similarities in epidemiological and clinical characteristics as 

well as inflammatory pathologies. Importantly, both conditions are accompanied by systemic co-

morbidities that are largely overlooked in both basic and clinical research. Therefore, 

consideration of these complications may maximise the efficacy of prevention and treatment 

approaches. Here, we examine both the intestinal involvement in COPD and the pulmonary 

manifestations of IBD. We also review the evidence for inflammatory organ cross-talk that may 

drive these associations, and discuss the current frontiers of research into these issues.
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1. Introduction

Chronic obstructive pulmonary disease (COPD) and inflammatory bowel diseases (IBD) are 

mucosal inflammatory diseases affecting the respiratory system and gastrointestinal tract, 

respectively. COPD affects 64 million people worldwide and is the 4th leading cause of 

death1. IBD has a prevalence of >300/100,000 globally and there has been a dramatic 
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increase in the incidence of IBD over the last 50 years2, 3. COPD and IBD are both chronic 

diseases, which are driven by recurrent cycles of inflammation that lead to tissue damage 

and remodelling which progressively worsen symptoms. There are no cures for either 

disease and both require lifelong health maintenance, for which current therapies are 

suboptimal4–6. Many of the similarities in the pathological features of COPD and IBD are a 

result of the common physiology of the respiratory and gastrointestinal systems.

1.1 Common physiology of the respiratory and gastrointestinal tracts

Structurally the respiratory and gastrointestinal tracts have many similarities7, 8 . Both have 

an extensive, highly vascularised, luminal surface area9–12 which is protected by a selective 

epithelial barrier13–15 and an overlying mucus-gel layer16, 17 from commensal bacteria, 

pathogens and foreign antigens. These epithelial surfaces cover a sub-mucosal layer of loose 

connective tissue and mucosa-associated lymphoid tissue (MALT), comprised of resident 

lymphocytes. This lymphoid tissue regulates antigen sampling, lymphocyte trafficking and 

mucosal host defence18, 19. Respiratory and gastrointestinal epithelia share a common 

embryonic origin in the primitive foregut20, 21, which may account for their similarities. 

However, it is most likely that it is the similar inflammatory and immune components of 

these organs that are the cause of the overlap in pathological changes in respiratory and 

intestinal mucosal diseases.

1.2 COPD

COPD is an umbrella term describing a group of conditions characterized by prolonged 

airflow obstruction and loss of the functional capacity of the lungs. Patients suffer from 

chronic bronchitis and emphysema that lead to breathing difficulties (dyspnoea)22. 

Symptoms are induced by exaggerated and chronic inflammatory responses to the noxious 

insult of smoke exposure, with periodic exacerbations of disease typically caused by 

bacterial or viral infection23. Smoking is the major causal risk factor in COPD in 

westernized countries, but wood smoke and pollution are important in other areas, and there 

are genetic and epigenetic components24. Recent studies show that exposure to respiratory 

infections or hyperoxia in early life may also contribute to the development of COPD25, 26.

1.3 IBD

IBD is a term that describes a group of inflammatory diseases of the gastrointestinal tract. 

Ulcerative colitis (UC) and Crohn’s disease (CD) are the two most common forms of IBD27. 

Physiologically, UC and CD are quite distinct. UC is characterized by continuous, 

superficial ulceration of the colon, whereas CD manifests with transmural, sporadic (skip) 

lesions and may occur at any point along the digestive tract28, 29. Both conditions are 

associated with excessive daily bowel movements, severe abdominal pain, diarrhoea, weight 

loss, malnutrition and intestinal bleeding. The causes of IBD are unclear, however several 

factors are known to contribute to the onset of disease including genetic risk, environmental 

stress, the intestinal microbiome and inflammatory dysfunction30.
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1.4 Inflammatory organ cross-talk in COPD and IBD

It is widely accepted that secondary organ disease occurs in both COPD and IBD 31–37. 

There is much recent clinical interest in intestinal manifestations of COPD and an increasing 

number of studies have highlighted the prevalence of pulmonary inflammation in IBD. At an 

epidemiological level there is a strong association between the incidence of COPD and 

CD38–40. A population-based cohort study performed by Ekbom et al., showed that the risk 

of CD in COPD sufferers was 2.72 times higher than in healthy controls and greater than the 

risk reported for smoking alone39. There is also a familial risk factor, with an increased risk 

of CD among first-degree blood relatives of COPD sufferers, although shared environmental 

factors may account for this. Specific intestinal manifestations of COPD include atrophic 

gastritis and nutritional absorption deficiency in the small intestine34, 41.

