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Dynamics of the fecal 
microbiome and antimicrobial 
resistome in commercial piglets 
during the weaning period
Prapat Suriyaphol1,8, Jimmy Ka Ho Chiu2,8, Nathamon Yimpring3, Paiboon Tunsagool4, 
Wuttichai Mhuantong5, Rungtip Chuanchuen6, Irina Bessarab7, Rohan B. H. Williams7, 
Rick Twee‑Hee Ong2* & Gunnaporn Suriyaphol3*

This study aimed to characterize the alteration of the fecal microbiome and antimicrobial resistance 
(AMR) determinants in 24 piglets at day 3 pre-weaning (D. − 3), weaning day (D.0), days 3 (D.3) and 8 
post-weaning (D.8), using whole-genome shotgun sequencing. Distinct clusters of microbiomes and 
AMR determinants were observed at D.8 when Prevotella (20.9%) was the major genus, whereas at 
D. − 3–D.3, Alistipes (6.9–12.7%) and Bacteroides (5.2–8.5%) were the major genera. Lactobacillus and 
Escherichia were notably observed at D. − 3 (1.2%) and D. − 3–D.3 (0.2–0.4%), respectively. For AMR, a 
distinct cluster of AMR determinants was observed at D.8, mainly conferring resistance to macrolide–
lincosamide–streptogramin (mefA), β-lactam (cfxA6 and aci1) and phenicol (rlmN). In contrast, at 
D. − 3–D.3, a high abundance of determinants with aminoglycoside (AMG) (sat, aac(6’)-aph(2’’), aadA 
and acrF), β-lactam (fus-1, cepA and mrdA), multidrug resistance (MDR) (gadW, mdtE, emrA, evgS, 
tolC and mdtB), phenicol (catB4 and cmlA4), and sulfonamide patterns (sul3) was observed. Canonical 
correlation analysis (CCA) plot associated Escherichia coli with aac(6’)-aph(2’’), emrA, mdtB, catB4 
and cmlA4 at D. − 3, D.0 and/or D.3 whereas at D.8 associations between Prevotella and mefA, cfxA6 
and aci1 were identified. The weaning age and diet factor played an important role in the microbial 
community composition.

During the weaning period, piglets face several stress factors owing to either physiological changes or farm 
management. Physiological changes include (1) loss of protective sow’s milk immune cells, lactoferrin and 
lysozyme, (2) the presence of probiotic lactic acid bacteria, and (3) the shrinkage of villi in the small intestine, 
which reduces nutrient digestion and absorption1–3. The new environment due to farm management includes 
being transferred from a farrowing pen to an early-weaning unit, being mixed with unfamiliar pigs, and feed 
changes from highly digestible milk protein and sugars to creep feed and complex solid feed4. All of these factors 
can impair immune functions and lead to post-weaning diarrhoea syndrome (PWDS), resulting in diarrhoea, 
dehydration, depression, inappetence and weight loss. PWDS is usually associated with enterotoxigenic Escheri-
chia coli strains (ETEC)5. The severe enteric infections might lead to the overuse of antibiotics. Imbalance of the 
normal gut microbiota in pigs has been reported to be associated with enteric diseases such as PWD and with 
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the flare up of pathogens even not in the gastrointestinal tract system such as Mycoplasma hyopneumoniae6,7. 
The enhancement of gut microbiome ability to increase disease resistance in pigs and reduce antibiotic use 
are the major challenges in pig industry. Several nonantibiotic alternatives have been applied to decrease gut 
microbiota dysbiosis in pig industry such as zinc supplements, essential oils, short- and medium-chain organic 
acids, prebiotics and probiotics8–11.

In fact, several probiotic microorganisms are commonly used to inhibit bacterial infection such as Lactobacil-
lus plantarum, Bacillus licheniformis and Bacillus subtilis. L. platarum, normal flora in porcine gastrointestinal 
tracts, has been reported to induce endogenous antimicrobial peptide synthesis in weaning piglets and improve 
pig growth and pork quality12,13. Pigs that received a probiotic-containing Bacillus licheniformis were shown 
to reduce porcine epidemic diarrhea virus infected vero cells14. In addition, a probiotic‐containing Bacillus 
licheniformis and Bacillus subtilis spores could improve productive performance and carcass quality in pigs15. 
However, probiotic microorganisms such as Enterococcus faecium and B. subtilis might serve as a reservoir for 
antimicrobial resistance (AMR) determinants16,17. Subtherapeutic antibiotics have been widely used to improve 
growth performance and food efficiency of weaned piglets. Low-dose chlortetracycline (0.5–1 g/sow daily) was 
used to increase breeding, conception rate, farrowing rates and litter size in sows18. Nonetheless, antimicrobial 
growth promoters can promote AMR strains of both Gram-positive and Gram-negative bacteria19. The utiliza-
tion of antibiotics as growth promoters has been totally banned in the European Union since January 1, 200620. 
In Thailand, utilization of antibiotics as growth promoters in food animals is banned21,22. In fact, antimicrobial 
prophylaxis at therapeutic doses has been generally used on commercial farms for a short time period to treat 
and prevent bacterial infection during parturition and weaning. These chemicals might cause antibiotic selective 
pressure and lead to bacterial genome evolution, allowing AMR variants to survive and multiply and disturbing 
gut microbial balance23. AMR of several antimicrobials has been reported in weaned pigs (from 0 to 28 days 
post-weaning), receiving chlortetracycline at a therapeutic dose and penicillin at a metaphylactic dose24. Resist-
ant bacteria play an important role not only in pig health management but also in human health as AMR could 
be passed to human via direct contact or as a consumer25. Since environment can also be a reservoir for AMR 
resistome and maintain AMR genes, the ‘One Health’ approach to AMR surveillance in humans, animals and 
environments is required, not only at the laboratory level but also at the epidemiological, clinical and popula-
tion levels26.