Conversely, COPD has been shown to be a significant mortality factor among CD 

sufferers38, 40, with standardised mortality ratios of 2.5–3.5 for COPD in the CD population. 

Kuzela et al., demonstrated a high incidence of abnormal pulmonary function in both CD 

and UC patients, despite a lack of radiological abnormalities42. Similar findings by Tzanakis 

et al., led them to propose that patients suffering from IBD should undergo pulmonary 

evaluation including physical examination, chest X-ray and pulmonary function testing43–45. 

Black et al., performed a literature survey that identified 55 articles citing thoracic disorders 

in IBD patients, with large airway involvement accounting for 39% of these associations33. 

Three more specific studies of randomly selected IBD patients showed incidence rates of 

pulmonary organ involvement at 44%46, 48%47 and 50%48. The symptoms manifested as 

interstitial lung disease, increased numbers of alveolar lymphocytes and a reduction in the 

diffusion capacity of the lung. Pulmonary involvement was more likely in UC, but was still 

significant in CD.

Hence there is a clear but undefined link between inflammatory diseases in the respiratory 

and intestinal systems. While the associations have been clearly identified in the clinical 

literature, there have been few basic research studies that have investigated the mechanisms 

of the inflammatory cross-talk involved.

2. Common risk factors in COPD and IBD

COPD and IBD are multifactorial diseases and share many aspects of the classical “triad” of 

risk factors; environmental factors, genetic susceptibility and microbial involvement. In 

addition, both conditions exhibit clear signs of immunological dysfunction in their 

pathologies. However, while smoke or particulate inhalation is a critical environmental 

factor for COPD, the corresponding factors for IBD are ill-defined. Conversely, although 

there is a clear link between the intestinal microbiome and IBD, the potential of an intrinsic 

lung microbiome as a risk factor in COPD has only recently emerged.

2.1 Smoking as a risk factor for COPD and IBD

Cigarette smoking is the single most important risk factor in COPD. Approximately 80% of 

people with COPD are past or present smokers. Toxins and particulate matter in inhaled 

smoke induce acute inflammation in the airways. With repeated insult, inflammation 

becomes chronic and damages the airway epithelium and lung tissue49–51. Eventually this 
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leads to remodelling of the respiratory epithelium, emphysema and chronic disease. 

However, only between 15–50% of all smokers develop COPD, indicating that smoke 

inhalation alone is not sufficient to induce disease52, 53 and that other risk factors are likely 

contribute to the development of COPD. Twin and familial studies have suggested the 

involvement of genetic factors, with first-degree relatives of COPD sufferers at increased 

risk54, 55.

Smoking is also a risk factor for IBD and significantly increases the risk of developing CD 

by 3-fold56–60. In contrast, and surprisingly, the prevalence of UC among smokers is low, 

with smoking alleviating symptoms of disease60, 61. This is exemplified by familial studies 

of siblings who are genetically susceptible to IBD. In these studies smokers were shown to 

be more likely to develop CD and non-smokers to develop UC62. Nevertheless, ex-smokers 

appear to be at increased risk of UC than those who have never smoked63–65.

The issue is further complicated when incidences of smokers and IBD are correlated as a 

whole. Eastern countries tend to have a much higher smoking rate than western countries66, 

yet western countries have a higher incidence of CD, but not UC compared to eastern 

countries67, 68. The lack of epidemiological correlation between smoking and CD incidence 

in the east-west divide suggests that, like COPD, smoking by itself is not sufficient to induce 

IBD. Studies in animal models of CD-like colitis have demonstrated that smoke-exposure 

exacerbates existing colitis in wildtype animals69–71. This suggests that smoking can 

augment existing mucosal inflammation, although no-consensus on mechanism has been 

achieved. Thus, while smoking has an obvious impact on both respiratory and 

gastrointestinal health, the nature of these phenomena are poorly understood.

2.2 Genetic risk of COPD and IBD

COPD and IBD have known genetic risk factors. To date, four genetic risk factors have been 

formally identified for COPD. Deficiency of α1 anti-trypsin (A1AT), an enzyme and a 

serum trypsin inhibitor that protects against protease remodelling in the airway, accounts for 

2% of COPD in the population72, 73. Recently, genes for α-nicotinic acetylcholine receptor 

(CHRNA3/5)74, hedgehog-interacting protein (HHIP)75, 76 and iron regulatory protein 2 

(IREB2)77–79 have been shown to be potential susceptibility loci for COPD. However, 

functional endpoints have yet to be determined for how these genes influence the 

development of COPD.