The objective of this study is to characterize the effect of weaning on the alteration of gut microbiome com-
munities and AMR determinants in 24 commercial piglets (Landrace × Large White × Duroc Jersey) at day 3 pre-
weaning (D. − 3), weaning day (D.0), days 3 (D.3) and 8 post-weaning (D.8) from 3 sows, using whole-genome 
shotgun sequencing.

Results
Microbiome diversity and abundance.  The Shannon diversity index showed no statistical difference of 
the microbiomes across weaning ages (Supplementary Fig. S1). Across the entire cohort of samples, the relative 
abundance of Bacteroidetes and Firmicutes constituted approximately 80% of all bacteria phyla (Fig. 1, Table 1). 
Bacterial beta diversity demonstrated a major shift in the gut bacterial community during suckling–weaning 
transition. PCoA of taxonomy demonstrated that community composition on D.8 (post-weaning) differed from 
that of the other sampling days (Fig. 2A). Adonis confirmed that the community composition was predomi-

Figure 1.   Stacked bar plot showing taxonomic relative abundance distribution of fecal microbial communities 
at the phylum level of piglets, with samples sub-categorized by maternal litter and age at day 3 pre-weaning 
(D. − 3), weaning day (D.0), days 3 (D.3) and 8 post-weaning (D.8).
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nantly associated with weaning age and diet (P < 0.01) (Table 2). Relative abundance at the genus level is shown 
in Table 3 and Supplementary Table S1. Alistipes was markedly high at D. − 3, whereas Bacteroides and Parabac-
teroides were prominently enriched at D. − 3–D.3 (P < 0.05). Prevotella and Treponema were more abundant at 
D.8 compared with D. − 3–D.3 (P < 0.05).

AMR determinant diversity and abundance.  The top three abundant antimicrobial drug resistance 
patterns were aminoglycoside (AMG), tetracycline and macrolide-lincosamide-streptogramin (MLS), followed 
by multidrug resistance (MDR), β-lactam and phenicols (Table 4). D.8 showed a distinct PCoA cluster from 
other ages (Fig. 2B). A high abundance of AMR determinants observed on at least 2 days during D. − 3–D.3 
conferred resistance to AMG, including sat, aac(6′)-aph(2″), aadA and acrF, resistance to β-lactam, including 
fus-1 (oxa-85), cepA and mrdA, resistance to MDR, including gadW, mdtE, emrA, evgS, tolC and mdtB, resist-
ance to phenicol, including catB4 and cmlA4, and resistance to sulfonamide, including sul3. In contrast, a higher 

Table 1.   The relative abundance of phyla in piglets at day 3 pre-weaning (D. − 3), weaning day (D.0), days 3 
(D.3) and 8 post-weaning (D.8). a,b,c A significant difference in the same row at P < 0.05.

Phyla

Relative frequency (%) ± SD

D. − 3 D.0 D.3 D.8

Bacteroidetes 46.01 ± 13.60ab 37.88 ± 12.72ac 31.72 ± 11.22c 49.73 ± 14.34b

Firmicutes 35.38 ± 13.77ab 40.37 ± 11.77ac 47.20 ± 8.90c 30.46 ± 10.60b

Proteobacteria 3.63 ± 3.60a 3.08 ± 1.73a 3.12 ± 2.23a 1.54 ± 1.12b

Synergistetes 1.22 ± 2.52ab 0.47 ± 0.77a 0.98 ± 1.02b 0.21 ± 0.55c

Spirochaetes 0.62 ± 0.97a 2.16 ± 2.66b 1.54 ± 1.70b 3.07 ± 2.12c

Fusobacteria 0.57 ± 1.28ab 0.61 ± 1.39a 0.06 ± 0.06a 0.03 ± 0.04b

Chlamydiae 0.25 ± 0.23a 0.40 ± 0.49a 0.34 ± 0.43a 0.58 ± 0.33b

Lentisphaerae 0.24 ± 0.22a 0.44 ± 0.83a 0.19 ± 0.15a 0.04 ± 0.05b

Actinobacteria 0.19 ± 0.15a 0.32 ± 0.42a 0.27 ± 0.22b 0.20 ± 0.07a

Others 0.18 ± 0.02a 0.22 ± 0.02ab 0.24 ± 0.02ab 0.34 ± 0.08b

Unclassified phylum 11.52 ± 2.90a 13.85 ± 3.06b 14.16 ± 3.11b 13.52 ± 2.10b

Unknown 0.20 ± 0.07a 0.18 ± 0.06a 0.18 ± 0.06a 0.26 ± 0.05b

Figure 2.   Principal coordinates analysis (PCoA) plot of antimicrobial resistance determinants obtained from 
piglets at day 3 pre-weaning (D. − 3), weaning day (D.0), days 3 (D.3) and 8 post-weaning (D.8). The oval shows 
a D.8 sample group that is separated from. D. − 3–D.3 groups. Taxonomic abundance (A). AMR gene abundance 
(B). Beta diversity group significance: P value = 0.001, PERMANOVA, 999 permutations.

Table 2.   Adonis results for gut microbiome in piglets from day 3 pre-weaning to day 8 post-weaning.

Groups R2-distances P values

Weaning age and diet 0.243 0.001

Litter 0.035 0.058

Piglet 0.187 0.998
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abundance of AMR determinants conferring resistance to MLS, mefA, resistance to β-lactam, cfxA6 and aci1, 
and resistance to phenicols, rlmN, was observed at D.8 (Supplementary Table S2).

Inter‑relationships between abundance profiles of member taxa and AMR sequence.  Accord-
ing to the CCA plots, highly abundant AMR genes possibly correlated with E. coli on at least 2 days during 
D. − 3–D.3 compared with D.8, including AMG (aac(6’)-aph(2’’)), MDR (emrA and mdtB), and phenicol (cat4B 
and cmlA4) resistance patterns. In contrast, AMR gene abundances possibly correlated with Prevotella at D.8 
were in MLS (mefA) and β-lactam (cfxA6 and aci1) resistance patterns (Fig. 3, Supplementary Table S3).

Discussion
This study revealed the population of fecal microbes and AMR determinants in commercial piglets aged 
21–32 days. The Shannon diversity index is used to measure species richness and evenness. Divergent data 
of alpha diversity have been reported in piglets during weaning period. Increased indices were demonstrated 
in pigs at 10 and 21 days after weaning, compared with the weaning day and 10 days before the weaning day, 
showing the mature gut microbiome27. However, early weaning could lead to decreased alpha diversity, possibly 
due to weaning stress28. In our study, the weaning day was the same as Chen et al.27, however, we did not find 
significant differences in the Shannon diversity index among groups (days). This is possibly due to different 
feeding schedules, breeds and farm environments between the studies, and other factors may also affect the 
alpha diversity changes. However, we found that the microbial community of piglets at D.8 significantly dif-
fered from earlier sampling dates, probably as the consequence of physiological changes and post-weaning farm 
management practices. Moreover, the PERMANOVA results revealed that the weaning age and diet played an 
important role in gut microbiome populations (Table 2). Alistipes was prominently present at D. − 3 followed by 

Table 3.   Relative abundances of the 10 most abundant genera in each piglet group at day 3 pre-weaning 
(D. − 3), weaning day (D.0), days 3 (D.3) and 8 post-weaning (D.8). a,b,c A significant difference in the same row 
at P < 0.05.

Taxonomy

Relative frequency (%) ± SD

D. − 3 D.0 D.3 D.8

Alistipes 12.69 ± 9.99a 6.86 ± 4.90ab 7.04 ± 7.30b 6.01 ± 6.13b

Bacteroides 8.54 ± 6.66a 8.23 ± 5.68a 5.22 ± 2.97a 2.73 ± 0.79b

Prevotella 7.18 ± 7.32a 6.96 ± 6.31a 3.63 ± 2.00a 20.88 ± 11.28b

Clostridium 4.68 ± 4.51ab 7.98 ± 5.38a 6.84 ± 5.05a 2.84 ± 2.21b

Parabacteroides 1.20 ± 0.70a 1.20 ± 0.80a 2.73 ± 3.08b 0.37 ± 0.55c

Lactobacillus 1.17 ± 1.69a 0.22 ± 0.18b 0.34 ± 0.44b 0.96 ± 2.04ab

Eubacterium 0.84 ± 0.91a 0.48 ± 0.44ab 0.34 ± 0.30b 0.63 ± 0.33a

Pyramidobacter 0.83 ± 2.48a 0.25 ± 0.73a 0.13 ± 0.13a 0.02 ± 0.05b

Butyricimonas 0.81 ± 0.65ab 1.17 ± 1.40a 0.43 ± 0.33b 0.10 ± 0.08c

Phascolarctobacterium 0.57 ± 0.42a 0.73 ± 1.01a 0.26 ± 0.23b 0.61 ± 0.27a

Treponema 0.49 ± 0.78a 1.67 ± 2.42b 1.16 ± 1.32ab 2.64 ± 1.95c

Fusobacterium 0.48 ± 1.07ab 0.49 ± 1.09a 0.04 ± 0.05a 0.02 ± 0.04b

Oscillibacter 0.47 ± 0.33a 0.66 ± 0.39ab 0.54 ± 0.20a 0.82 ± 0.33b

Desulfovibrio 0.37 ± 0.24a 0.33 ± 0.17a 0.55 ± 0.34a 0.10 ± 0.08b

Faecalibacterium 0.23 ± 0.28a 0.26 ± 0.18ab 0.43 ± 0.48b 0.61 ± 0.36c

Table 4.   Percent of fragments per kilobase of exon model per million reads mapped (FPKM) of antimicrobial 
drug resistance patterns in piglets at day 3 pre-weaning (D. − 3), weaning day (D.0), days 3 (D.3) and 8 post-
weaning (D.8). a,b,c A significant difference in the same row at P < 0.05.