Both CD and UC are known to have genetic risk factors, and both ethnic and familial 

associations have been shown55, 80, 81. Mutations in genes for nucleotide-binding 

oligomerization domain containing 2 (NOD2)82–84, autophagy-related protein 16-1 

(ATG16L1)85, 86, interleukin-23 receptor (IL23R)87, 88 and immunity-related guanosine-5’-

triphosphatase family M protein (IRGM89) have been shown to dramatically increase the 

risk of CD. A recent study has also identified a NOD2 mutation in COPD populations 

offering a possible link between this condition and CD90. These genes code for proteins 

which control responses to infection at the intestinal mucosa and regulate autophagy. Thus a 

paradigm has developed that a defect in bacterial clearance in CD may be one of the key 

triggers for disease onset. Polymorphisms of human leukocyte antigen (HLA) class II genes 

also have a strong association with UC, suggesting that lymphocyte regulation is an 
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important factor in its development91, 92. Recent studies have made substantial progress in 

understanding gene associations with UC. Among the new susceptibility loci identified are 

laminin subunit beta-1 (LAMB1)93, extracellular matrix protein 1 (ECM1)94, hepatocyte 

nuclear factor 4 alpha (HNF4A)93 and Cadherin-1 and -3 (CDH1 and 3)93. These genes are 

involved in maintaining epithelial barrier integrity81, suggesting that a dysfunction in the 

epithelial barrier may predispose to UC.

It is possible that genetic risk factors may also contribute to the association between COPD 

and IBD. HHIP is also important in the development of the intestinal crypt axis95, and 

further studies are required to identify whether this gene contributes to disease overlap 

between COPD and IBD. The diversity of gene susceptibility loci for both COPD and IBD 

suggests that susceptibility to these conditions may involve multiple genes and alleles that 

couple with environmental triggers to induce disease in some individuals.

2.3 Disruption of the microbiome

Bacterial colonization of the lower respiratory tract, although once controversial, is now 

known to influence the pathogenesis of COPD96, 97. The controversy was due to the 

classical view, borne largely from culture-based studies, of healthy lungs as a sterile 

environment98, 99. Advances in culture-independent techniques for microbial analysis have 

shown that the healthy lung plays host to its own microbiome, which changes significantly 

during disease100, 101. Nevertheless, the precise role of the lung microbiome in COPD 

pathogenesis and the mechanisms that underpin infection-induced COPD exacerbations are 

poorly understood97.

It is also known that changes in the intestinal microbiome are associated with IBD30, 102, 103, 

however again the nature of the shift in commensal populations is not well established. 

Indeed, it is certain that the microbiome contributes to both the initial inflammation and 

chronic nature of IBD, but it is unclear if commensals are the initiating factor104. Regardless 

of the role in the initiation of IBD, chronic inflammation contributes to a loss of diversity in 

the microbiome, which appears to perpetuate the disease102, 104, 105. In both COPD and IBD 

the microbiome of the lung and intestine have changes in the dominant species and a 

reduction in diversity106, without decreases in microbial numbers107. Whether these changes 

are a mechanism or consequence of inflammation is not understood, but clearly a healthy 

microbiome is important to both respiratory and gastrointestinal health.

2.4 Epithelial barrier dysfunction

Maintenance of epithelial barrier function is critical for maintaining the healthy state of the 

respiratory and gastrointestinal mucosa. This is because the epithelial barrier separates the 

interstitium and underlying tissues from the milieu of antigenic material in the mucosal 

lumen. Consequently, loss of barrier function as a result of mucosal inflammation 

contributes to the chronic nature of these conditions, although it is not yet understood if loss 

of function is a causative factor or a consequence of disease. COPD patients are particularly 

susceptible to bronchitis (inflammation of the bronchial mucosa), which develops as smoke 

exposure damages the airway epithelial barrier. Shaykhiev et al., have shown that smoking 

leads to down-regulation of genes coding for tight junction and adherence proteins, which 
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was more pronounced in smokers with COPD108. In vitro studies examining the effect of 

cigarette smoke extract on primary bronchial epithelial cells have shown that the 

endogenous protease calpain, mediates degradation of tight junction complexes109. Thus, 

smoking, the major environmental risk factor for COPD, promotes the dysregulation of the 

pulmonary epithelial barrier.

Epithelial barrier dysfunction is a common feature of IBD110. However, although this is well 

established, like COPD, it is unknown if barrier dysfunction is a causative or consequential 

factor111, 112. Certainly, in IBD, increased epithelial permeability promotes the progression 

of chronic inflammation. Soderholm et al., demonstrated that the epithelial tight junctions of 

non-inflamed intestinal tissue from CD patients were more susceptible to breakdown upon 

luminal antigenic stimulation113. Epithelial breakdown allows the establishment of invasive 

bacterial infections, which are more characteristic of CD than UC114. However, both UC 

and CD patients have high IgG titres against intestinal microbes115, and both diseases show 

histopathologic evidence for the loss of tight-junctional integrity 116–118, suggesting that 

epithelial dysfunction is important in both conditions.

2.5 Pattern recognition receptors (PRRs)

PRRs are a family of highly conserved proteins that are expressed by cells of the innate 

immune system. They recognize components termed pattern associated molecular patterns 

(PAMPs) of microorganisms, cellular stress signals and damaged tissue. They may be 

membrane-bound or cytoplasmic and, when activated, induce the production and secretion 

of inflammatory mediators and signalling molecules. Two PRR families known to be 

important in the mucosal inflammatory response are the cytoplasmic NOD family of 

receptors and the membrane-bound Toll-like receptor (TLR) family119–121.

COPD patients are known to be at an increased risk of pulmonary infection, leading to 

inflammatory exacerbations of their disease, however the mechanisms that underlie this 

increased risk are not well understood122. Kinose et al., have recently identified increases in 

the prevalence of the NOD2 rs1077861 single nucleotide polymorphism (SNP) in COPD 

patients90. NOD2 recognizes muramyl dipeptide (MDP), an element of peptidoglycan, 

which is an important component of the cell wall of virtually all bacteria. This SNP causes a 

conformational change in NOD2 and leads to a series of downstream interactions that 

culminate in NFκB activation and an enhanced inflammatory cytokine response upon 

stimulation. Although baseline NOD2 expression was unaltered in COPD patients, the SNP 

was associated with increased COPD disease severity measured by reduced lung function90. 

The mechanism for the involvement of the SNP in COPD pathology has yet to be fully 

characterized.

NOD2 is also strongly associated with CD, whereby a defect in NOD2 signalling leads to 

impaired epithelial barrier function, increased IL-1β and an overcompensating TLR2 

response, and promotes increases in serum IL-12120, 123. NOD2 mutations are present in 

15% of the CD population and a NOD2 SNP has recently been associated with smoking and 

CD124. Although Kinose et al., did not examine TLR2 or IL-12 in the COPD study, IL-12 

has been shown to be associated with increased CD8 cytotoxic T cell and natural killer (NK) 

cell activation in COPD patients and mouse models125, 126, although whether this is related 
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to NOD2 polymorphisms, requires further investigation. NOD2 may therefore be a common 

link between COPD and CD, with polymorphisms identified in COPD and CD populations, 

including an association with smoking and CD.

TLRs that recognize viral and bacterial proteins maintain mucosal homeostasis, and genetic 

varients of TLRs have been identified in COPD and IBD121, 127–130. Certainly, infection 

plays a prominent role in COPD pathogenesis and TLR2, which recognises a range of 

bacterial and yeast proteins, has reduced expression and responsiveness to LPS in alveolar 

macrophages from COPD patients and smokers131. This suggests that there is a defect in the 

mucosal innate response in COPD. Conversely, TLR2 was shown to be upregulated in 

peripheral blood monocytes from COPD patients compared to healthy controls128, perhaps 

indicating the presence of systemic inflammation in these patients. While certain TLR2 

polymorphisms are linked with increased infection, they do not appear to be associated with 

COPD132. Thus the exact nature of and defects of TLR2 responses in COPD remain unclear. 

TLR4, which recognizes LPS, promotes COPD pathogenesis, although the pathways 

involved appear to be complex130. Investigation of murine models indicates that TLR4 is 

involved in the development of smoke-induced inflammatory responses133. This 

inflammatory response was driven by IL-1β secretion from macrophages and neutrophil 

recruitment to lung tissue. Smoke exposure also drives TLR4-dependent IL-8 production in 

monocyte-derived macrophages134. In both of these studies, smoke-induced TLR4 

activation was independent of LPS.