Antimicrobial drug resistance patterns

Relative frequency (%) ± SD

D. − 3 D.0 D.3 D.8

Aminoglycosides 33.33 ± 7.07a 36.37 ± 7.71ab 39.47 ± 5.48b 25.56 ± 7.46c

Tetracyclines 29.89 ± 7.03ab 28.77 ± 4.39 ab 28.74 ± 6.37a 30.94 ± 2.53b

Macrolide-Lincosamide-Streptogramin (MLS) 19.97 ± 4.28a 20.77 ± 4.64a 19.61 ± 4.21a 30.12 ± 6.02b

Multidrug resistance (MDR) 5.58 ± 5.54a 3.86 ± 3.45a 3.76 ± 4.15a 0.84 ± 1.37b

β-lactams 4.22 ± 2.71a 4.32 ± 2.44a 2.37 ± 1.05b 6.31 ± 2.73c

Phenicols 3.33 ± 1.88a 3.36 ± 1.29a 3.73 ± 1.49a 5.05 ± 1.65b

Sulfonamides 0.57 ± 0.56a 0.46 ± 0.47ab 0.23 ± 0.24b 0.07 ± 0.21c

Others 3.10 ± 1.82 2.09 ± 0.96 2.09 ± 1.21 1.11 ± 0.76
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Figure 3.   Canonical correlation analysis (CCA) plot showing the distribution of piglets at day 3 pre-weaning (D. − 3), weaning 
day (D.0), days 3 (D.3) and 8 post-weaning (D.8). Microbiome genera and antimicrobial resistance (AMR) genes according to 
corresponding antimicrobial drug resistance patterns. CCA plot showing inter-relationships between taxon abundance profiles and 
AMR sequences over all 96 samples (A). CCA plot of AMR genes corresponding to aminoglycoside drug resistance pattern (B). 
CCA plot of AMR genes corresponding to multidrug resistance pattern (C). CCA plot of AMR genes corresponding to phenicol 
drug resistance patterns (D). CCA plot of AMR genes corresponding to macrolide, lincosamide and streptogramin resistance (MLS) 
patterns (E). CCA plot of AMR genes corresponding to β-lactam resistance patterns (F). Blue circles indicate high abundant genes 
correlated with Escherichia or Prevotella. Red circles indicate Escherichia (G13) and Prevotella (G26). AMR genes (A) rpoB2 (2), parYR 
(47), tet(Q) (56), tet(32) (75), tet(O/W) (77), tet(W/32/O) (79), tet(W) (85), tet(O/W/O) (86), tet(W/N/W) (87), ABC transporter 
gene (157), aac(6’)-aph(2’’) (167), tet(40) (252), mefA (257), mef(En2) (267), cfxA6 (455), aad(6) (541), bifunctional aminoglycoside 
modifying enzyme gene (571), hygromycin-B kinase gene (526), aadE (658), isaE or putative spectomycin adenyltransferase 
gene (817), ermF (842), aphA3 (857), dam (919), sat4 (1160); Genus: Alistipes (G1), Anaeromassilibacillus (G2), Anaerotruncus 
(G3), Bacteroides (G4), Blautia (G5), Butyricicoccus (G6), Butyricimonas (G7), Chlamydia (G8), Cloacibacillus (G9), Clostridium 
(G10), Culturomica (G11), Desulfovibrio (G12), Escherichia (G13), Eubacterium (G14), Faecalibacterium (G15), Fibrobacter (G16), 
Flavonifractor (G17), Fusobacterium (G18), Intestinimonas (G19), Lachnoclostridium (G20), Lactobacillus (G21), Odoribacter (G22), 
Oscillibacter (G23), Parabacteroides (G24), Phascolarctobacterium (G25), Prevotella (G26), Pseudoflavonifractor (G27), Pyramidobacter 
(G28), Roseburia (G29), Sphaerochaeta (G30), Streptococcus (G31), Subdoligranulum (G32), Sutterella (G33), Treponema (G34), 
Veillonella (G35); Aminoglycoside resistance genes (B) aac(3) (A1), aac(6) (A2), aac(6) (A3), aac(6’)-aph(2’’) (A4), aacA4 (A5), 
aacC4 (A6), aad (A7), aadA15 (A8), aadA5 (A9), aadE (A10), aadE (A11), aadE (A12), aadK (A13), aadS (A14), acrD (A15), acrE 
(A16), acrF (A17), ant(6) (A18), ant(6) (A19), ant(9) (A20), aph(2) (A21), aph(2) (A22), aph(2) (A23), aph(3) (A24), envR (A25), hph 
(A26), kdpE (A27), neo (A28), npmA (A29), rmtF (A30), sat (A31), sat (A32), sph (A33), spw (A34), strA (A35), strB (A36); Multidrug 
resistance genes (C): acrA (M1), acrB (M2), baeS (M3), cmeA (M4), cmeB (M5), cmeC (M6), cpxA (M7), crp (M8), EB (M9), efrA 
(M10), emrA (M11), emrB (M12), emrK (M13), emrY (M14), evgA (M15), evgS (M16), gadW (M17), hns (M18), marA (M19), mdfA 
(M20), mdtA (M21), mdtB (M22), mdtC (M23), mdtE (M24), mdtF (M25), mdtG (M26), mdtH (M27), mdtK (M28), mdtM (M29), 
mef(En2) (M30), mefG (M31), mel (M32), mexF (M33), mprA (M34), msbA (M35), oqxB (M36), qacH (M37), smeB (M38), smeR 
(M39), taeA (M40), tlrC (M41), tolC (M42), yjcP (M43), yjcQ (M44), yjcR (M45), yojI (M46); Phenicol resistance genes (D): catB4 
(P4), cml (P7), cmlA4 (P8), rlmN (P12); MLS resistance genes (E) ABC (m1), ABC (m2), ereD (m3), erm (m4), erm (m5), erm2 (m6), 
erm33 (m7), erm35 (m8), erm47 (m9), ermA (m10), ermFS (m11), ermM (m12), ermQ (m13), linG (m14), lnuB (m15), lnuC (m16), 
lsaE (m17), macB (m18), mefA (m19), mefA (m20), mefB (m21), mefE (m22), mphA (m23), mphB (m24), mphE (m25), oleB (m26), 
satG (m27), srmB (m28), tlrC (m29); Beta-lactam resistance genes (F) aci1 (B1), ampC (B2), ampH (B3), bla (B4), bla (B5), bla (B6), 
bla (B7), blaCARB (B8), blaLAP (B9), blaOXA (B10), blaOXA (B11), blaOXA (B12), blaTEM (B13), blaVEB (B14), cblA (B15), cepA 
(B16), cfxA5 (B17), cfxA6 (B18), fus-1 (B19), mrdA (B20), ompK37 (B21).
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Bacteroides. Both are bile-tolerant bacteria hence they are capable of digesting high-fat diets such as sow milk, 
which has a higher fat content (7.5–10.1%) compared with cow’s milk (4.2%) or human milk (3.2–3.6%)29–32. 
Alistipes had been reported to produce sulfonolipids, which play an important role in cell signaling and mor-
phogenesis in animals, in mice fed with high-fat diets33. Bacteroides in infants were described to utilize human 
milk oligosaccharides (HMOs), bioactive components of milk that could not be completely digested by the host, 
using mucus-utilization pathways34. HMOs played several important roles in neonatal development, such as 
being prebiotics for gut microbiota and protecting the mucosal surface from pathogen binding, etc35. Similar to 
human milk, higher fucosylated compounds in porcine milk oligosaccharide were reported to be correlated with 
lower sialylated compounds at D.7 and D.14 of lactation compared with D.0 and a pre-colostrum period. The 
fucose consuming taxa containing genes encoding fucose-permease enzymes were also changed from Entero-
bacteriaceae in nursing pigs to Lactobacillaceae in weaned pigs36. Piglets are considered a good model for the 
study of human infant nutrition issues because of similar nutritional physiology such as a postnatal develop-
ment of intestinal microbiota, the effect of gut microbiota diversity in early life on immune systems, and milk 
oligosaccharides36,37. In addition, Bacteroides in the piglet fecal microbiome has been shown to contain large 
amounts of genes encoding key catalytic enzymes such as sialidases and beta-hexosaminidases, that could digest 
sow milk glycans38. Clostridium was the major genus at D.0 and D.3, whilst the predominantly polysaccharide-
degrading Prevotella was the major population at D.8. Soluble-fiber-degrading Treponema was also observed at 
higher abundance at D.8. Our results were similar to a previous report of Prevotella being markedly increased 
in weaned animals, supplanting the Bacteroides population38. The dynamic of the fecal microbiome population 
has been reported in antibiotic-free nursing and 7-day post-weaning piglets. Bacteroides was reported to be the 
most abundant microbe in nursing pigs, whereas in weaned piglets, Prevotella was enriched39. In our study, not 
only weaning age but diet was also shown to be associated with the microbial community composition. The same 
pre-starter (nursery) feed was provided throughout this study at the age of day 7–day 32 (D.8) (Table 5). After 
D.8, pigs would receive another feed formula of solid starter feed. Hence our diet factor that affected microbiota 
community was possibly a consequence from sow milk exclusion on the weaning day and more consumption 
of pre-starter feed. In the previous report of piglets receiving creep feed on D.14 and being weaned on D.28, age 
and diet were shown to play an important role in the bacterial community, with the most diversity at 21 days post 
weaning40. In general, during the weaning period, ETEC often flare up and cause diarrhea and other symptoms 
due to impaired immune functions. However, for the farms from which we collected fecal samples, diarrhea was 
rarely observed and E. coli was found to be lower at D.8, indicating good farm management, which was probably 
due to chlorination of drinking water for disinfection and the evaporative cooling housing system. Chlorination 
was shown to have a bactericidal effect on E. coli41. And in the housing equipped with evaporative cooling system, 
temperature and humidity of the housing are well controlled, leading to reduced heat stress and good health42. 
Lactobacillus was enriched at D. − 3 (1.17%). However, low amounts were observed at all ages (0.22–1.17%) 
despite being fed probiotics, containing Lactobacillus acidophilus and Lactobacillus plantarum, at postnatal D.1–3. 
According to a previous report, lactobacilli with probiotic potential were sensitive to several antibiotics used 
on the farms43. An antibiotic susceptibility test should be performed. On the other hand, low amounts of, or 
rare, probiotic microorganisms observed indicated that they did not serve as a reservoir for AMR determinants.