Both TLR2 and TLR4 were found to be induced in the colonic mucosa of pediatric IBD 

patients135. Furthermore, Canto et al., identified an increase in TLR2 expression on 

peripheral blood monocytes, which was associated with elevated circulating TNF-α 

concentrations in active UC and CD136. This suggests that, like COPD, systemic 

inflammation may be involved is IBD pathogenesis. The D299G and T399I SNPs of TLR4 

have been shown to be associated with both UC and CD137–139, while T399I has also been 

identified in COPD patients140, suggesting a possible common link. While the functional 

consequences of these gene variants are not yet fully appreciated, it is known that 

inflammatory cytokine signalling results in increased TLR4 expression on macrophages 

from the intestinal epithelium and lamina propria in both UC and CD resulting in increased 

responsiveness to LPS141, 142. Thus, TLR4 may play a common role in mucosal 

inflammatory disease whereby an inflammatory insult coupled with TLR4 gene variations 

results in hypersensitivity to LPS and an exaggerated immune response in the lung or 

intestine.

3. Potential mechanisms of organ cross-talk

Despite the similarities in the physiology of the respiratory and gastrointestinal mucosal 

organs, the common risk factors involved in the development of COPD and IBD and the 

incidences of inflammatory cross-talk between the two organs in disease, no mechanism has 

been identified for pulmonary-intestinal organ cross-talk. While the respiratory and 

gastrointestinal tracts both share components of the common mucosal immune system, the 

pathways involved in cross-talk may be multi-factorial, like COPD and IBD themselves 

(Figure 1).
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3.1 Protease regulation in COPD and IBD

There is evidence that dysregulation of protease activity may play a role in both COPD and 

IBD. Increased levels of the proteases that break down connective tissue components have 

been identified in COPD patients and modelled in animals143. Of particular interest are the 

matrix metalloproteinase (MMP) family of proteases, which play a role in the digestion of 

collagen, elastin, fibronectin and gelatin, key components in mucosal structural integrity144. 

Increased levels of epithelial and leukocyte MMP-2, -9 and -12 have been associated with 

the pathogenesis of COPD143, 145, 146 and IBD147–150, which may contribute to a “runaway 

remodelling” process.

The role of A1AT in COPD is established, however the prevalence of A1AT in IBD is 

debatable. A1AT neutralizes proteases involved in tissue remodelling, such as neutrophil 

elastase151 and MMP-12152. Deficiencies in A1AT production promotes extensive tissue 

damage during mucosal inflammation as the tissue remodelling process progresses 

unchecked. Deficiency of A1AT leads to the development of emphysema and COPD153, 154. 

Because of its role in the remodelling of inflamed tissue, faecal A1AT levels are commonly 

used as a marker for disease severity in CD patients155, 156. This suggests that lack of A1AT 

is does not promote the development of CD. While some studies have suggested higher 

levels of A1AT in UC patients157, 158, there is a higher prevalence of the allele linked to 

A1AT deficiency (PiZ) among the UC population157 and UC patients with this allele 

develop more severe forms of colitis158. Further work is required to address this divergence.

3.2 Immune cell homing and systemic factors

Both COPD and IBD are considered to be systemic inflammatory diseases and peripheral 

lymphocyte activity may contribute to pathogenesis36, 159–162. During inflammation, the 

bronchus associated lymphoid tissue (BALT) regulates lymphocyte trafficking from lung 

tissue through the general circulation18. This mirrors the role of the gut associated lymphoid 

tissue (GALT) and both lung and intestinal lymphocytes migrate to other mucosal sites as 

part of the common mucosal immune system163. It is possible that this trafficking, while 

functioning primarily as a common host mucosal defence, may be responsible for extra-

organ inflammation associated with COPD and IBD.

In the healthy state, lymphocytes continuously migrate through the circulatory system, 

entering and exiting the tissue in response to antigen exposure. In order to control trafficking 

of lymphocytes through tissues, these cells express unique homing receptors, which are 

specific for corresponding ligands on their target tissues. Thus, through a combination of 

homing molecules and specific receptor-ligand interactions, lymphocytes will return to their 

tissue of origin during an immune response164, 165. The subtype and phenotype of 

circulating lymphocytes in COPD patients have not been well characterised159. However, 

there is evidence of abnormal function in peripheral lymphocytes that may contribute to 

extra-pulmonary disease in COPD patients. Sauleda et al., showed increased cytochrome 

oxidase (CytOx) activity in the circulating lymphocytes of COPD patients, which correlated 

with increased CytOx detected in wasting skeletal muscle that is commonly associated with 

COPD166. Interestingly, this increased oxidative response in circulating lymphocytes is also 
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observed in other chronic inflammatory diseases, such as asthma and rheumatoid arthritis, 

but whether these same responses occur in IBD is unknown.

For IBD patients the selectivity of lymphocyte-endothelial interaction is lost. Salmi et al., 

showed that in IBD patients, the expression of homing receptors in intestinal lymphocytes 

did not confer tissue specificity167. These altered homing properties may contribute to the 

extra-intestinal manifestations of IBD. It is known that gut-derived lymphocytes possess the 

capacity to bind to synovial168 and hepatic169 tissue, possibly accounting for the 

manifestations of IBD observed in these organs. This mis-homing of lymphocytes is thought 

to contribute to ocular and dermatological extra-intestinal manifestations of IBD165. 

Whether this same phenomenon contributes to the lung pathologies observed in IBD is 

unknown. Increased lymphocyte populations have been observed in the BAL of IBD 

patients170, 171 and analysis of the sputum of IBD patients showed that 65% had an 

increased CD4/CD8 T cell ratio in lung tissue172. Whether this represents a further example 

of lymphocyte mis-homing involved in the pulmonary manifestations of IBD has yet to be 

confirmed.

It is possible that the inhalation of smoke affects gut lymphocyte homing and promotes an 

inappropriate immune response. Smoke exposure is known to affect T cell trafficking 

through altered chemotactic chemokine levels173, 174. Smoke inhalation also appears to 

affect the homing properties and maturation of myeloid dendritic cells (mDCs)175–178, 

which are key antigen presenting cells in mucosal immune responses. The result is a rapid 

accumulation of mDCs in the airways of smokers175, which may be a result of a reduced 

capacity of mDCs to migrate to the lymph node175, 176. A recent animal study has similarly 

shown that smoke inhalation results in the accumulation of DCs in the intestinal Peyer’s 

patches of wildtype mice, although unlike the airways, this does not seem to be dependent 

on changes in expression of the DC homing molecule CCR6179. The increase in DCs was 

accompanied by a similar accumulation of CD4+ T cells and an apparent increase in 

apoptosis of the cells overlying the follicle-associated epithelial (FAE) tissue of the 

intestine.

This loss in epithelial barrier, may lead to increased antigen presentation and promote an 

intestinal inflammatory response. A caveat to this study was the use of a whole body smoke 

exposure model, which may not induce the same physiological consequence as inhaled 

smoke. Erosion of the epithelial layer overlying the FAE has been observed in CD patient 

biopsies180. While no data on smoking-status of these patients exists, smoke-induced 

epithelial apoptosis is one possible mechanism for the development of these erosions. Thus 

smoking may induce an overall increase in antigenic presentation in the intestines, which 

may contribute to IBD pathogenesis.

Circulating TNF-α has been strongly implicated in co-morbidities associated with COPD52 

and plays a central role in the progression of CD181. While, anti-TNF therapies do not 

appear to provide therapeutic relief in COPD52, they have been relatively successful for 

inducing remission in CD182–184. Whether this is due to the nature of the damage in COPD 

or the efficacy of TNF therapy requires further investigation. Studies in transgenic mouse 

models that over-express TNF-α, the TNFΔARE mouse model, have shown the 
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development of spontaneous Crohn’s-like ileitis and proximal colitis185. While ocular and 

synovial involvement has been observed, there have been no reports of respiratory disease in 

this model. However, as with pulmonary manifestations of IBD, the airway involvement 

may be sub-clinical and histopathological and lung function studies may be required.

IL-6 plays a role in the acute phase response to inflammation and has been implicated in the 

pathogenesis of both COPD186, 187 and IBD188, 189. IL-6 is systemically elevated in patients 

with emphysema and has been shown be associated with apoptosis in pulmonary 

tissue186, 187. Importantly, IL-6, in combination with TGF-β, is a major factor in the 

development of the Th17 subset of T helper cells121, 190. Th17 cells are a distinct effector T 

cell subset that secrete IL-17A, IL-17F, IL-21, IL-22, IL-26, and TNF-α and promote 

neutrophil chemotaxis121, 191–194. Recent work has identified increased peripheral Th17 

cells in COPD patients190.