For the AMR patterns, the highest abundance of AMR determinants at D. − 3–D.3 conferred resistance to 
AMG, including the streptothricin acetyltransferase gene (sat) and aac(6’)-aph(2’’), encoding a bifunctional 
enzyme, AAC(6′)-APH(2"). Sat and aac(6’)-aph(2’’) encoded enzymes linked to the antibiotic inactivation 
mechanism by acetyltransferase. sat conferred resistance to streptothricin via acetylation of the drug44. Strep-
tothricin was not used on our farms but the other AMG, kanamycin, was intramuscularly injected into the 
sows on parturition day, and neomycin was mixed with feed for piglets at D.25–D.8. SAT has been shown to 
acetylate kanamycin and neomycin at lower levels than streptothricin45. From our study, high abundance of sat 
was observed at D.8, although lower than at D. − 3–D.3 (Supplementary Table S2). For aac(6′)-aph(2″), it was 
carried on transposons, causing AMG resistance not only in Gram-positive bacteria, but also in Gram-negative 
E. coli clinical isolates46. From the CCA plot in our study, we found correlation of aac(6’)-aph(2’’) with E. coli in 
the D. − 3–D.3 group (Fig. 3B).

The other group with increased AMR determinants at D. − 3, D.0 and/or D.3, although at a lesser abundance 
than the AMG, conferred an MDR pattern such as gadW, mdtE, emrA, evgS, tolC and mdtB (Supplementary 
Table S2). emrA encodes the EmrA periplasmic adaptor of a multidrug efflux pump belonging to the major 
facilitator superfamily (MFS) efflux pumps. The EmrA periplasmic adaptor has been reported to link the outer 
membrane protein TolC as an EmrAB–TolC tripartite efflux system in E. coli, similar to that of AcrAB–TolC 
complex, which is in the resistance-nodulation-cell division (RND) family of transporters47. EmrAB–TolC and 
AcrAB–TolC complexes have been reported to play an important role in the tolerance of E. coli to bile salts in 
the GI tract48. In our study, we observed high abundance of tolC and acrB. We also observed higher abundance 
of mdtB at D. − 3–D.3. mdtB encodes MdtB, a part of the MdtABC system, which is in the RND family similar to 
the AcrAB–TolC system49. We also found high abundance of mdtE. MdtE is part of the MdtEF–TolC tripartite 
efflux system, conferring resistance to several compounds such as erythromycin, cloxacillin and oxacillin50. We 
also found high catB abundance at D. − 3–D.3 (Fig. 3B, Supplementary Table S2). Plasmid-encoded catB and 
cmlA are known to cause chloramphenicol resistance51. Chloramphenicol has been prohibited for use in food-
producing animals (http://​www.​farad.​org/​prohi​bited-​and-​restr​icted-​drugs.​html; accessed 10 November 2020). 
Both genes have been previously reported in E. coli, corresponding to our CCA plot results (Fig. 3D)51. Since 
this antibiotic and its derivatives have not been used in nursing and growing/finishing farms, the possibility of 
E. coli to be a reservoir for these AMR genes should be investigated further.

On the other hand, the highest abundance of AMR determinant at D.8 was mefA in the MLS resistance pat-
tern (Supplementary Table S2). mefA is in the MFS efflux pump superfamily. In fact, mefA confers resistance to 
macrolide and has been reported to locate in transposons. Hence, it can be possibly transferred between bacterial 

http://www.farad.org/prohibited-and-restricted-drugs.html


7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18091  | https://doi.org/10.1038/s41598-021-97586-9

www.nature.com/scientificreports/

species52. The high levels of mefA at all ages, particularly at D.8, might lead to a concern of macrolide usage 
on the farm, tylvalosin for sows at D. − 7–D.7 and turathromycin for piglets at D. − 3–D.23. However, the AMR 
genotype might not reflect its phenotypic resistance as the ermF gene, another AMR gene in the MLS resistance 
pattern, detected in various human clinical specimens, did not show clindamycin- or erythromycin-resistant 
phenotypes53. Hence, the macrolide resistance phenotype needs to be investigated further. rlmN encodes the 
methyltransferase RlmN, which is a member of the radical SAM enzyme superfamily and is involved in the 
methylation of 23S rRNA. The effect of rlmN mutation on the AMR is still obscure54. At D.8, high abundance 
of AMR determinants conferred resistance to β-lactam (cfxA6 and aci1) was also observed. The cfxA6 gene was 
positively correlated with Prevotella (Fig. 3F, Supplementary Table S3). cfxA was the most abundant β-lactam 
gene family in pigs, followed by aci55. cfxA has been reported in most β-lactamase-positive Prevotella strains56. 
However, another report revealed that approximately half of all Prevotella strains containing cfxA genes were 
resistant to β-lactam antibiotics57. In our case, as Prevotella was the most predominant bacterial population at 
D.8 owing to the post-weaning farm management practice (i.e. feed changes to solid feed), the associated AMR 
gene abundance was high as well. The occurrence of cfxA in β-lactamase-positive and negative Prevotella strains 
should be investigated further.

Tetracyclines are bacteriostatic antibiotics with broad spectrum activity. Tetracycline has been shown to be a 
selective pressure in fattening pigs, resulting in a greater number of tetracycline-resistant isolates23. In this study, 
tet(40) presents at the highest relative abundances across all samples, following by tetW. It encodes tetracycline 
efflux transporters under a MFS antibiotic efflux pump AMR gene family58. tet(40) is commonly found in pig gut 
microbiome. tet(40) from feces of organic pigs could present as a single tetracycline-resistance gene on a putative 
transposon and could be linked to tetW on a putative plasmid58. High tet(40) abundance has been reported in 
healthy sows not receiving antibiotics since weaning, probably reflecting the natural resistome59. In our study, 
sows were treated with chlortetracycline in feed at D. − 7–D. − 6 before parturition, whereas piglets from birth 
did not receive any tetracycline drug or its derivatives. However, residues of tetracycline and its derivatives have 
been reported in human breast milk60. The detection of antimicrobial residues in sow milk and of reservoirs of 
AMR genes in environments, such as soil and water, and the transmission of AMR genes among the microbiome 
should be investigated further. A limitation of the present study is the lack of phenotypic–genotypic comparison 
of resistance which is not available for frozen fecal samples.