IL-6 and Th17 cells are also associated with both CD and UC189, 195, and high levels of IL-6 

and Th17 associated cytokines have been identified in both the blood189 and the inflamed 

and non-inflamed mucosa195, 196 of IBD patients. Moreover, blockade of the IL-6 pathway 

is therapeutic in animal models. The fact that IL-6 is elevated in the non-inflamed intestinal 

mucosa of IBD patients, without causing tissue damage, may suggest that a secondary tissue 

insult is required. As TGF-β regulates mucosal tissue remodelling and is strongly associated 

with COPD and IBD, it is conceivable, that increased systemic IL-6, coupled with TGF-β 

production at the mucosal surface (due to smoke damage in the lungs of an IBD patient or an 

intestinal infection in an COPD patients), may lead to the development of a Th17 polarized 

inflammatory response at a secondary organ.

IL-13 is likely to contribute to COPD progression197 and mutations in the IL-13 promoter 

may promote this pathogenesis 198. T-cell receptor-invariant natural killer cells (iNKCs) or 

DCs, activated by bacterial or viral infection in the airways, secrete IL-13, which activates 

macrophages 197, 199–201. This in turn causes further IL-13 production, which leads to 

STAT6-dependent goblet cell hyperplasia, smooth muscle hyper-responsiveness, and airway 

remodelling192, 202.

IL-13 also plays a role in the pathogenesis of UC, but does not appear to be involved in 

CD203. In UC it appears to be the aberrant stimulation of the immune response by the 

microbiome, that results in direct iNKC cytotoxic action on the epithelium and secretion of 

IL-13 driving epithelial barrier dysfunction and apoptosis, and the enhancement of NKC 

toxicity203, 204. Like COPD, STAT6 is an important mediator for the action of IL-13 on the 

epithelium205, and the STAT6 pathway is a potential therapeutic target in both conditions. 

Whether these pathways act systemically in COPD and IBD is unknown, although serum 

IL-13 is increased in COPD198, possibly driving aberrant NKT and macrophage responses 

across organs.

3.3 Interaction of the respiratory and intestinal microbiomes

COPD sufferers have an altered lung microbiome compared to healthy individuals, 

including “healthy” smokers106. This does not exclude the possibility that smoking 

influences the lung microbiome. Smoking has been shown to restrict the ability of alveolar 
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macrophages to phagocytose and kill bacteria206. This suggests that smoking may lead to a 

defect in immunoregulation of the lung microbiome. There is evidence that components of 

the enteric microflora, specifically Gram negative bacilli, may also make up a component of 

the lung microflora207, 208. These bacteria are resistant to cigarette smoke209 and may 

contribute to severe exacerbations of COPD208. Furthermore, inappropriate immune 

responses against intestinal microflora are widely accepted to be a critical factor in the 

ongoing inflammation associated with IBD. Thus there exists the possibility that the immune 

response against commensal microflora observed in IBD patients, may not be restricted to 

the gastrointestinal tract, but may also be directed towards enteric bacteria present in the 

lung microfora.

There have been no definitive studies on the effect of smoking on the respiratory or 

intestinal microbiome. This is especially surprising given cigarette smoke is known to 

selectively inhibit bacterial growth, favouring a Gram negative bacilli population209. It is 

possible that smoke-induced changes to the intestinal microbiome may promote the 

increased risk of IBD observed in COPD sufferers. There is growing interest in how diet and 

nutrition may influence the human microbiome and interplay with the immune system and 

ultimately human health210, 211. Faecal bacteriotherapy, whereby the microflora of a healthy 

patient is transplanted to a colic patient, has shown promise in case studies, as a treatment 

for UC105, 212, 213. This suggests that the composition of the microbiome plays an important 

role in the intestinal inflammation, and restoration of a “healthy microbiome” can promote 

remission of disease. While ultimately conjecture, it is conceivable that smoking may 

disrupt the “healthy microbiome” and therefore link, smoking and COPD to IBD. This could 

also account for the familial link of COPD and IBD observed by Ekbom et al214, since there 

is a familial link to the make-up of an individuals microbiome and genetics play a role in 

microbiome development215, 216.

3.4 Autoimmunity

There is some evidence to suggest that COPD has an autoimmune element which leads to 

disease progression and relapse217. Key to this concept are the observations that only some 

smokers develop COPD and that the clinical features of COPD continue to increase in 

severity even after the cessation of smoking. This suggests that ongoing immune responses 

occur against elements other than cigarette smoke. Smoke-induced emphysema has been 

shown to generate an autoimmune response against elastins144, 218. In this proposed model, 

exposure to smoke-antigens promotes an immune response that includes secretion of high 

levels of elastin proteases (elastases) from neutrophils and macrophages (eg. neutrophil 

elastase, MMP-9 and -12)219. The elastases degrade and fragment elastin proteins, to which 

the adaptive immune system mounts a response144. As elastin is a ubiquitous protein in 

mucosal tissue, an autoimmune response could lead to pathologies outside the lung, and may 

be a mechanism for intestinal pathologies associated with smoking.

Tzortzaki & Siafakas proposed that smoke-induced oxidative epithelial damage initiates the 

disease process in COPD through the initiation of autoimmune responses220. In their 

proposed model, oxidative DNA damage to epithelial cells leads to phenotypic changes and 

recognition of these cells as “non-self” by pulmonary DCs. This results in a loss of barrier 
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function as a T cell response is initiated against the epithelium. Such autoimmune responses 

may affect the intestinal epithelium, or may be driven by smoke exposure at the intestinal 

mucosa.

It is generally accepted that CD is a disease with an autoimmune component. The prevailing 

hypothesis for the development of CD is that an initial infection or insult leads to an 

inappropriate immune response against the intestinal mucosa and/or commensal bacterial 

population30, 57. This leads to the recurring cycles of chronic inflammation that characterise 

CD. UC also has a clear autoimmune element, albeit different to that of CD221, 222. Recent 

work has found that isoforms of human tropomyosin (hTM 1–5) are capable of inducing 

auto-antibodies and T cell responses in UC223. Autoimmunity would also explain some 

elements of organ cross-talk in inflammatory disease. Immune responses against bacteria or 

conserved mucosal protein epitopes of the pulmonary and gastrointestinal tracts may explain 

cross-organ inflammation in COPD and IBD. Expression of hTM on extra-intestinal organs 

may account for cross-organ inflammatory associations in UC, although hTM5, the 

trypomyosin with the strongest link to UC, has not been identified in lung tissue223.

4. Summary

COPD and IBD are driven by inflammatory processes, are systemic diseases and are 

epidemiologically linked. Given the consistent indications of the limited research to date, it 

is clear that comprehensive studies on the prevalence of intestinal involvement in COPD and 

pulmonary disease among IBD patients is required. The mechanisms that underpin the 

development of extra-organ inflammation in COPD and IBD patients are confounded by the 

complicated aetiologies of these conditions. Both conditions share environmental triggers 

and have similar immune and physiological involvement. However, the diversity of the 

mechanisms that may be involved in the development of each condition suggests that 

crosstalk in these diseases may be a multi-faceted process involving multiple pathways 

(Figure 1). Our understanding of this area is largely based on epidemiological and clinical 

observations and there is a need for basic research to elucidate the associations and 

mechanisms involved. A better understanding of the nature of organ cross-talk in COPD and 

IBD will contribute to the elucidation of the aetiologies of these conditions and may identify 

therapeutic strategies for mucosal inflammatory disease.
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Figure 1. 
Possible mechanisms of respiratory-gastrointestinal cross-talk include: overproduction of 

proteases during excessive inflammation, changes in immune cell function, including 

increases in cytochrome oxidase (CytOx) expressing lymphocytes and gut originating T cell 

mis-homing. Cigarette smoke exposure may play a role in organ cross-talk by affecting 

these processes, and/or by causing mis-homing of dendritic cells (DC) and epithelial cell 

apoptosis in respiratory or gastrointestinal tissues. Smoke exposure may also lead to changes 

in the microbiome, promoting growth of enteric bacteria in the lung or altering the 

microbiome in the intestine that induces inflammatory responses. Inflammation may lead to 

the production of autoimmune antibodies against the ubiquitous mucosal protein elastin or 

autoimmune responses against antigens produced during smoke-induced oxidative DNA 

damage. Systemic IL-6, in conjunction with localized TGF-β, may drive cross-organ Th17 

polarized inflammation. Systemic IL-13 may drive aberrant NKT and macrophage responses 

across organs.
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