The maintenance of AMR determinants on the farm is a complex problem. Several factors are involved, such 
as selective pressure, co-selection whereby the use of one antibiotic causes resistance to other drugs, and hori-
zontal and vertical transmission of AMR determinants in the chromosome, plasmid, transposon or integron by 
bacteria61. As several antibiotics have been used on the farm for decades, such as tetracycline and AMG, and a 
number of strong positive correlations were observed, co-selection should be a concern. However, the withdrawal 
of antibiotics might not be able to solve such problems, as AMR determinants still presented even though pigs 
did not receive antibiotic, probably due to mobile genetic elements in the ecosystem58.

In order to resolve the AMR concerns in the weaning pigs, manipulation of gut microbiota has been suggested. 
Due to the absence of maternal immunity in weaning piglets, biotic supplements including probiotics, fermented 
prebiotics and synbiotics should be considered to strengthen gut microbiota. In neonatal piglets and pregnant 
and lactating sows fed with prebiotics-supplemented diets, the activity of bacteria and intestinal immunity, in 
addition to immunity in piglets were significantly increased62. The strategy of using these biotics was to replace 
the AMR microorganism communities with good microorganism populations. Another technique that has been 
successful in treating diseases relating to gut microbiota dysbiosis in humans is fecal microbiota transplantation 
(FMT). FMT has been reported to decolonize several AMR pathogens such as methicillin-resistant bacteria, 
extended spectrum β-lactamase (ESBL)-producing Enterobacteriaceae and vancomycin-resistant enterococci63.

Conclusions
This study unveiled alteration of microbiome and AMR determinants in piglets at D. − 3–D.8 and that at D.8 or 
8 days after weaning, piglets showed a different microbiome community and AMR determinants compared with 
other ages, reflecting the effects of weaning activity, dietary changes to a solid diet and farm transferring. The 
tracking of AMR gene abundance in other pig ages such as fattening pigs, slaughterhouse, pork in the markets 
and pig farmers should be investigated.

Materials and methods
Statement.  All methods were carried out in accordance with guidelines and regulations and the study was 
carried out in compliance with the ARRIVE guidelines. All animals were managed following the ethical guide-
lines required under the Chulalongkorn University Animal Care and Use Committee (CU-ACUC), Thailand 
(approval number 1731036).

Animals and sampling.  A total of twenty-four crossbred Landrace × Large White × Duroc Jersey piglets 
from three sows raised on a local commercial farm were used in the study. Pigs were raised under the evaporative 
cooling housing system which can control air temperature and humidity in a building. The programs of feeds, 
antibiotics and probiotics for pregnant sows and piglets are shown in Table 5. All antimicrobial prophylaxis given 
to sows or piglets was at therapeutic doses and was used for a short-term period only (≤ 14 days), hence, they 
did not serve as growth promoters. Weaning pigs were transferred to an early weaning unit in a weaner/finisher 
farm. Fecal samples were collected from the rectum of each pig at D. − 3 (before receiving tulathromycin), D.0, 
D.3 and D.8, delivered to the laboratory under dry ice and stored at − 80 °C until DNA extraction was performed.
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DNA extraction.  DNA was extracted from 180 mg fecal samples using a QIAamp Fast DNA Stool Mini 
kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol. Genomic DNA was cleaned and con-
centrated by a Genomic DNA Clean & Concentrator Kit-10 (Zymo Research, Irvine, CA, USA), according to 
the manufacturer’s directions. DNA concentration and purity were determined using a NanoDrop ND-1000 
Spectrophotometer V3.7 (Thermo Fisher Scientific, Waltham, MA, USA) and the integrity of total DNA samples 
was evaluated with a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). DNA samples were stored 
at − 20 °C until further analysis.

DNA library preparation and metagenomic sequencing.  DNA library preparation was performed 
according to the TruSeq Nano DNA Sample Preparation Kit protocol (Illumina, San Diego, CA, USA). The sam-
ples were sheared on a Covaris S220 or E220 focused ultrasonicator (Covaris, Woburn, MA, USA) to approxi-
mately 450  bp, following the manufacturer’s recommendation, and uniquely tagged with one of the TruSeq 
LT DNA barcodes (Illumina). The finished libraries were quantitated using a Quant-iT PicoGreen dsDNA Kit 
(Thermo Fisher Scientific) and the average library size was determined using a Bioanalyzer 2100 instrument, 
using a DNA 7500 chip (Agilent Technologies). Library concentrations were then normalized to 4 nM and vali-
dated by qPCR on a ViiA-7 real-time thermocycler (Thermo Fisher Scientific), using the KAPA Library Quan-
tification Kit for Illumina platforms (Roche, Basel, Switzerland). The libraries were then pooled at equimolar 
concentrations and sequenced on an Illumina HiSeq2500 sequencer in rapid mode at a read length of 250 bp 
(paired-end read).

Data analysis.  The sequencing reads for all samples were trimmed using Trimmomatic version 0.3864. DIA-
MOND version 0.9.10.111 was used to map the trimmed read pairs to the NCBI non-redundant (NR) protein 
database, retrieved on June 8, 201865. An operational taxonomic unit (OTU) table was constructed from the 
taxonomic classification results with a 97% confidence threshold. OTUs with their total number of mapped reads 
across all samples occupying less than 0.005% of overall mapped reads were filtered out, which was then sub-
sampled to 1 262 472 reads per sample. This subsampling value is 80% of the sample with the lowest number of 
paired reads after trimming. The OTU table filtering and subsampling, in addition to subsequent alpha and beta 
diversity analyses, were performed using the QIIME 2 platform (https://​qiime2.​org/)66. A principal coordinates 
analysis (PCoA) plot of fecal microbiome taxonomy was constructed based on a pairwise dissimilarity matrix.

The reference AMR gene sequences were obtained by integrating the ResFinder version 3.2 (https://​cge.​cbs.​
dtu.​dk/​servi​ces/​ResFi​nder/; accessed 21 September 2018)67, ARG-ANNOT version 468, and CARD version 2.0.3 
databases using ARGDIT69,70. This reference sequence set was then clustered using CD-HIT with a 90% sequence 
identity threshold71. The trimmed read pairs were mapped to the reference AMR gene sequences using Bowtie 
272 and those mapped pairs were assigned to the reference AMR gene sequence clusters accordingly. The gene 
abundances in fragments per kilobase of exon model per million mapped reads (FPKM) were then calculated 
from the mapped read counts of the clusters. Any cluster with its total abundance across all samples lower than 
0.005% of the overall abundance was discarded. A stacked bar graph showing relative abundance distribution of 
antimicrobial resistance genes by antimicrobial drug resistance patterns was constructed from the proportion 
of read counts from the ResFinder annotation and presented using Microsoft Excel. Beta diversity analysis and 
a PCoA plot were performed for AMR abundance as for taxonomic abundance.

Canonical correlation analysis (CCA) plots showed interrelationships between taxon profile and AMR pro-
files, using the regularized version implemented in the R package CCA because of there being a larger number 
of variables (taxa or AMR sequences) than samples73. The association of AMR genes, bacterial community 
structure at the genus level and pig samples in each antimicrobial drug resistance pattern was analyzed using 
the vegan R package.

Table 5.   Programs of feeds, antibiotics and probiotics for pregnant sows and piglets. *Ad libitum chlorine 
in water (1 tablet/ 1000 L water) was allowed. **Probiotics (Bactosac, K.M.P. Biotech, Chon Buri, Thailand): 
109 colony-forming unit (CFU) each of B. subtilis, B. licheniformis, L. acidophilus, L. plantarum, Pediococcus 
pentosaceus and Sacchalomyces cerevisiae.

Feeds, antibiotics and probiotics Day (Day 0 = Parturition day)

1. Sows

400 ppm Chlortetracycline (dietary supplementation) − 7 to − 6

100 ppm Tylvalosin (dietary supplementation) − 7 to 7

10 mg/kg Kanamycin (intramuscular injection) 1–3

2. Piglets*

Probiotics (dietary supplementation)** 1–3

15 mg/kg Amoxicillin (intramuscular injection) 7

Pre-starter feed 7–32

2.5 mg/kg Turathromycin (intramuscular injection) 21–23

400 ppm Amoxicillin and 250 ppm Neomycin
(dietary supplementation) 25–32

https://qiime2.org/)
https://cge.cbs.dtu.dk/services/ResFinder/
https://cge.cbs.dtu.dk/services/ResFinder/
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Statistical analyses.  For DIAMOND results of microbiome communities, two statistical analyses were 
performed between groups of samples, namely: (1) permutational multivariate analysis of variance (PER-
MANOVA) to examine differences in microbiome community composition among groups of samples, under 
the null hypothesis of no differences among groups. PERMANOVA was performed using the adonis function in 
the R package vegan (version 2.5-2)74; (2) Alpha diversity of the samples was estimated using the Shannon index. 
Compositional difference between any two samples (beta diversity) was quantified with Bray–Curtis dissimilar-
ity, and the PCoA plot at the family level was computed from the pairwise dissimilarity matrix obtained. This 
PCoA plot was visualized through the Emperor plugin for QIIME 275. Both PERMANOVA and alpha diversity 
calculations employed uniformly subsampled data, as described above.

For both taxa and detected AMR determinants, we tested for differences in relative abundance of each taxon 
or AMR sequence entity, respectively, among groups using generalized linear models (GLM) implemented in 
the R package mvabund76. Statistical analyses of Shannon diversity index and relative abundance of microbial 
phyla and microbial genera were performed using the Kruskal–Wallis test. For AMR gene data, we employed the 
function manyglm with a negative binomial distribution and with the offset component set to the log of the sum 
of FPKM values for each sample. Day of sampling was treated as the factor of interest. We estimated P-values 
using the anova.manyglm function, using 1000 bootstrap resamples (resample parameters set to ‘PIT-trap’) and 
we unadjusted for multiple hypothesis testing using the step-down procedure specified by the parameter uni.p 
set to "adjusted". All other parameters in anova.manyglm had default settings. Differential abundance of AMR 
genes corresponding to antimicrobial drug resistance patterns was analyzed using the DESeq2 version 1.30.0 in 
R software77, and data were visualized using ggplot2 version 3.2.1 in the tidyverse package (https://​CRAN.R-​proje​
ct.​org/​packa​ge=​tidyv​erse/; accessed 10 October 2020).

Ethics approval and consent to participate.  The study was approved by the Chulalongkorn University 
Animal Care and Use Committee (CU-ACUC), Bangkok, Thailand (approval number 1731036).

Data availability
Additional data is available in the supplementary material, and the datasets generated during the current study 
are available in the Sequence Read Archive repository, in the BioProject PRJNA662672 (https://​www.​ncbi.​nlm.​
nih.​gov/​sra/​PRJNA 66267 2).
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